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Particle mixing and the emergence of classicality: A spontaneous-collapse-model view
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Spontaneous collapse models aim to resolve the measurement problem in quantum mechanics by considering
wave-function collapse as a physical process. We analyze how these models affect a decaying flavor-oscillating
system whose evolution is governed by a phenomenological non-Hermitian Hamiltonian. In turn, we apply two
popular collapse models, the Quantum Mechanics with Universal Position Localization and the Continuous
Spontaneous Localization models, to a neutral meson system. By using the equivalence between the approaches
to the time evolution of decaying systems with a non-Hermitian Hamiltonian and a dissipator of the Lindblad
form in an enlarged Hilbert space, we show that spontaneous collapse can induce the decay dynamics in both
quantum state and master equations. Moreover, we show that the decay property of a flavor-oscillating system
is intimately connected to the time (a)symmetry of the noise field underlying the collapse mechanism. This
(a)symmetry, in turn, is related to the definition of the stochastic integral and can provide a physical intuition
behind the Itō-Stratonovich dilemma in stochastic calculus.
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I. INTRODUCTION

Despite a distinctly high success of (“standard”) quantum
mechanics in describing the microscopic world and covering
plenty of phenomena on different energy scales, it meets some
conceptual controversies. The linearity of the Schrödinger
equation manifests itself as the famous superposition princi-
ple, which is one of the cornerstones of quantum mechanics.
At high energy scales, it plays a crucial role in the phenomena
of particle mixing and oscillations, which are experimentally
observed in several systems such as neutral mesons [1,2].
They occur when the energy eigenstates of the particle are not
necessarily identical to the interaction eigenstates but rather
are their superpositions. For example, a neutral K meson
produced in strong interactions as a bound state of a down
quark and strange antiquark ds̄ can be found to turn into the
bound state d̄s via weak-interaction processes. However, the
superposition principle does not seem to be relevant in the
macroscopic world. We do not observe a table being here
and there and a kitten dead and alive at once: our everyday
experience shows a break of the dynamics predicted by the
linear Schrödinger equation. This observation leads to a ques-
tion: How does the everyday classical world arises from the
quantum world?

Going further, a measurement performed on a quantum
system and associated with an interaction between the system
and the measurement apparatus (implied to be macroscopic)
reveals a definite outcome. In turn, it is intimately connected
to the so-called measurement problem, which, in particular,
refers to the questions of what selects a certain outcome
in a particular experimental run and what makes an actual
interaction a measurement (“What makes a measurement a
measurement?”) [3,4]. The measurement problem and, in
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general, the validity of the superposition principle is a subject
of intense experimental verification.

“Standard” quantum mechanics does not explain this
quantum-to-classical transition but only postulates an ad hoc
separation between microscopic (quantum) and macroscopic
(classical) worlds. This results in two different types of dy-
namics of the quantum system:

(i) a stochastic and nonunitary reduction (“collapse”) of
the state of the quantum system due to an interaction with
a macroscopic system (“measurement apparatus”) in accor-
dance with the Born’s rule;

(ii) a deterministic unitary time evolution governed by the
Schrödinger equation before and after the measurement.

A possible approach to the quantum-to-classical transition
can be a universal dynamics valid on all scales, which contains
both quantum and classical mechanics as approximations. Dy-
namical reduction models, or so-called collapse models, aim
to provide a phenomenological framework to such dynamics.
They introduce an ontologically objective mechanism of the
wave function collapse, which is implemented by replacing
the Schrödinger dynamics with its stochastic (in order to
explain why the measurement outcomes occur randomly in
accordance with the Born’s rule) and nonlinear (in order
to break up a macroscopic superposition and get rid of the
Schrödinger’s cat) modification [5–7].

The first and the simplest collapse model is the Ghirardi-
Rimini-Weber (GRW) model, also known as the Quantum
Mechanics with Spontaneous Localizations (QMSL) model,
introduced in 1985 [8]. This model has implemented the
collapse mechanism by assuming, with respect to a system of
N distinguishable particles, random spontaneous localizations
(called “hittings” by Ghirardi [9] and “jumps” by Bell [10])
with a mean rate λ affecting each particle and conserving
the usual Schrödinger evolution of the system between the
successive localizations. In turn, the GRW model gives rise
to the amplification mechanism tuned by the rate λ, which
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sets the collapse strength: spontaneous localizations affect a
microscopic object very rarely and can be neglected, while a
macroscopic superposition is rapidly reduced [6,7]. Another
guiding line implemented by the GRW model is a choice
of the preferred basis into which the state of the quantum
system is reduced so that a macroscopic object has a definite
position in space: for that purpose, the GRW model chooses
the position basis. This leads to the definition of the collapse
width rC , which sets a coarse-graining for the wave function of
the system. Basically, it sets a scale at which a spatial super-
position is effectively reduced and, therefore, is a threshold
between macroscopic and microscopic superpositions [11].
For example, a superposition of two localized states separated
by a distance d � rC is not significantly affected by the col-
lapse dynamics, whereas one with d � rC will be effectively
localized. Taking collapse models seriously, the parameters
λ and rC are two new natural constants introduced by these
models.

An important class of dynamical reduction models is rep-
resented by those that describe the wave-function collapse
as a continuous process induced by an interaction between
the system and a (classical) noise field. The benefit of these
models is a possibility to govern the universal dynamics by a
stochastic differential equation, which is obtained, generally
speaking, by adding new nonlinear and stochastic terms to
the Schrödinger equation. The typical and, perhaps, most
popular models of this class are the Quantum Mechanics
with Universal Position Localization (QMUPL) [12] and the
Continuous Spontaneous Localization (CSL) [13,14] models.
One of the essential differences between these models is
the simpler mathematical structure of the QMUPL model:
the QMUPL noise field “lives” only in the time dimension,
whereas the CSL noise field is spread both in time and
space. Therefore, the CSL model introduces two parameters,
a collapse rate and a coherence length (just like the GRW
model), while, in the QMUPL model, the latter is absent. For
many physical systems, both models predict approximately
equivalent dynamics. In this paper, however, we provide an
example of a setup featuring flavor mixing, for which the
QMUPL and the CSL models offer nonequivalent predictions.

Since their appearance on the market, collapse models
caught the eye of researchers and were intensively investi-
gated in a plethora of physical systems at different energy
scales [15]. In particular, collapse models were analyzed
with respect to the spontaneous radiation emission from
charged particles [16–18] and put to experimental tests by
x-rays [19–23]. Furthermore, spontaneous collapse models
were recently studied in the context of cold-atom experiments
[24], gravitational waves [25], levitated nanoparticles [26],
matter-wave interferometry [27–30], and optomechanical se-
tups [31–33].

Particular attention is attracted to the analysis of the pos-
sible effects of a spontaneous collapse in the oscillations at
high energies. Mixed systems propose some peculiar features,
which have stimulated high interest in these systems as a
rich playground for testing the very foundations of quantum
mechanics [34–49]. For example, the beauty of the neutral
K-meson systems, whose relevant states measured in experi-
ments are superpositions of states with distinct masses, is that
they reveal a parallel with the spin- 1

2 particles and photons.

However, they offer richer properties such as decay and the vi-
olation of the CP discrete symmetry, which leads to surprising
results, such as a contradiction between local realism and the
CP violation [50]. In this context, a possible effect of sponta-
neous collapse on flavor oscillations was studied for neutrinos
[51,52] and neutral mesons, in particular, K0-K̄0 correlated
pairs produced at the CPLEAR experiment by the Low Energy
Antiproton Ring (LEAR) accelerator facility at CERN and
at the KLOE and KLOE-2 experiments by the DA�NE φ

factory at the Frascati National Laboratories of INFN [51,53].
In turn, the CSL model has predicted exponential damping of
the oscillatory behavior of a neutral meson system [51,53].

It has been put under discussion whether the spontaneous
collapse can be considered also as a source of particle decay
[54–56]. It has been shown that the decay dynamics can
be recovered by the mass-proportional CSL model with an
asymmetric correlation function of the noise field underlying
this collapse model. Mathematically, the asymmetry in the
noise field is expressed as a parameter in the quantum state
equation of the collapse model, which is intimately related
to the choice of the stochastic formalism. Considering this
asymmetry free can lead to a nontrivial dependence on the
absolute masses of the eigenstates of the time evolution. In
Ref. [57], this point of view was criticized by considering
a unique fixed master equation in the Gorini-Kossakowski-
Lindblad-Sudarshan (GKLS) form with a Hermitian Hamilto-
nian, which, clearly, does not describe the decay property of
particles. This argument combined with the fixed asymmetry
of the noise field due to the chosen stochastic formalism led to
the conclusion that spontaneous collapse models are not able
to induce the (exponential) decay dynamics. This is due to the
fact that a naïve switch of the stochastic formalism changes
both the asymmetry of the noise field and the quantum state
equation in such a way that the master equation preserves its
form (as it should), and the non-Hermitian part of the Hamil-
tonian, which covers the decay, clearly, cannot be recovered
in such a way.

In this paper, we review the results of Refs. [54–56] in
the context of the master equation associated with a collapse
model and investigate how the noise field affects the dynamics
of neutral mesons. We derive a class of collapse models with a
free choice of time-asymmetry of the underlying white-noise
field and show that the decay property of a flavor oscillating
system (or its absence) can be governed by the corresponding
spontaneous collapse dynamics in accordance with Ref. [55].
In turn, the derived collapse models generate a family of
master equations parametrized by the decay rates, including
the GKLS equation corresponding to the evolution without
decay.

The paper is organized as follows: In Sec. II, we discuss the
phenomenology of neutral mesons by putting the focus on the
nonrelativistic framework via the Wigner-Weisskopf approxi-
mation and the corresponding master equation. This approach
operates with a two-state non-Hermitian Hamiltonian acting
on the flavor Hilbert space and results in exponential decay
dynamics in the transition probabilities. Furthermore, we dis-
cuss the approach to the neutral meson phenomenology based
on the enlarged Hilbert space with included decay product
states, which allows us to define a Hermitian Hamiltonian and,
in turn, prove the completely positive dynamics of a neutral

022226-2



PARTICLE MIXING AND THE EMERGENCE OF … PHYSICAL REVIEW A 102, 022226 (2020)

meson system. In Sec. III, we discuss the collapse equation
in the flavor Hilbert space for a non-Hermitian Hamiltonian
and associate it with the master equation introduced in the
previous section. After all, we generalize this collapse model
to a class of models with a time-asymmetric noise field,
where the collapse process turns out to be the source of the
decay widths. In Sec. IV, we refer to the QMUPL and the
mass-proportional CSL models, generalize them to the time-
asymmetric noise field introduced in the previous section, and
derive the transition probabilities by using the corresponding
master equations.

II. PHENOMENOLOGY OF THE NEUTRAL MESONS

Mixed systems such as the M0-M̄0 systems can be de-
scribed by a phenomenological Hamiltonian acting on a two-
dimensional Hilbert space HM called also flavor space. The
physical (flavor) states |M0〉 and |M̄0〉 of a neutral meson are
labeled by a flavor quantum number and can decay into the
same final states. In particular, the flavor states of neutral
K mesons are labeled by the strangeness quantum number
(S = ±1, respectively) and, for the hadronic decays, both can
decay via weak interaction into two or three pions. The usual
approach to the dynamics of a neutral meson system is based
on the Wigner-Weisskopf approximation, which considers an
effective non-Hermitian Hamiltonian

Ĥ = M̂ − i

2
�̂, (1)

with the eigenstates |Mi〉 (in particular, for neutral mesons, i =
L, H corresponding to “light” and “heavy”) with the (distinct)
definite masses mi and known decay widths �i, so that the
corresponding eigenvalues read mi − i

2�i. In this treatment,
M̂ = M̂† is the mass operator, which covers the unitary part
of the dynamics, and �̂ = �̂† describes the decay. Apart from
neutral K mesons, the difference of the decay widths �� =
�L − �H in the M0-M̄0 systems is tiny. Up to a particular
phase convention and neglecting a slight violation of the
CP symmetry in the weak interaction, the mass (lifetime)
eigenstates |Mi〉 of the Hamiltonian (1) can be related to the
flavor states as

|MH 〉 = 1√
2

(|M0〉 + |M̄0〉),

|ML〉 = 1√
2

(|M0〉 − |M̄0〉).

(2)

The Wigner-Weisskopf approximation takes into account only
the time evolution of the components of the flavor states, so
that the neutral meson system dynamics is described by the
effective Schrödinger equation,

i
d

dt
|ψ〉t =

(
M̂ − i

2
�̂

)
|ψ〉t , (3)

|ψ〉t = a(t )|M0〉 + b(t )|M̄0〉, (4)

where h̄ = c = 1 is assumed. Due to the presence of the non-
Hermitian part of the Hamiltonian (1), the temporal part of
the evolution of the neutral meson system is not normalized.

Namely, considering an arbitrary state |ψ〉t ∈ HM , we obtain

d|||ψ〉t ||2 = −
∑

i

�i|〈Mi|ψ〉t |2dt, (5)

so that |ψ〉t is not normalized when �i �= 0. In particular, let us
consider the quantities actively investigated at the accelerator
facilities, the transition probabilities

Pin→out (t ) = |〈ψout|e−iĤt |ψin〉|2 (6)

for the states |ψin,out〉 ∈ HM . The most interesting are the
transition probabilities for the lifetime eigenstates |Mi〉,

PMi→Mj (t ) = e−�itδi j, (7)

and the flavor states |M0〉 and |M̄0〉,

PM0→M0/M̄0 (t ) = 1

4

{∑
i

e−�it ± 2e−�t cos [t�m]

}
, (8)

where � = �L+�H
2 . Since the temporal part of the evolution

of the M0-M̄0 system is not normalized due to Eq. (5), the
probabilities (7) and (8) are not conserved. A formal renor-
malization by the decay width would allow us to apply the
Born’s rule within a framework of time operator; however, this
option is falsified in neutral K-meson systems because of the
CP violation [45].

If the M0-M̄0 system is considered as open (i.e., interacting
with the external environment) and affected by some uncon-
trolled phenomena, the resulting evolution can be described
by the following master equation [58]:

d ρ̂t

dt
= −iĤ ρ̂t + iρ̂t Ĥ

† − 1

2

∑
i

[L̂†
i L̂iρ̂t + ρ̂t L̂

†
i L̂i − 2L̂iρ̂t L̂

†
i ]

= i[ρ̂t , M̂] − 1

2

∑
i

[L̂†
i L̂iρ̂t + ρ̂t L̂

†
i L̂i − 2L̂iρ̂t L̂

†
i ]

− 1

2
{�̂, ρ̂t }, (9)

where ρ̂t ∈ D(HM ) is the density operator1 which represents
the state of the neutral meson system, L̂i are the Lindblad gen-
erators which describe the interaction between the system and
environment, and curly brackets denote an anticommutator. In
the absence of decay, i.e., when the decay operator �̂ is set to
be zero, Eq. (9) possesses the GKLS form [59,60] and, hence,
describes a completely positive evolution of the system. This
means that the operator ρ̂t remains a density operator and still
represents a state of the quantum system, so that the evolution
given by the master equation (9) is physically consistent. In
particular, it can govern dissipative and decoherence effects
in flavor mixing, which can be signals for new physics.
For example, decoherence in neutrino oscillations can reveal
the difference between Dirac and Majorana neutrinos and,
moreover, break up the CPT symmetry [44,49].

Although the master equation (9) does not possess the
GKLS form if �̂ �= 0, it is possible to prove the completely

1The set D(HM ) of density operators on HM is a convex subset of
the space B(HM ) of bounded linear operators on HM formed by the
positive self-adjoint trace-class operators.
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positive dynamics with respect to the non-Hermitian Hamil-
tonian (1) in an elegant way by considering particle decay as
an open system [58,61]. Namely, the issue of nonconserving
probabilities due to Eq. (5) can be resolved by taking into
account the decay products. This is done by enlarging the
Hilbert space HM [spanned by the eigenstates of the Hamil-
tonian (1)] to the Hilbert space H = HM ⊕ HD, where HD

is spanned by the orthonormal states | fi〉 which represent the
decay products [58]. In this new space H, the decay property
of neutral mesons can be incorporated into a GKLS equation
as a Lindblad operator. Physically, this means that the decay
property is induced by an interaction of the neutral meson
system with an environment (analogously to an interaction
with the QCD vacuum in quantum field theory), and the
resulting time evolution is completely positive [58,62]. We
construct the following GKLS equation for 
̂t ∈ D(H):

d
̂t

dt
= i[
̂t , Ĥ] − 1

2

∑
i

[L̂†
i L̂i
̂t + 
̂t L̂†

i L̂i − 2L̂i
̂t L̂†
i ]

− 1

2
[L̂†

DL̂D
̂t + 
̂t L̂†
DL̂D − 2L̂D
̂t L̂†

D], (10)

where

Ĥ =
(

M̂ 0
0 0

)
is the Hamiltonian and

L̂i =
(

L̂i 0
0 0

)
,

in accordance with the notation in Eq. (9). Let us show that
the decay property is governed by Eq. (10) if the Lindblad
operator L̂D has the form

L̂D =
(

0 0
L̂D 0

)
. (11)

This choice means that L̂D represents a transition between the
flavor HM and the “decay” HD subspaces of H. In this way, if
HD has the same dimensions as HM , then we can decompose
L̂D, which acts in HM , as

L̂D =
∑

i

√
γi| fi〉〈Mi|, (12)

where γi � 0. By projecting the master equation (10) back to
HM we obtain a master equation

d ρ̂t

dt
= i[ρ̂t , M̂] − 1

2

∑
i

[L̂†
i L̂iρ̂t + ρ̂t L̂

†
i L̂i − 2L̂iρ̂t L̂

†
i ]

− 1

2
{L̂†

DL̂D, ρ̂t }. (13)

Comparing Eq. (13) with the master equation (9), we see that
they are identical if the decay operator is set to be

�̂ = L̂†
DL̂D =

∑
i

γi|Mi〉〈Mi|, (14)

so that γi = �i are simply the decay widths of the correspond-
ing lifetime eigenstates |Mi〉 of the non-Hermitian Hamilto-
nian (1). Hence, the choice (14) of the decay operator guar-
antees the consistency of the evolution of a M0-M̄0 system
induced by the master equation (9).

III. COLLAPSE DYNAMICS IN HM

In a typical advanced dynamical reduction model, such
as the QMUPL and CSL models discussed in Sec. IV, the
wave-function collapse is considered as a continuous physical
process with respect to the interaction between the quantum
system and a randomly fluctuating (noise) field. Mathemati-
cally, this is achieved by a nonlinear stochastic modification
of the Schrödinger equation,2

d|ψ〉t =
[
−iĤdt +

√
λ
∑

i

(
Âi − RÂi

)
dWi,t

− λ

2

[
Â†

i Âi − 2RÂi
Âi + R2

Âi

]
dt

]
|ψ〉t , (15)

with

RÂi
=
〈

Â†
i + Âi

2

〉
t

, (16)

where Ĥ governs the standard Schrödinger part of the evo-
lution, λ � 0 is the coupling constant of the collapse model
which represents the localization rate, Wi,t is a set of the
Wiener processes, Âi are the corresponding collapse operators,
and 〈Âi〉t := t 〈ψ |Âi|ψ〉t is the quantum-mechanical expecta-
tion value.

The change of the Wiener process Wi,t in time is rep-
resented by the noise field dWi,t mentioned above, whose
correlation function reads

E[dWi,t dWj,t ′ ] = δi jδ(t − t ′), (17)

where E denotes the noise average. This noise field is white,
i.e., all its frequencies equally contribute to the collapse
process. The nature of the noise field still remains an open
question: one of the options is a physical field filling the whole
space, hence, having presumably a cosmological nature (for
example, the relic cosmic neutrino background would be a
possible candidate for the noise field of the CSL model [63]).
Hence, there is a challenge to study the collapse models with
the noise field whose properties differ from ones of a “typical”
white noise [64–68]. In turn, the noise field can depend on
the direction of time,3 which plays a crucial role in decay
dynamics of a M0-M̄0 system, as we show later in this section.

The collapse operators Âi define the preferred basis into
which the state of the quantum system is reduced. A particular
interest has the case of the self-adjoint collapse operators,

2In this section, we use the Itō stochastic formalism. For details see
Appendix A.

3Mathematically, this dependence on the time direction is inti-
mately connected to the asymmetry of the correlation function (17)
and, in turn, the definition of the stochastic integral. We discuss the
mathematical aspects of the asymmetry of Eq. (17) in Appendix A.
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which significantly simplifies the collapse equation (15),

d|ψ〉t =
[
−iĤdt +

√
λ
∑

i

(Âi − 〈Âi〉t )dWi,t

− λ

2

∑
i

(Âi − 〈Âi〉t )
2dt

]
|ψ〉t . (18)

For a neutral meson system, whose standard Schrödinger
evolution is governed by the phenomenological Hamiltonian
(1), the (flavor) HM counterpart of the collapse dynamics can
be governed by the self-adjoint collapse operator

Â =
∑

i

m̃i|Mi〉〈Mi|, (19)

where m̃i is the mass ratio with respect to the corresponding
mass mi and the reference mass m0. The latter can be seen as
a free parameter of a collapse model which relates (generally
speaking, for ordinary matter) the mass ratio to an average
number of constituents of the composite object and tunes
the amplification mechanism of the collapse model [69]. In
a typical collapse model (in particular, the mass-proportional
CSL model discussed in Sec. IV), the amplification mecha-
nism strengthens the collapse effect for a more massive object,
suggesting the definition m̃i = mi

m0
for the mass ratio.4

Accepting Eq. (18) as the dynamical equation for the state
|ψ〉t ∈ HM of a neutral meson system, it is possible to derive
the master equation (9) for the corresponding density operator
ρ̂t = E[|ψ〉t 〈ψ |t ] from it. In this case, the role of the Lindblad
generators L̂i play the collapse operators weighted by the
localization rate, so that L̂i = √

λÂi. However, as we have
discussed in Sec. II, Eq. (9) is derived with respect to the
non-Hermitian Hamiltonian Ĥ . Hence, it does not guarantee
itself the complete positivity of the resulting dynamics, which
could produce no physically consistent state of the neutral
meson system in this case. Therefore, we would desire to
have a collapse model in H which induces the GKLS master
equation (10). This guarantees that Eq. (18) is associated with
the master equation (13), which is a projection of Eq. (10)
onto HM and, hence, induces a physically consistent dynamics
of the M0-M̄0 system. Let us build such collapse dynamics
in H. At first, we have to reproduce the self-adjoint collapse
operator which induces the reduction in the mass basis due to
Eq. (19), namely,

Â =
(

Â 0
0 0

)
.

Another (non-Hermitian) collapse operator

B̂ =
(

0 0
B̂ 0

)

4Neutral meson systems reveal opposite behavior: lighter particles
decay faster, and the mass ratio mi

m0
decreases. Thus, as discussed in

Ref. [55], an inverted mass ratio m̃i = m0
mi

would be more reasonable
for the particles lighter than the constituents of ordinary matter.
However, in this paper, we imply that m̃i represents the “usual” mass
ratio unless otherwise noted.

with

B̂ =
∑

i

√
�i

λ
| fi〉〈Mi| (20)

triggers the decay of a neutral meson to the product states
| fi〉 with the corresponding decay widths �i. With a Hermitian
Hamiltonian

Ĥ =
(

M̂ 0
0 0

)
,

the required dynamics can be governed by the following
differential equation for a quantum state |�〉t ∈ H:

d|�〉t =
{
−iĤdt +

√
λ
[
(Â − 〈Â〉t )dWt + (B̂ − RB̂ )dW D

t

]
− λ

2

[
(Â − 〈Â〉t )

2 + B̂†B̂ − 2RB̂B̂ + R2
B̂
]
dt

}
|�〉t ,

(21)

with

RB̂ =
〈
B̂† + B̂

2

〉
t

. (22)

It can be shown that Eq. (21) is associated with the GKLS
master equation (10) for a density operator 
̂t = E[|�〉t 〈�|t ],
where the corresponding Lindblad generators are proportional
to the collapse operators, L̂ = √

λÂ and L̂D = √
λB̂.

Going back to the flavor space HM , we project the obtained
collapse equation (21) onto it. In this way, we find the follow-
ing collapse equation for |ψ〉t ∈ HM :

d|ψ〉t =
{

− iM̂dt +
√

λ(Â − 〈Â〉t )dWt

− λ

2
[(Â − 〈Â〉t )

2 + B̂†B̂]dt

}
|ψ〉t , (23)

which is associated with the master equation (13). Comparing
Eq. (23) with the original collapse equation (18), we see that
there appears a drift term proportional to λB̂†B̂ which plays
the role of the non-Hermitian part �̂ of the phenomenological
Hamiltonian (1) governing the decay property, as we would
expect from the master equation (10). However, when looking
at Eqs. (21) and (23), the collapse mechanism seems to have
no impact on the decay dynamics since its localization rate
λ, in fact, does not show up in the terms associated with the
decay, so that

E[d|||ψ〉t ||2] = −λE[〈ψ |t B̂†B̂|ψ〉t ]dt

= −
∑

i

�iE[|〈Mi|ψ〉t |2]dt �= 0, (24)

in accordance with the predictions of the effective
Schrödinger equation (3) for the dynamics of neutral mesons.
Indeed, the role of “localization rates” for the collapse
operators B̂ and B̂ play the decay widths �i inserted by
hand, and we just reproduce the �̂ operator in accordance
with Eq. (14). However, it is possible to obtain spontaneous
collapse dynamics which does not simply mimic the decay
operator �̂ but rather induces additional energy terms which
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play the role of the decay widths �i and, hence, recovers the
decay dynamics of a M0-M̄0 system.

Before proceeding, let us remark on the properties of
dynamics governed by Eqs. (13) and (18). Despite the non-
linearity of the quantum state equation (18), which makes it
difficult to solve, its physical predictions can be analyzed in
a simple way by using a peculiar mathematical property of
Eqs. (13) and (18). The master equation (13) and, in turn,
the physical predictions of the quantum state equation (18)
concerning the outcomes of a measurement [in particular, the
transition probabilities (7) and (8)] turn out to be invariant5

under the phase transformation [64],

d|ψ〉t

=
[
−iĤdt +

√
λ
∑

i

(eiϕÂi − cos(ϕ)〈Âi〉t )dWi,t

−λ

2

∑
i

(
Â2

i −2eiϕ cos(ϕ)〈Âi〉t Âi+ cos2(ϕ)〈Âi〉2
t

)
dt

]
|ψ〉t ,

(25)

of Eq. (18). In particular, the original collapse equation (18)
can be recovered by choosing ϕ = 0, whereas the choice
ϕ = π

2 introduces an imaginary noise field and leads to a more
simple Schrödinger-like equation

d|ψ〉t =
[
−iĤdt + i

√
λ
∑

i

ÂidWi,t − λ

2

∑
i

Â2
i dt

]
|ψ〉t .

(26)
Applying the noise field transformation to Eq. (23) we obtain
the quantum state equation

d|ψ〉t =
[
−iM̂dt + i

√
λÂdWt − λ

2
(Â2 + B̂†B̂)dt

]
|ψ〉t .

(27)
In the absence of the decay contribution B̂†B̂, the quantum
state equation (27) conserves the norm of |ψt 〉 and, indeed,
there is no built-in direction of time.6 As discussed in Ap-
pendix A, this can be interpreted as the time-symmetry of the
noise field, i.e., the action of the noise field in the bra space
(“out” states) and ket space (“in” states) is symmetric. On
the other hand, considering a class of more general collapse
models with a time-asymmetric noise is more reasonable for
the decay dynamics, which does not conserve the norm of
|ψ〉t . It generates a quantum state equation

d|ψ〉t = [−iM̂dt + i
√

λÂdWt − λβÂ2dt]|ψ〉t , (28)

5This transformation introduced in Ref. [64] can be generalized
to the transformation d|ψ〉t = [−iĤdt + √

λ
∑

i(e
iϕÂi −

ξ〈Âi〉t )dWi,t − λ

2

∑
i(Â

2
i − 2eiϕξ ∗〈Âi〉t Âi + (|ξ |2 + iω)〈Âi〉2

t )dt]|ψ〉t

with additional parameters ξ ∈ C and ω ∈ R, which still leaves the
master equation (13) invariant.

6Notice that the collapse models, generally speaking, do not neces-
sarily need a built-in direction of time for the description of spon-
taneous collapse, which can seem an essentially time-asymmetric
process [70,71].

with the parameter β ∈ [0, 1] which describes this time-
asymmetry7 and can be seen as tuning of the coupling between
the bra and ket spaces with respect to the noise field action
[55]. Comparing Eq. (28) with Eq. (27), we see that the decay
operator �̂ can be recovered by an operator induced by the
collapse dynamics in HM ,

�̂ ≡ λB̂†B̂ = −λ(1 − 2β )Â2. (29)

Decomposing the collapse operators Â and B̂, we obtain

�i = −λ(1 − 2β )m̃2
i (30)

in the definition8 of the collapse operator B̂. This implies that
the spontaneous collapse can be an only source of the two
distinct decay widths, and, in turn, the decay dynamics in HM

is governed by the collapse dynamics.
Summarizing, the non-Hermitian part of the Wigner-

Weisskopf effective Hamiltonian (1), which governs the decay
property of neutral mesons, can be induced by spontaneous
collapse dynamics in HM with respect to the quantum state
equation (28) or, equivalently, the master equation

d ρ̂t

dt
= i[ρ̂t , M̂] − λ

2
[Â2ρ̂t + ρ̂t Â

2 − 2Âρ̂t Â]

+ λ

2
(1 − 2β ){Â2, ρ̂t }. (31)

In other words, a broader class of time-asymmetric collapse
models can in principle gain the decay property of neutral
mesons. As shown in Refs. [55,56], such a collapse model
makes possible to predict the absolute masses mH and mLof
the lifetime eigenstates as well as the collapse parameters
λ and β using the experimentally measured values of the
decay constants �H and �L and the difference of masses
�m = mH − mL. We discuss these interesting consequences
of the spontaneous collapse dynamics in the following section.

IV. QUANTUM MECHANICS WITH UNIVERSAL
POSITION LOCALIZATION AND CONTINUOUS

SPONTANEOUS LOCALIZATION MODELS

In the previous section, we obtained a class of collapse
models which could explain the full dynamics of a M0-M̄0

system in the flavor Hilbert space HM , where the oscillations
take place. Now, we turn to the collapse models acting in the
Hilbert space L2(Rd ) ⊗ HM with d = 1, 2, 3, which combines
the position and flavor spaces, and the collapse is assumed
to occur in the spatial part of the state of the system. For
the sake of concreteness, we consider the QMUPL and the
mass-proportional CSL models, which were widely analyzed
in the context of flavor oscillations [51–56], and generalize
them to the models with the time-asymmetric noise field. In

7The choice β = 1
2 gives a “usual” noise field with no dependence

on the direction of time.
8The overall minus sign comes from our convention on the direc-

tion of time arrow, so that the non-negative decay widths correspond
to β ∈ [ 1

2 , 1] in this case.
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this way, we analyze the quantum state equation

d|ψ〉t =
[
−iM̂dt + i

√
λ
∑

i

ÂidWi,t − λβ
∑

i

Â2
i dt

]
|ψ〉t ,

(32)
with the collapse operators

ÂQMUPL
i = q̂i ⊗ Â, (33)

ÂCSL
x = Q̂(x) ⊗ Â, (34)

of the QMUPL and the mass-proportional CSL models, re-
spectively. In the QMUPL model, q̂i denotes the ith coordinate
operator in L2(Rd ), and the unique introduced collapse param-
eter is the collapse rate λ ≡ λQ which has the units (m2 s)−1.
In the mass-proportional CSL model,

Q̂(x) =
∫

dy(
2πr2

C

) d
2

e
− (x−y)2

2r2
C |y〉〈y| (35)

is a continuous set of collapse operators acting in L2(Rd )
which are smeared by a Gaussian function.9 In contrast to the
QMUPL model, the mass-proportional CSL model introduces
two natural constants, the collapse rate being traditionally
denoted λ ≡ γ , which has the units md s−1, and the coherence
length rC .

At accelerator facilities, one intensively studies the decay
modes of neutral mesons. Observation of a decay mode is
a passive measurement procedure, which allows the exper-
imenter to determine the lifetime of a neutral meson or its
flavor content (for example, strangeness in the case of K
mesons). Hence, in standard quantum mechanics, it leads
to the corresponding lifetime and flavor measurement prob-
abilities given by the transition probabilities (7) and (8).
With included contribution from spontaneous collapse, these
probabilities can be defined through

Pin→out (t ) = |〈ψout|Û (t )|ψin〉|2 (36)

for |ψin,out〉 ∈ HM , where Û (t ) is the evolution operator due
to the quantum state equation (32). The detailed perturbative
calculations of Eq. (36) for the lifetime eigenstates |Mi〉 and
the flavor states |M0〉 and |M̄0〉 are already known in literature
[52,54–56], hence, we choose a simpler procedure and stick
to the class of master equations in accordance with Eq. (31),
namely,

d ρ̂t

dt
= i[ρ̂t , M̂] − λ

2

∑
i

[
Â2

i ρ̂t + ρ̂t Â2
i − 2Âiρ̂t Âi

]
+λ

2
(1 − 2β )

∑
i

{
Â2

i , ρ̂t
}
, (37)

with the collapse operators (33) or (34). Solving Eq. (37),
we can derive the required transition probabilities (36), which

9Originally, the CSL model is formulated within the second quan-
tization formalism in order to describe a system of indistinguishable
particles. For the sake of simplicity, we formulate it as a first-
quantized model following Ref. [57].

now read

Pin→out (t ) = Tr [(1 ⊗ |ψout〉〈ψout|)ρ̂t ], (38)

where the initial state is chosen as ρ̂0 = |α〉〈α| ⊗ |ψin〉〈ψin|
with |α〉 representing a Gaussian wave packet of width

√
α.

Following the calculations done in the Appendix B, we
find that the QMUPL collapse effect is not exponential, while
the CSL model recovers the exponential effect, in accordance
with Ref. [55]. In particular, the transition probabilities for the
lifetime eigenstates read

PQMUPL
Mi→Mj

(t ) = [1 − λQα(1 − 2β )m̃2
i t
]− d

2 δi j, (39)

PCSL
Mi→Mj

(t ) = e
− γ

(
√

4πrC )d
(2β−1)m̃2

i t
δi j, (40)

whereas the transition probabilities for the flavor states, which
reveal the particle oscillations, read

PQMUPL
M0→M0/M̄0 (t )

= 1

4

⎧⎨⎩∑
i

[
1 − λQα(1 − 2β )m̃2

i t
]− d

2

± 2 cos [t�m]{
1 − λQα

2

[
(1 − 2β )

∑
i m̃2

i − (�m̃)2
]
t
} d

2

⎫⎬⎭, (41)

PCSL
M0→M0/M̄0 (t )

= 1

4

{∑
i

e
− γ

(
√

4πrC )d
(2β−1)m̃2

i t

± 2e
− 1

2
γ

(
√

4πrC )d
[(2β−1)

∑
i m̃2

i +(�m̃)2]t
cos[t�m]

}
. (42)

In particular, the oscillations of K and B mesons were inten-
sively studied through their (semi-)leptonic decays

K0 → π−e+νe,

K̄0 → π+e−ν̄e,

B0 → D−μ+νμ,

B̄0 → D+μ−ν̄μ,

at accelerator facilities in the CPLEAR and the BaBar and
Belle experiments, respectively. In these experiments, detect-
ing a lepton of a definite charge uniquely identifies the flavor
of the decayed meson. In this way, a direct measure of the
relative flavor components of the state of a neutral meson
is provided by the relative decay rates. The corresponding
decay rates can be associated with the transition probabilities
for the flavor states up to a normalization factor. Hence,
the asymmetry term, which is a combination of the flavor
transition probabilities,

A(t ) = PM0→M0 (t ) − PM0→M̄0 (t )

PM0→M0 (t ) + PM0→M̄0 (t )
, (43)

plays a significant role by removing the overall normalization
factor and, hence, canceling potential systematic biases [72].
For the standard quantum-mechanical transition probabilities
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(8), it reads

A(t ) = cos [t�m]

cosh
[

��
2 t
] , (44)

where �� = �L − �H . Plugging in the transition probabili-
ties (41) and (42), we include the effects of the QMUPL and
the CSL models into the asymmetry term and obtain

AQMUPL(t )

= 2 cos [t�m]

[(
1 − 1

2

λQα[(1 − 2β )�m̃2 − (�m̃)2]t

1 − λQα(1 − 2β )m̃2
Lt

) d
2

+
(

1 + 1

2

λQα[(1 − 2β )�m̃2 + (�m̃)2]t

1 − λQα(1 − 2β )m̃2
Ht

) d
2
]−1

, (45)

ACSL(t ) = cos[t�m]

cosh
[

γ

(
√

4πrC )d

(
β − 1

2

)
�m̃2t

] e
− γ

(
√

4πrC )d
(�m̃)2

2 t
,

(46)

where �m̃2 = m̃2
H − m̃2

L.
The asymmetry term (46) with the included CSL collapse

dynamics reveals two disentangled effects on the transition
probabilities for neutral mesons. At first, there is exponential
damping of the interference term, which depends on the mass
difference �m. Second, comparing Eq. (46) with the stan-
dard quantum-mechanical asymmetry term (44), which results
from the Schrödinger equation with the Wigner-Weisskopf
effective Hamiltonian (1), we find the induced exponential
decay dynamics with the corresponding decay widths

�i = − γ

(
√

4πrC )d
(1 − 2β )m̃2

i , (47)

with respect to the phenomenological decay operator �̂:

�̂ = − γ

(
√

4πrC )d
(1 − 2β )Â2, (48)

as we would expect from Eq. (30). The decay widths appear to
depend on the absolute values mH and mL of masses of neutral
mesons, which play no role in standard quantum mechanics.
This fact leads to two important consequences: On the one
hand, for β �= 1

2 , it allows us to calculate the absolute masses
in terms of experimentally measured quantities [55], namely,
decay widths �H and �L and mass difference �m via the
quadratic equation

2��

�� ± 2�
m2

L + 2(�m)mL + (�m)2 = 0, (49)

where the upper sign corresponds to the normal mass ratio
while the lower sign fixes the inverted mass ratio, which are
discussed in Sec. III. On the other hand, it is possible to
estimate the collapse rate

λCSL ≡ γ

(
√

4πrC )d
= �i

(2β − 1)m̃2
i

(50)

from Eq. (30). In turn, the maximal value of the time-
asymmetry β = 1 establishes a lower bound for the estimated
collapse rate, which in terms of experimentally measured

FIG. 1. Lower bounds for the estimated value of the collapse rate
λCSL via Eq. (51) as a function of the reference mass m0. The blue,
orange, green, and red areas correspond to the values of λestimated

CSL

given by K , D, B, and Bs mesons, respectively. The colored points
refer to the rest masses of the corresponding mesons, the purple
line is given for the nucleon mass, and the cyan line corresponds
to the rest mass of the Higgs boson. Plotted are the theoretical
values of the collapse rate λCSL = 10−16s−1 proposed by Ghirardi,
Rimini, and Weber [8] and λCSL = 10−8±2s−1 proposed by Adler
[73] for rC = 10−7 m. The inverted mass ratio m̃i = m0

mi
is assumed

in accordance with Ref. [55].

quantities reads

λestimated
CSL �

⎛⎝ �m

m0
(√

�±1
L −

√
�±1

H

)
⎞⎠∓2

, (51)

where, as in Eq. (49), the upper sign corresponds to the normal
mass ratio while the lower sign fixes the inverted mass ratio.
In Fig. 1 are plotted the estimated values of λCSL as a function
of the reference mass m0.

In the case of the QMUPL model, the neutral meson time
evolution is still affected by these two effects, which, however,
do not have exponential character (rather algebraic), so that
they are, in principle, observable. Hence, the QMUPL and
the mass-proportional CSL models offer distinguishable and
nonequivalent dynamics for a M0-M̄0 system because of the
specific link between position and flavor Hilbert spaces. In this
way, the mentioned quantities actively studied in the realm of
particle physics crucially depend on the coupling between the
particles and the noise field introduced by the collapse model
and, thus, can give insight into the physics of the collapse
mechanism.

V. CONCLUSIONS

Spontaneous collapse models propose a solution to the
measurement problem in quantum mechanics by considering
the collapse of a wave function as a physical process with
respect to the interaction between the system and a (classi-
cal) noise field. These models predict interesting effects for
the systems at higher energies. In particular, being applied
to a flavor-oscillating system, the QMUPL and the mass-
proportional CSL models, the two most popular spontaneous-
collapse models, predict damping of the oscillations. This
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distinguishes them, for example, from the semiclassical grav-
ity approach equipped with the Schrödinger-Newton equation
[74–76], which affects a neutral meson system by shifting the
mass difference and, thus, changing the frequency of the flavor
oscillations [77].

Recently, it was shown that, in the spontaneous collapse
models with a white-noise field, its time (a)symmetry can lead
to a nontrivial contribution to the quantities, which are usually
studied at accelerator facilities [54–56]. Indeed, collapse dy-
namics induced by the interaction of a neutral meson system
with a time-asymmetric noise field results in a dependence
on its absolute masses which does not appear in standard
quantum mechanics. With respect to this contribution, the
QMUPL model provides a nonexponential effect on the time
evolution of a M0-M̄0 system, which is in principle observ-
able. In turn, the mass-proportional CSL model can explain
the decay property of a M0-M̄0 system and recover its decay
dynamics.

In our discussion, we have revisited the effects of the
spontaneous collapse on neutral meson systems [54–56] and
studied their connection with the properties of the underlying
noise field. We have focused on the systems in the meson
sector which provide the mixing of particles and antiparticles
and are well suited for a nonrelativistic quantum-mechanical
treatment since, in this case, the field-theoretical effect is
negligible [78]. In this way, we can apply the nonrelativistic
collapse models such as the QMUPL and the CSL models in
a consistent way. In principle, the results of this paper can
be extended to any decaying mixed particles that allow for a
nonrelativistic treatment. However, there is a great challenge
to construct a spontaneous collapse mechanism in relativistic
quantum field theories [79–84], and a closer look into the
systems at higher energies would help to move forward the
relativistic dynamical reduction program. One of the possible
first steps toward it would be to analyze the effect of a
nonwhite noise on a flavor-oscillating system, which can be
related to a field of a cosmological nature and is more physical
than the white noise: the latter with a Lorenz-invariant corre-
lation function produces infinite energy per unit time and unit
volume [7,83].

We have found that the decay property incorporated as
a non-Hermitian part of a phenomenological Hamiltonian
can result from collapse dynamics in an enlarged Hilbert
space. Such a space includes the states which correspond
to the decay products and is used to construct a Gorini-
Kossakowski-Lindblad-Sudarshan (GKLS) equation, which
allows us to represent a decaying system as open and to
incorporate the particle decay as a Lindblad operator. In
the following step, we have questioned whether spontaneous
collapse dynamics can be the only source of the decay in
the dynamics of a flavor-oscillating system. Our analysis has
shown that a broader class of collapse models with an asym-
metric white-noise field generates an extra term in the master
equation, which induces the decay dynamics and depends
on the absolute masses of neutral mesons. Analyzing the
obtained master equation, we have confirmed the result of
Ref. [55] for the generalized CSL model with an asymmetric
noise field, whose collapse dynamics can fully describe the
exponential decay behavior of a M0-M̄0 system. In this way,
we can conclude that the decay dynamics in flavor-oscillating

systems can be described via the spontaneous collapse
mechanism.
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APPENDIX A: STOCHASTIC FORMALISMS AND
ASYMMETRY OF THE NOISE FIELD

In stochastic calculus, one of the key objects of study is a
stochastic differential equation, which describes the change of
a stochastic process Xt in time,

dXt = f (Xt , t )dWt + g(Xt , t )dt, (A1)

where f (Xt , t ) is the so-called diffusion term, g(Xt , t ) is
the so-called drift term, and Wt is a Wiener process with
W0 = 0, which represents the Brownian motion (in turn, dWt

represents the white noise) and has the following important
properties [85]:

(i) it is normally distributed with the density p(Wt ) =
1√
2πt

e− W 2
t

2t ;
(ii) it has independent and stationary increments, so that

Wt − Ws depends only on t − s.
To solve such an equation, we have to define a stochastic

integral
∫

f dWt , which we desire to construct as a Riemann-
Stieltjes integral. Focusing on the simplest case f = Wt , we
define the stochastic integral as the mean-squared limit of the
Riemann-Stieltjes sums,∫ t

0
Wt dWt = ms-lim

n→∞

n∑
i=1

W (t∗
i )[W (ti ) − W (ti−1)], (A2)

where ms-lim denotes the mean-squared limit. In contrast
with the usual Riemann integral, the value of the constructed
stochastic integral (A2) depends on the choice of the in-
termediate points t∗

i , which lie in the intervals [ti−1, ti], re-
spectively. A particular choice of t∗

i defines a formalism
of stochastic calculus with its specific rules and properties.
Generally speaking, there is a continuous family of stochastic
formalisms with a corresponding choice of t∗

i . The two for-
malisms widely discussed in literature are the Itō formalism,
which corresponds to the left point choice t∗

i = ti−1, and the
Stratonovich formalism, which corresponds to the middle
point choice t∗

i = ti−1+ti
2 [86,87]. The Itō formalism is widely

used in financial mathematics since the integral, in this case,
is a martingale, i.e., given only its history up to time t0, the
expectation value of the Itō integral at any t > t0 is simply
its value at t0 [88]. However, the rules of the Itō calculus,
generally speaking, do not coincide with those of the classical
calculus: for example, the Itō differentiation rule differs from
the classical Leibniz’s product rule and is given by

d (Xt · Yt ) = dXt · Yt + Xt · dYt + E[dXt · dYt ], (A3)
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where E denotes the stochastic average. The Stratonovich
formalism, which is preferred in physics, operates with the
usual rules of calculus.

In turn, the point t∗
i can be connected to the value of the

Heaviside function in zero by [86,89]

t∗
i = ti−1 + θ (0)(ti − ti−1), (A4)

so that the Itō formalism fixes θ (0) = 0 and the Stratonovich
formalism fixes θ (0) = 1

2 . Typically, the Heaviside function
appears in integrals of the correlation function E[dWt dWt ′] =
δ(t − t ′) of the white noise since∫ t

−∞
δ(t ′)dt ′ = θ (t ), (A5)

and its value at zero, θ (0), generally speaking, belongs to
the interval θ (0) ∈ [0, 1] and is not well defined. However,
once the stochastic formalism is chosen, θ (0) is fixed due to
Eq. (A4). This property can be used for an easy switch be-
tween different formalisms, which is governed by the formula

f (Xt , t ) ◦β dWt = f (Xt , t ) ◦β ′ dWt

+ (β − β ′)
∂ f (Xt , t )

∂Xt
f (Xt , t )dt, (A6)

where ◦β and ◦β ′ denote the product in the formalisms with
θ (0) = β and θ (0) = β ′, respectively. In particular, the Itō and
Stratonovich conventions are related in the following way:10

f (Xt , t )dWt = f (Xt , t ) ◦ dWt

−1

2

∂ f (Xt , t )

∂Xt
f (Xt , t )dt . (A7)

Except for the Stratonovich value θS (0) = 1
2 , the white noise

dWt as well as its correlation function δθ (0)(t ) are asymmetric
with respect to the chosen value of θ (0), so that∫ t

0
δθ (0)

(
t ′)dt ′ −

∫ 0

−t
δθ (0)

(
t ′)dt ′ = 1 − 2θ (0). (A8)

This asymmetry can be understood better by considering an
approximation of δθ (0)(t ) by the asymmetric Laplace distribu-
tion,

δκ,ε(t ) = 1

ε

1

κ + 1
κ

e− |t |
ε
κ

sgn (t )
, (A9)

where ε � 1, and κ ∈ [0,∞] is the parameter of asymmetry
of the distribution. After some algebra, one can derive the
identity

θ (0) = κ
2

1 + κ
2
, (A10)

which illustrates the connection between θ (0) and the asym-
metry of the correlation function of the noise field character-
ized by the parameter κ.

10Traditionally, the Stratonovich product is denoted by ◦, whereas
the product sign is omitted for the Itō formalism.

In accordance with the discussed rules of stochastic calcu-
lus, we can rewrite Eq. (27) in the Stratonovich formalism,

d|ψ〉t =
[
−iM̂dt + i

√
λÂ ◦ dWt − λ

2
B̂†B̂dt

]
|ψ〉t . (A11)

The symmetric choice θS (0) = 1
2 (hence, time-symmetric

noise field) in the Stratonovich formalism makes it clear that
Eq. (A11) can be interpreted as a Schrödinger equation with
the effective Hamiltonian (1) with the decay operator �̂ =
λB̂†B̂, and a random potential.

In the Stratonovich formalism, there is no built-in direction
of time, which appears for other choices of the stochastic
formalism and, hence, asymmetric θ (0). Let us change the
formalism by shifting θ (0) from its Stratonovich value θS (0)
to some another value β. This leads to the equation

d|ψ〉t =
[
−iM̂dt + i

√
λÂ ◦β dWt

− λ

2
(B̂†B̂ + (1 − 2β )Â2)dt

]
|ψ〉t . (A12)

Assuming that the collapse dynamics in HM is responsible
for the decay property of a neutral meson system, i.e., plug-
ging in the decay widths (30), we finish with the stochastic
Schrödinger equation

d|ψ〉t = [−iM̂dt + i
√

λÂ ◦β dWt ]|ψ〉t , (A13)

with, generally speaking, a time-asymmetric noise field dWt

with respect to the chosen value of θ (0) = β. In turn,
Eq. (A13) reads in Stratonovich formalism

d|ψ〉t =
[
−iM̂dt + i

√
λÂ ◦ dWt + λ

2
(1 − 2β )Â2dt

]
|ψ〉t .

(A14)
The equivalence of Eqs. (A13) and (A14) means that the
decay property can be gained by a collapse model with the
underlying time-asymmetric noise field.11 Written in the Itō
formalism they correspond to Eq. (28). Hence, the value of
the Heaviside function in zero θ (0) plays the role of a natural
constant introduced by such a collapse model (along with λ

and rC) and, in turn, provides physical sense to the choice of
the stochastic formalism and the Itō-Stratonovich dilemma.
As mentioned in Sec. III, it tunes the coupling between the bra
and ket spaces concerning the action of the noise field and, in
turn, sets the decay widths of the mixed particles.

11Both Eqs. (A13) and (A14) can be approximated, due to the
Wong-Zakaï theorem [90], by the same ordinary differential equation

i
d

dt
|ψ〉t =

[
M̂ −

√
λÂẆ ε

t + i
λ

2
(1 − 2β )Â2

]
|ψ〉t ,

with a regularized noise Ẇ ε
t = ∫R δε (t − u)dWu with a mollifier δε

converging to the δ function, so that its solutions converge to those
of Eq. (A13).
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APPENDIX B: COMPUTATIONS OF THE TRANSITION PROBABILITIES FOR THE QMUPL
AND MASS-PROPORTIONAL CSL MODELS

Plugging the QMUPL and CSL collapse operators (33) and (34) into the master equation (37) we obtain

d ρ̂t

dt
= i[ρ̂t , M̂] − λQ

∑
i

[
β
{
q̂2

i ⊗ Â2, ρ̂t
}− (q̂i ⊗ Â)ρ̂t (q̂i ⊗ Â)

]
, (B1)

d ρ̂t

dt
= i[ρ̂t , M̂] − γ

∫
dx [β{Q̂2(x) ⊗ Â2, ρ̂t } − (Q̂(x) ⊗ Â)ρ̂t (Q̂(x) ⊗ Â)]. (B2)

These master equations can be used to calculate the required transition probabilities (38) in a simple way. At first, following
Ref. [57], we decompose the density operator ρ̂t in the position and mass bases,

ρ̂t =
∑

i, j=H,L

∫∫
dxdyρ

i j
t (x, y)|x〉〈y| ⊗ |Mi〉〈Mj |. (B3)

This allows us to rewrite the master equations (B1) and (B2) for the QMUPL and CSL collapse dynamics, respectively, in terms
of the matrix elements of the density operator ρ̂t

d

dt
ρ

i j
t (x, y) =

{
−i(mi − mj ) − λQ

2

[|m̃ix − m̃ jy|2 − (1 − 2β )
(
m̃2

i x2 + m̃2
j y

2
)]}

ρ
i j
t (x, y), (B4)

d

dt
ρ

i j
t (x, y) = {−i(mi − mj ) − γ

[
β
(
m̃2

i + m̃2
j

)
(g ∗ g)(0) − m̃im̃ j (g ∗ g)(x − y)

]}
ρ

i j
t (x, y), (B5)

where

(g ∗ g)(x) =
∫

dyg(y)g(x − y) (B6)

is the convolution of two Gaussian smearing functions

g(x − y) = 1(
2πr2

C

) d
2

e
− (x−y)2

2r2
C (B7)

of the CSL collapse operator (35). Solving these equations, we obtain

ρ
i j
t (x, y) = e−i(mi−mj )t− λQ

2 [|m̃ix−m̃ j y|2−(1−2β )(m̃2
i x2+m̃2

j y
2 )]tρ

i j
0 (x, y), (B8)

ρ
i j
t (x, y) = e−i(mi−mj )t−γ [β(m̃2

i +m̃2
j )(g∗g)(0)−m̃im̃ j (g∗g)(x−y)]tρ

i j
0 (x, y). (B9)

Before plugging these solutions into Eq. (38), we have to calculate the partial trace of ρ̂t over the position degrees of freedom,
i.e., take the following integrals:∫

dx ρ
i j
t (x, x) = e−i(mi−mj )t(

1 + λQα

2

[
(m̃i − m̃ j )2 − (1 − 2β )

(
m̃2

i + m̃2
j

)]
t
) d

2

, (B10)∫
dx ρ

i j
t (x, x) = e−i(mi−mj )t e

− 1
2

γ

(
√

4πrC )d
[(m̃i−m̃ j )2−(1−2β )(m̃2

i +m̃2
j )]t

, (B11)

for the QMUPL and the mass-proportional CSL models, respectively, where we have taken into account that the convolution
(g ∗ g)(0) = (

√
4πrC )−d . Finally, collecting all the integrals, we find the transition probabilities for the lifetime eigenstates and

the flavor states,

PQMUPL
Mi→Mj

(t ) = [1 − λQα(1 − 2β )m̃2
i t
]− d

2 δi j, (B12)

PQMUPL
M0→M0/M̄0 (t ) = 1

4

⎧⎨⎩∑
i

[
1 − λQα(1 − 2β )m̃2

i t
]− d

2 ± 2 cos [t�m]{
1 − λQα

2

[
(1 − 2β )

∑
i m̃2

i − (�m̃)2
]
t
} d

2

⎫⎬⎭, (B13)

PCSL
Mi→Mj

(t ) = e
− γ

(
√

4πrC )d
(2β−1)m̃2

i t
δi j, (B14)

PCSL
M0→M0/M̄0 (t ) = 1

4

{∑
i

e
− γ

(
√

4πrC )d
(2β−1)m̃2

i t ± 2e
− 1

2
γ

(
√

4πrC )d
[(2β−1)

∑
i m̃2

i +(�m̃)2]t
cos[t�m]

}
. (B15)
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