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Optimizing the spatial spread of a quantum walk
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We devise a protocol to build one-dimensional time-dependent quantum walks, maximizing the spatial spread
throughout the procedure. We allow only one of the physical parameters of the coin-tossing operator to vary, i.e.,
the angle θ , such that for θ = 0 we have the σ̂z, while for θ = π/4 we obtain the Hadamard gate. The optimal θ

sequences present nontrivial patterns, with mostly θ ≈ 0 alternating with θ ≈ π/4 values after increasingly long
periods. We provide an analysis of the entanglement properties, quasienergy spectrum, and survival probability,
providing a full physical picture.
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I. INTRODUCTION

Quantum walks (QWs) are the quantum analogs of classi-
cal random walks. First suggested by Feynman and Hibbs in
1965 [1], quantum walks were described by Aharonov et al.
in 1993 [2], who noted that they give rise to a more intrincate
probability distribution due to quantum interference. More-
over, QWs may spread much faster than their classical coun-
terparts. Indeed, the spatial deviation of a classical random
walk increases diffusively with time (σ ∝ t1/2), while it can
be ballistic for a QW (σ ∝ t).

Similarly to the classical case, there are two main types
of quantum walks: continuous-time quantum walks (CTQWs)
and discrete-time quantum walks (DTQWs), which are the
focus of this work. Positions are usually discrete in a DTQW
(yet, see [3]). In a CTQW, evolution is ruled by a Schrödinger
equation, while in a DTQW the system is endowed with an
internal degree of freedom (coin space) and a configuration
space (position space) representing the walker’s position.
The system evolves in discrete time steps by applying a
certain coin-toss operator to the coin space and a conditional
displacement to the position space [4]. DTQWs have been
succesfully implemented experimentally in different setups:
nuclear magnetic resonance [5], waveguide arrays [6,7], ion
traps [8], and superconducting circuits [9].

Quantum walks present a rich range of behaviors upon
changing their parameters or introducing decoherence in
the system. In the presence of dynamical disorder (time-
dependent random parameters) and/or quenched disorder (po-
sition dependent), the time evolution of a DTQW can change
completely, approaching a Gaussian-like distribution in po-
sition space, similarly to the classical situation. Dynamical
disorder leads the system to develop maximal entanglement
between the coin and the positional degrees of freedom, while
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in the case of quenched disorder we can observe Anderson
localization [10–13]. Recently, this effect has been demon-
strated experimentally [14], and the idea of searching for an
optimum sequence to maximize the entanglement has been
suggested. Moreover, it was found in [15] that the fastest route
to entangle the system up to its maximum value is to alternate
between ordered and disordered parameters. There is also an
interesting interplay between localization-delocalization tran-
sitions depending on the statistical regime of the randomness
[16] and the lack of periodicity of the spatial inhomogeneties
[17], suggesting a very rich dynamics.

One of the most promising uses of the quantum walk is the
development of novel quantum algorithms [18]. Interestingly,
it has been demonstrated that quantum walks can perform
universal quantum computation for both CTQWs [19] and
DTQWs [20]. Classical random walks have been used for
simulated annealing purposes for various decades [21]. Their
quantum counterparts might benefit both from a faster spread
rate and from interference effects. A CTQW-based algorithm
has been proposed presenting an exponential speedup to tra-
verse a special type of graph, called the glued-trees problem
[22], while a DTQW can be used to implement Grover’s algo-
rithm in order to search in an unstructured database [23,24],
achieving a quadratic speedup.

Uniform spread of a quantum walk can help sample a
large problem space [25,26]. Moreover, it could be useful for
initializing a system in an unbiased state for searching prob-
lems [27] or for determining its statistical properties [28,29].
Decoherence (or, alternatively, measurement) can optimize
the spreading and mixing properties of a quantum walk [25],
improving its computational properties [26]. However, deco-
herence reduces the spreading rate in the long run, becoming
diffusive as in the classical case [30,31]. Interestingly, for
short running times T , a certain amount of decoherence can
make the distribution very close to a uniform one, retaining
the ballistic spreading [25]. Yet, the spatial spread grows as
T/

√
2 instead of the maximum possible value T . It has also

been shown that decoherence in position space (introduced
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as a noise that can shift positions) gives rise to a smooth
probability distribution while maintaining the quantum prop-
erties, such as the ballistic propagation and the entanglement
between the coin and the position [32].

In this work we show that a nearly uniform spatial distri-
bution can be obtained for all times, with maximum ballistic
spread and without decoherence. The procedure involves the
use of a time-dependent coin-tossing unitary operator. As we
show, the time-dependent protocol is stable, i.e., it admits
small perturbations maintaining the spatial properties.

The idea of a uniform distribution in position space could
also be of interest in biology, specifically in the analysis
of light harvesting processes, such as photosynthesis [33].
Experimental work has found that the process depends on the
delocalization of the exciton over the molecules [34–36], and
it has been proposed that its high efficiency can be explained
by means of a quantum search algorithm [34], specifically, one
based on a quantum walk [37]. Indeed, time-dependent QWs
providing uniform sampling of the search space might provide
an interesting advantage.

This paper is organized as follows. The model is introduced
in Sec. II, along with our target function describing the spatial
spread of the quantum walker. Section III exposes the nu-
merical results, with special emphasis on the characterization
of the optimal set of operators. The physical meaning of
our results is discussed in Sec. IV, employing the spectral
properties of the optimal evolution operator and the analytical
properties of the survival probability. Section V is devoted to
our conclusions and suggestions for further work.

II. SPATIAL SPREAD OF A QUANTUM WALK

Let us consider a discrete-time quantum walker, consisting
of a particle moving on an infinite one-dimensional chain,
known as the position space, endowed with an internal degree
of freedom, known as the coin space. The position space is
spanned by the basis vectors |x〉p with x ∈ Z, and the coin
space is just C2, spanned by states |L〉c and |R〉c. Thus, the
system state is spanned by tensor product states of particle and
coin, |x, c〉 = |x〉p ⊗ |c〉c, with x ∈ Z and c ∈ {L, R}. Thus,
the total wave function canalways be expressed as

|ψ〉 =
∑
x,c

ψx,c|x, c〉, (1)

Thus, the probability that the walker will be found at position
x will be given by

Px = |ψx,L|2 + |ψx,R|2. (2)

The time evolution of the system is obtained through the
consecutive application of unitary operators, each of them
consisting of a coin-tossing unitary operator and and condi-
tional shift in position space. The coin operator can be written
as an SU(2) matrix,

B̂(ξ, θ, ζ ) =
(

eiξ cos θ eiζ sin θ

−e−iζ sin θ e−iξ cos θ

)
, (3)

where θ ∈ [0, π
2 ] and ξ, ζ ∈ [0, 2π ] [38,39]. Setting ξ = ζ =

π
2 we get

B̂(θ ) =
(

cos θ sin θ

sin θ − cos θ

)
, (4)

up to a global phase. Note that (4) reduces to the usual
Hadamard operator when θ = π

4 .
The shift operator yields the displacement of the particle in

position space conditioned by the internal degree of freedom
of the coin and can be written as

Ŝ =
∞∑

x=−∞
(|x + 1〉〈x| ⊗ |R〉〈R| + |x − 1〉〈x| ⊗ |L〉〈L|). (5)

In practice, we consider a finite-dimensional version of
Eq. (5), with specific boundary conditions (see Appendix A).
Finally, the total unitary evolution operator is given by

Û (ξ, θ, ζ ) = Ŝ · (Îp ⊗ B̂(ξ, θ, ζ )), (6)

such that

|ψ (t + 1)〉 = Û (ξ, θ, ζ )|ψ (t )〉. (7)

Since we consider time-dependent parameters in (3) and (4),
the evolution of the system for T time steps will be given by

|ψ (t + T )〉 = ÛT . . . Û1|ψ (t )〉, (8)

where Ût = Û (ξt , θt , ζt ) for time t . As our initial state, we
consider a particle localized at x = 0 and with a coin compo-
nent of the form

|ψS〉 ≡ |ψ (0)〉 = 1√
2
|0〉p ⊗ (|R〉c + i|L〉c), (9)

leading to a left-right symmetric evolution for ξ = ζ = π/2
[25]. In this work we only consider quantum walkers char-
acterized by a sequence {θt }T

t=1, with ξt = ζt = π/2 for all
times.

As shown in Fig. 1(a), the typical behavior of the quantum
walk using a constant coin-tossing operator is far from being
uniform in position space. Instead, the probability distribu-
tions show an intricate interference pattern. The maximal
spread is obtained for θ = 0, corresponding to B̂(0) ≡ σ̂z, and
the minimal one is found for θ = π/2, which corresponds to
B̂(π/2) ≡ σ̂x.

The spread of the probability distribution in position space
can be characterized using Shannon’s entropy,

S = −
∑

x

Px ln Px, (10)

with Px given in Eq. (2). After t time steps, the maximal value
possible for the entropy is given by Smax(t ) = ln(t + 1). This
bound can be understood by noting that, after t time steps,
the particle can only reach 2t + 1 sites, but only odd (even)
positions can be occupied after an odd (even) number of
time steps, in the absence of decoherence. Figure 1(b) shows
the time evolution of the Shannon’s entropy of a quantum
walker for different constant values of θ . Indeed, the maximal
bound is never reached, yet for some values of θ we obtain a
logarithmic growth, corresponding to a ballistic spread.
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FIG. 1. (a) Probability distribution in position space for a discrete-time quantum walker on a line after T = 100 time steps. Each curve is
characterized by a constant value of the parameter θ , while ξ = ζ = π/2. (b) Time evolution of the Shannon entropy, Eq. (10), for the same
cases shown in (a). The values of θ ∈ {0, π/32, π/5, π/4, π/3, 19π/40, π/2} are color coded.

Optimizing quantum walks

The aim of this work is to obtain the optimal sequence
of coin-tossing operators maximizing the spatial spread of
the quantum walker along its whole history, up to a certain
time step T . We restrict our search to discrete-time quantum
walkers without decoherence and with coin-tossing operators
using ξt = ζt = π/2, i.e., they will be fully determined by the
sequence {θt }T

t=1.
For a fixed time step t , a good figure of merit is given by the

Shannon entropy of the spatial probability distribution, Eqs.
(10) and (2), normalized by the maximal value achievable for
that time step. After t time steps, the walker can reach a total
of t + 1 sites (not 2t + 1 as one might naively expect, because
the walker can only reach even-indexed sites after an even
number of steps, and vice versa). Thus, the maximal achiev-
able Shannon entropy after t time steps is Smax = ln(t + 1).
Therefore, a reasonable observable to characterize the extent
of the spread of the quantum walker after T time steps is given
by

F (θ0, . . . , θT ) = 1 − 1

T + 1

T∑
t=0

S(t )

ln(t + 1)
, (11)

where S(t ) is the Shannon entropy after t time steps, given in
Eq. (10). This magnitude F reaches its maximum value F = 1
when the walker is completely localized, while its minimum
F = 0 corresponds to our desired situation, when the spread
is maximal along its whole history.

Finding the optimal set of {θt } which minimizes F is a
computationally demanding task. We employ a combination
of the conjugated gradients method and sampling of initial
configurations in order to achieve the global minimum when
the target function presents many local minima, as has been
done by other authors [40]. The number of initial configu-
rations employed was 50 for moderate times and as high as
200 for the maximal time reached, T = 45. Our numerical

experiments allow us to conjecture that the optimization land-
scape is rather complex, as discussed in the next section.

III. RESULTS

A. Different approaches to optimize spread

Our first attempt at obtaining the optimal set of parameters
{θt }T

t=1 in (4) for an optimal spread is analytical. For T < 4,
we have found the optimal distribution corresponding to the
maximal spread. The detailed calculations are provided in
Appendix B; here we only cite the main results. First, note
that the spread does not depend on θ1, so this first value is
always arbitrary. For the second and third steps, we obtain
θ2 = arctan(1/

√
2) and θ3 = π

6 , respectively. For T � 4, we
have proved that no set of coin-tossing operators will yield this
perfect spread. Yet a numerical evaluation of the θ sequences
yielding an optimal amount of spread is still possible, and the
following section is devoted to their characterization.

For a given number T of time steps, there are a few differ-
ent approaches to the optimization of the set of θ parameters.

i. We may minimize a single global value of F spanning
time steps 1 to T , i.e., obtain the whole set of θ parameters in
a single optimization procedure.

ii. Alternatively, we can operate through a step-by-step
minimization: once the sequence θ1 to θt is optimized, we
obtain the optimal value of θt+1 and iterate up to t = T .

iii. Finally, we can optimize only the value of the final
spread, after T time steps, disregarding the intermediate
stages. This procedure always results in an optimal spread.
We do not discuss this approach further in the text, leaving
the details for Appendix C.

In Fig. 2 we compare the first two approaches. The step-by-
step method achieves a better optimization for short times, but
the value of F (which measures our failure to obtain perfect
spread) increases rapidly between T = 10 and T = 15, and
for large times the global procedure is considerably better
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FIG. 2. Optimization of the spread, obtained minimizing the value of F . We employ two approaches: global and step by step. Moreover, we
explore the use of a single coin parameter (θ ) or the full set of three parameters. The results are shown up to T = 25 time steps. (a) Evolution
of the minimal F value, as obtained using the different optimization criteria. Note that the actual (and computed) value for the global case is
T = 25; the previous time steps are reconstructed a posteriori. (b) Sequence of θ parameters that minimize F . (c) Probability distribution in
position space. (d) Shannon entropy of the probability distribution in position space. Note that the global case overlaps with the maximum
entropy case.

[Fig. 2(a)]. Note that the global approach only provides a
single value of F , corresponding to the final time step, but in
the figure we provide an a posteriori reconstruction of the F
values for all times. The sequence of θ parameters is different
for each approach, with some unexpected differences. For
example, all θ values are below π

4 for the global approach,
while they can reach values above that threshold for the
step-by-step procedure, specifically near the time where the
technique starts to fail [Fig. 2(b)]. We can see the final prob-
ability distribution for the two approaches and its difference
from a perfectly uniform one in Fig. 2(c). Finally, in Fig. 2(d)
we can observe the evolution of the Shannon entropy of the
probability distribution, compared to its maximal possible
value. Note how the globally obtained entropy remains close
to this maximum possible value, while the step-by-step en-
tropy deviates from it. Henceforth, given its higher precision,
we make use of the global approach in the rest of this work.

The minimal value of F obtained using all three parameters
of the coin-tossing operator [ξ , θ , and ζ in Eq. (3)] will
always be equal to or lower than the value obtained using
only the parameter θ and ξ = ζ = π/2 [i.e., using Eq. (4)].
Interestingly, the difference gets smaller with time when
we follow the global optimization approach, as shown in
Fig. 2(a). Similar results have been reported when analyzing
entanglement properties [13]. Henceforth we consider only
the coin operator, (4), with one parameter.

B. Characterization of the optimal sequences

Figure 3(a) shows how the minimal F values increase as
the final time T increases. As expected, the spread is perfect
for T � 3. As shown before, the Shannon entropy for the
optimum sequence (T = 15) is very close to the maximum
value compared to the usual Hadamard case [Fig. 3(b)]. Let us
remind the reader that the variance in position space is defined

by σ 2 = 〈x2(t )〉 − 〈x(t )〉2. Thus, considering that for even
(odd) time steps only the even (odd) sites are occupied and
that the probability distribution in position space is uniform,
the variance of an idealized uniform quantum walk takes the
form

σ 2
T = 2

Teven + 1

Teven/2∑
t=0

(2t )2

= 2

Todd + 1

(Todd−1)/2∑
t=0

(2t + 1)2

= T (T + 2)

3
. (12)

The evolution of the variance for the optimal sequence for
T = 15 is, indeed, very similar to our analytical expression,
(12), as we can check in Fig. 3(c). The optimal sequences
of θ parameters are depicted in Fig. 3(d). Unfortunately,
they do not present a regular pattern which can help us
predict their evolution for larger time spans. Yet optimal
sequences obtained for low values of T are very similar among
themselves, but differences become significant for optimal
sequences corresponding to longer times, as we can check
in Fig. 3(g). Nonetheless, there are some manifest patterns in
the optimal sequences, such as an alternation between values
close to θ = π

4 and θ = 0, with increasing periods. We discuss
this pattern later in this section. Note that all θ parameters are
always below θc = π

4 .
During the optimization procedure we obtain on occasion

local minima of the target function F which do not correspond
to the global minimum, Fopt. In Fig. 3(e) we consider these
local minima. For each local solution we provide a point in the
plot, where the abscissa is given by |F − Fopt| and the ordinate
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FIG. 3. Optimized sequences of the θ parameters for T = 1, . . . , 15. (a) Minimal F values for different T values under global optimization.
(b) Exponential of the Shannon entropy (S) of the probability distribution in position space and (c) variance for the optimum sequence for
T = 15, compared to the results using the Hadamard coin operator (θ = π

4 ). Note that the Shannon entropy for the optimum case overlaps
with the maximum entropy situation. (d) Optimized θ parameters for T = 1 up to T = 15. The dashed horizontal red line corresponds to π

4
(Hadamard). (e) Differences in local minima with respect to the optimum case computed as the difference in the F value and the θ parameter.
Each symbol corresponds to optimization for different time steps (T = 1 . . . 15). (f) Four lowest local minima for T = 15. (g) Optimized
sequences of θ parameters for T = 5, 10, 15, 20, 25, 30, 35, 40, and 45. The dashed horizontal red line corresponds to π

4 (Hadamard). (h)
Time evolution of the von Neumman entropy of the reduced density matrix as a measure of entanglement for the optimized sequences of θ

parameters for T = 1 up to T = 15. The black line corresponds to the mean value of 1000 simulations with random θ parameters. The dashed
horizontal red line corresponds to the situation of maximum entanglement ln(2). (i) Stability of the optimized sequences of θ parameters
against increasing perturbations (noise) of the θ value (see text). For the case T = 1 there is no change, and for T = 2, 3 the changes are not
appreciable.

provides the difference in the θ values, defined as

�[{θi}] ≡
∑T

i=1

∣∣θopt
i − θi

∣∣( ∑T
i=1 θ

opt
i

) . (13)

The resulting plot provides the image of a complex landscape,
with a great variety of local minima, typical of glassy systems,
which might be related to replica symmetry breaking [41,42].
As an illustration, Fig. 3(f) depicts the optimal sequence for
T = 15 along with the three lowest-F local minima.

Since we are neglecting decoherence, the complete system
state (particle and coin) remains pure throughout time evolu-
tion. Thus, we can make use of the von Neumann entropy of
the reduced density matrices as a measure of the entanglement
between particle and coin,

E (t ) = −Tr[ρ1(t ) ln ρ1(t )] = −Tr[ρ2(t ) ln ρ2(t )], (14)

where ρ1,2(t ) = Tr2,1ρ(t ) are the reduced density matrices of
the position and coin degrees of freedom, respectively, and
ρ(t ) = |ψ (t )〉〈ψ (t )|. We compare the entanglement of the
optimized sequences for different time steps with the case
of random evolution of the θ parameters in Fig. 3(h). As we
can readily see, the entanglement of the optimized sequences

tends to its maximum value, as in the random case, but slightly
faster.

In order to test the robustness of the optimized θ sequences,
we have introduced an increasing amount of noise in the
parameters, θi → θi + �θ · ηi, where the ηi are i.i.d. Gaussian
random variables of zero average and unit variance. Let F0

be the optimal value of F for the maximal T . For all values
of the noise amplitude, �θ , we evaluate F for Ns = 103

different random perturbations of the optimal sequence, and
the quotient F/F0 is plotted in Fig. 3(i). For consistency,
values of θi that leave the range [0, π/2] are automatically set
to the closest extreme of the interval. As expected, we observe
a smooth increase in the optimal value of F .

Let us stress that we require uniformity of the probability
in position space throughout the T time steps, not just the last
one. Figure 4 illustrates this fact by comparing the evolution
of the optimum sequence for T = 15 with the Hadamard
coin operator for each time step. As we can readily see, the
spreading of the optimum sequence is always larger than in the
Hadamard case, and the probability distribution much more
flat. Note that, even though it is possible to achieve a perfectly
uniform distribution up to T = 3, in this case there is some
deviation because the optimization target is set to all times up
to T = 15.

022223-5



MARTÍN-VÁZQUEZ AND RODRÍGUEZ-LAGUNA PHYSICAL REVIEW A 102, 022223 (2020)

-10 0 10
0

0.5

-10 0 10
0

0.5

-10 0 10
0

0.5

-10 0 10
0

0.2

0.4

-10 0 10
0

0.2

0.4

-10 0 10
0

0.2

0.4

-10 0 10
0

0.2

0.4

-10 0 10
0

0.2

0.4

-10 0 10
0

0.2

0.4

-10 0 10
0

0.1
0.2

-10 0 10
0

0.1
0.2

-10 0 10
0

0.1
0.2

-10 0 10
0

0.1
0.2

-10 0 10
0

0.1
0.2

-10 0 10
0

0.1
0.2

Position

T=1 T=2 T=3 T=4

T=5 T=6 T=7 T=8

T=10 T=11 T=12

T=13 T=14 T=15

T=9P
ro

ba
bi

lit
y

FIG. 4. Evolution of the probability distribution in position space, P(x, t ) = |〈x|ψL (t )〉|2 + |〈x|ψR(t )〉|2, for the optimized set of θ

parameters (blue line) and the Hadamard coin operator (green curve) for T = 15 time steps. Vertical red lines represent the maximum possible
extension for a quantum walk and the horizontal line represents the probability value corresponding to a perfectly uniform distribution.

IV. UNDERSTANDING THE OPTIMAL SEQUENCES

The optimal values of θi for different final times T are
plotted in Fig. 3(g). Although they do not follow a fixed
pattern, the optimal sequences present relevant features, such
as a nonperiodic alternation of values θ ≈ 0 (coin-tossing
operator close to σz) and θ ≈ π/4 (close to σx). In intuitive
terms, the values of θ ≈ 0 split the wave function, making
the left and right parts advance separately in each direction,
while values close to θ ≈ π/4 combine both components
again. Thus, the optimal sequences are composed of a certain
alternation of both types of quantum operators: advance and
mixture.

Following Eq. (1) we can write the state of the system
|ψ (t )〉 as

|ψ (t )〉 = |ψL(t )〉|L〉 + |ψR(t )〉|R〉, (15)

where |ψ{L,R}〉 = ∑
x ψx,{L,R}|x〉 need not be normalized

[28]. This allows us to decompose the spatial probabil-
ity distribution P(x, t ) = PL(x, t ) + PR(x, t ), where PL(x, t ) =
|〈x|ψL(t )〉|2 and PR(x, t ) = |〈x|ψR(t )〉|2. Figure 5 shows the
time evolution of both probability distributions. Note their
left-right symmetry: PL(x, t ) = PR(−x, t ). Moreover, we can
also consider the overlap (or fidelity) between the two wave
functions,

�A(t ) ≡ |〈ψR(t )|ψL(t )〉|2, (16)

whose behavior is shown in Fig. 6(a). We can observe that
this overlap decays towards 0 for all values of T , more rapidly
than for all other quantum walks, including (an average over)
random values. In Fig. 6(b) we can see both the overlap
and the optimal θi values for T = 45, which present little
correlation. Indeed, we can also define an average degree of

overlap along an optimized trajectory,

�norm
A = 1

T

T∑
t=1

�t . (17)

We show its behavior in Fig. 6(c). The conclusions are mani-
festly disappointing.

Luckily, a slightly different magnitude presents a much
more clarifying behavior. Let us define the probability overlap
as the area under the minimum,

�P(t ) =
∑

x

min(PL(x, t ), PR(x, t )), (18)

which is 1 if both probability distributions coincide and 0 if
their supports do not intersect. Figure 6(d) presents the time
evolution for the same cases considered in Fig. 6(a). In this
case we can observe a sawtooth behavior in the values of
the probability overlap for the optimal sequence, oscillating
around a finite value. Figure 6(e) shows that quick increases
in the probability overlap are caused for large values of
θi ≈ π/4, while small values (≈0) allow it to decay linearly.
The competition between these pulls and pushes resembles
a tug-of-war which gives rise to the desired optimal spread.
Figure 6(f) plots the time-averaged values of the probability
overlap, where we can see that they reach a limit value which
is different from 0. This limit value can be roughly estimated
by considering that the probability distributions PL(x, t ) and
PR(x, t ) are approximately linear for long time steps, which
can be verified in the last panels in Fig. 5. In this way, the
probability overlap is the area of an isosceles triangle with
altitude 1

2(T +1) and base N = 2T + 1, so for discrete positions
and odd time steps (only odd positions are occupied) we have

A = 4

N (N + 2)

N/2∑
n=1

n = 4

N (N + 2)

(N−2)/4∑
n=0

(2n + 1) =
N→∞

1

4
,

(19)
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FIG. 5. Evolution of the probability distribution in position space for PR(x, t ) = |〈x|ψR(t )〉|2 (blue line) and PL (x, t ) = |〈x|ψL (t )〉|2 (green
line) for the optimized set of θ parameters for N = 15 time steps. Vertical red lines represent the maximum possible extension for a quantum
walk and the horizontal line represents the probability value corresponding to a perfectly uniform distribution.

where we have taken the limit N → ∞ to obtain our estimate
for the long-term probability overlap. Yet oscillations are ex-
pected for a large time range. Interestingly, the time-averaged
probability overlaps depicted in Fig. 6(f) for optimal sequeces
are slightly below the (averaged) values obtained for random
sequences, which also tend to a finite value in the long term.

Summarizing, the results obtained so far suggest that the
pattern of optimal θ parameters is, indeed, complex. Their
most salient feature is a strong alternation of values close to
0 or to π/4, with increasingly long periods. Yet we show
in Appendix D that, based on scaling arguments, we can
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FIG. 6. (a) Evolution of the amplitude overlap between |ψR(t )〉 and |ψL (t )〉 for the optimized sequences T = 1, . . . ,15, 20, 25, 30, 35,
40, and 45. (b) Evolution of the amplitude overlap and the θ parameters for the optimum sequence of T = 45. (c) Evolution of the sum of
the normalized amplitude overlapping for different optimizations (T = 1, . . . ,15, 20, 25, 30, 35, 40, and 45). (d) Evolution of the probability
overlapping between |ψR(t )〉 and |ψL (t )〉 for the optimized sequences T = 1, . . . ,15, 20, 25, 30, 35, 40, and 45. (e) Evolution of the probability
overlapping and the θ parameters for the optimum sequence of T = 45. (f) Evolution of the sum of the normalized probability overlapping for
different optimizations (T = 1, . . . ,15, 20, 25, 30, 35, 40, and 45). Results from the random sequences were obtained as the mean value for
500 random simulations.
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FIG. 7. (a.i–a.ix) Spectrum εn = i ln(λn), where λn are the eigenvalues of the unitary operator Û (N ) for different optimizations with
increasing time step values (T = 5, 10, 15, 20, 25, 30, 35, 40, and 45). (b) Density of states of the lowest band of the spectrum of T = 45.
(c.i–c.ix) Spectrum εn = i ln(λn), where λn are the eigenvalues of the unitary operator Û (45) with increasing position space size (N = 91, 181,
361, 541, 721, 901, 1081, 1261, and 1441). (d) Density of states of the lowest band of the spectrum for the position space size of N = 1441.
(e) Time evolution of the miminum positive value of the spectrum of Û (45), where we have considered that Û (45) = Û45 . . . Û1. (f) Evolution
of the minimum positive value of the spectrum of Û45 with increasing position space size.

conjecture that the optimal θ values will decay in time like
∝arcsin ( 1

t ).

A. Spectral properties of the optimal evolution operator

In this subsection we discuss the energy spectrum of the
optimum evolution operator. Since the evolution is explicitly
time dependent, the system is nonautonomous, and hence, we
cannot define an energy spectrum. Yet we can consider the
quasi–energy spectrum, which can be defined as εn = i ln(λn),
where λn are the eigenvalues of the unitary operator ÛN

[10,17]. It is interesting to consider the asymptotic properties
of the system for which it is necessary to study the spectrum of
the total evolution operator for a time step t such that Û (t ) =
ÛtÛt−1 . . . Û2Û1, where t � 1. Due to the computational cost
of optimizing quantum walks for large time lapses, we are
limited to T = 50. It has been shown, at least for certain
aperiodic sequences as well as for simple periodic ones, that
after a few steps (t ∼ 30) the spectrum of the total evolution
operator does not change appreciably [10].

We show the results in Fig. 7. First, we obtain the spectra
for different optimizations corresponding to increasing time
steps [Figs. 7(a) and 7(b)], where the size of the position space
is the minimum possible to avoid boundaries (i.e., 2T + 1). As
we are considering finite-dimension Hilbert spaces, we obtain
discrete point spectra, where the appearance of a gap around
εk = 0 can be appreciated. It is interesting to compare this
quasi–energy spectrum with the asymptotic spectra of certain
aperiodic and periodic sequences, where such a gap does
not appear [10]. Let us consider the spectrum of Û (T = 45)
for different system sizes, where we can see that the gap is
maintained in Figs. 7(c) and 7(d).

We can also consider the time evolution of the quasispec-
tral gap of Û (t ), fixing T = 45, as shown in Fig. 7(e). Note
that, despite the fluctuations, it seems to tend to a finite value,
although larger time lapses would be required in order to
confirm this tendency. The quasispectral gap does not possess
a relevant dependence on the system size N , as we can see in
Fig. 7(f).

The energy spectrum for constant θ values can be inter-
preted as a dispersion relation, E (k) [17]. As the quasi–energy
spectrum remains unchanged for long enough times (Fig. 7(a)
[10]) it is natural also to interpret it as a dispersion relation.
Furthermore, for constant values of θ we can obtain an analog
of the Klein-Gordon equation for ψR and ψL, where the mass
is given by [43]

M =
√

2(sec (θ ) − 1)

cos (θ )
. (20)

This implies that for θ = 0 the quantum walker is equivalent
to a massless particle, presenting a gapless linear spectrum
and nonzero group velocity. On the other hand, for increasing
values of θ there appears an increasing gap (and therefore
an increasing mass) [17]. For θ = π/2 we have a particle
with infinite mass and zero group velocity (its spectrum is
flat and gapped). Moreover, it has been shown that periodic
and some aperiodic sequences yield gapless spectra, which
can be both linear and nonlinear, respectively [10]. They can
be understood to represent massless particles of constant and
variable group velocity, respectively.

Our optimal sequences present a nonlinear gapped spec-
trum, similar to the random sequences, so they can be un-
derstood as the evolution of a massive particle with variable
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FIG. 8. (a) Absolute value of the survival amplitude |ν(t )| for different optimum sequences obtained for different time steps (T = 1, . . . ,15,
20, 25, 30, 35, 40, and 45). (b) Corresponding Cesáro averages of |ν(t )|2. In both cases, the black line corresponds to the maximum value of a
perfectly uniform distribution [(25) in (a) and (26) in (b)], and the red line to the mean value of Ns = 500 random simulations. We have added
the uniform distribution with a factor of 0.5 (dashed black line) for a better understanding due to the complete overlapping of the optimum
sequences (blue lines) with the uniform distribution (black line). For the Cesáro averages we have added a 1/

√
T + 1 function (dashed magenta

line) for comparative purposes; the uniform distribution corresponds to (26).

group velocity. The reason can be described as follows. In
order to explore space efficiently, the quantum walker should
be able to reach the maximal possible spread with a finite
probability, but it should also reach all other possible sites,
with a similar probability. Thus, it should evolve with different
propagation velocities, ranging from the maximal velocity,
corresponding to θ = 0, and the minimal one, corresponding
to θ = π/2. The group velocities are evaluated from

vg(k) = dE (k)

dk
, (21)

which covers a broad range, as shown in Fig. 7.

B. Survival probability

In order to understand the asymptotic dynamics of the
system (and study its behavior in relation to the spectral
properties) we introduce the survival probability, which is
defined via its amplitude,

ν(t ) = 〈ψ (0)|ψ (t )〉, (22)

where |ψ (t )〉 = Û (t )|ψ (0)〉. Physically, it describes the prob-
ability of finding the state in the time step t in the initial state,
which in our case is |ψ (0)〉 = 1√

2
|0〉(|R〉 + i|L〉). Note that it

is not strictly the probability of finding the evolved state in
the initial position, but also in the initial state. The survival
amplitude is also directly related to the Fourier transform of
the spectral measure of the evolution operator [44] so that

|ν(t )|2 =
∣∣∣∣
∫

σ

dμ0(ε)e−iεt

∣∣∣∣
2

, (23)

where μ0 is the measure induced by the initial state. We have
the important result that the Fourier transform of the survival
probability is the measure itself.

We also obtain the time average of the survival probability
(Cesáro average) defined as

〈|ν|2〉T = 1

T

T∑
t=1

|ν(t )|2. (24)

We can obtain the maximum survival probability and its
Cesáro average for an idealized uniform distribution in po-
sition space given as

ν(t )uni = 1√
t + 1

, (25)

〈|ν|2〉uni
T = 1

T

T∑
t=1

1

t + 1
. (26)

We represent in Fig. 8(a) the absolute value of the survival
probability, |ν(t )|, computed with (25), for different QWs,
as in the previous sections. Concretely, we use optimized se-
quences for several values of T , (averaged) values for random
sequences and the θi = π/4 quantum walk. Moreover, we also
compare them to the uniform wave function, which is given by

|ψU (T )〉 = 1√
2

T∑
x=−T

(|x, L〉 + |x, R〉). (27)

Figure 8(b) shows the Cesáro averaged values. Clearly, ran-
dom sequences provide the largest value (on average) for the
survival probability, while the optimal and uniform values stay
between the random and the Hadamard cases. Indeed, the
uniform and the optimal values remain similar for all times.
The behavior of the Cesáro averages is quite similar.

There are important connections between the survival
probability and its Cesáro average and the spectral properties
of the system. The spectral measure can be split into three
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parts: pure point, singular continuous, and absolutely con-
tinuous [45]. The pure point spectrum is usual for disorderd
systems when the θ is randomly distributed, while the ab-
solutely continuous spectrum is related to highly structured
systems, such as periodic sequences of quantum coins [45].
The singular continuous spectrum appears in between, for
example, when there is aperiodicity [10]. Heuristically, we
can assert that the amount of order in the coin parameters is
directly related to how continuous the spectral measure is.

For long times, we use the fact that the survival amplitude
is the Fourier transform of the measure, (23), so we can
extract information on the spectrum by studying the long-term
behavior of (22) and (24). Specifically, we use the conditions
derived from Wiener’s lemma [46] and the theorem of Ruelle,
Amrein-Georgescu, and Enss ([44]; see [45] for the discrete-
time version). Indeed, the conditions

lim
t→∞〈|ν|2〉T = 0, (28)

lim
t→∞ |ν(t )| = 0 (29)

imply that the spectrum of the evolution operator will be
absolutely continuous. The first one, Eq. (28), guarantees that
the spectrum lacks a pure point part and the second one,
Eq. (29), ensures that the spectrum is absolutely continuous.
Despite our computational limitations regarding the maximal
time step, we can extract relevant information from the time
evolution of the idealized uniform system, since we know that
the survival probability and Cesáro averages are similar to
those of the optimized sequences. This implies that, since both
conditions, (28) and (29), are met, the spectrum of the uniform
quantum walk in the limit t → ∞ is absolutely continuous. It
is interesting to note that the aperiodic sequences commented
above induce a singular continuous energy spectrum since
(29) is not met, but the periodic sequences behave similarly to
the optimum sequence since both conditions are met, yielding
absolutely continuous energy spectra [10].

As noted in [45], using the discrete-time version of the Ru-
elle, Amrein-Georgescu, and Enss theorem we can relate the
different spectral types reported above with the localization
and spreading behavior of the wave function:

i. Pure point: Most of the wave packet never leaves a given
bounded region, so the wave function remains localized.

ii. Singular continuous: Upon time averaging, the wave
packet will eventually leave any bounded region, but this
could not be true of all walks.

iii. Absolutely continuous: Most of the wave packet will
eventually leave any bounded region. In one dimension the
spread will be ballistic upon time averaging and, without
averaging, for some specific quantum walks.

Asymptotically, the behavior of the optimum sequence is
expected to be similar to that studied for finite times: the
wave packet spreads ballistically, leaving any bounded region.
Curiously, this is also the behavior of periodic sequences: the
optimal sequence seems not to be periodic but asymptotically
behaves as a highly ordered periodic sequence. Contrarily, the
aperiodic sequences can show anomalous transport, i.e., the
wave packet leaves any bounded region at subballistic speed.
Furthermore, we have the expected analytical expression for
the survival probability, (25), and the Cesáro average, (26),

of the optimum sequence, providing the exact exponent of the
power-law decay; for aperiodic sequences the maximum value
of this exponent is ∼0.8 [10]. It is also interesting to note
that random sequences do not seem to fulfill the conditions
Eqs. (28) and (29), implying that they present a pure point
spectrum yielding a localized wave function.

V. CONCLUSIONS

In this article we have provided a protocol to build a
time-dependent quantum walk which provides optimal spatial
spread, i.e., for which the spatial distribution is (nearly)
maximal for all time steps. We have restricted ourselves to
coin-tossing operators with a single parameter, θ , because
the inclusion of all three Euler angles does not improve the
results substantially. The optimal sequences depend on the
maximal time considered, T , and present complex structures.
Yet some patterns arise. First, most values are close to either
θ = 0 or θ = π/4. The first values tend to stretch the left
and right parts of the wave function. The second ones tend to
appear when the probability overlap has fallen below a certain
threshold and allow the wave function to combine again. Even
though finding the optimal sequences can be a complicated
optimization problem, a crude estimate can be obtained.

We have considered the long-term dynamics associated
with these optimal quantum walks, regarding the survival
probability (the fidelity to the initial state) and the spectrum
of the evolution operator. The observed behavior leads to con-
jecture that the spectrum is absolutely continuous, a behavior
typical of highly ordered sequences such as periodic ones.

Regarding lines of future work, we are interested in qua-
sioptimal sequences, alternating θ = 0 and θ = π/4 values
in a regular (although nontrivial) pattern which will give
rise to a quasioptimal spread. Indeed, these quasioptimal
sequences will be much easier to obtain in the laboratory.
Moreover, we intend to obtain the corresponding values in
more than one dimension and in disordered lattices. It is very
relevant to consider the search capabilities of these optimized
quantum walks, which will be substantially improved over
time-independent or random quantum walks.
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APPENDIX A: BOUNDARY CONDITIONS FOR THE
EVOLUTION OPERATOR

As mentioned in Sec. II, the unitary evolution operator,
(7), is defined in an infinite-dimensional Hilbert space asso-
ciated with all possible positions. For practical purposes (i.e.,
numerical analysis) we need to consider a finite-dimensional
position space, but this may turn both the shift operator,
(5), and, therefore, the evolution operator, (7), nonunitary.
We solve this issue, formally, by defining cyclic boundary
conditions in such a way that the shift operator is defined by
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Ŝ = Ŝc + Ŝb, where

Ŝc =
(

N−1∑
x=1

|x + 1〉〈x|
)

⊗ |R〉〈R|

+
(

N∑
x=2

|x − 1〉〈x|
)

⊗ |L〉〈L|, (A1)

Ŝb = |1〉〈N | ⊗ |R〉〈R| + |N〉〈1| ⊗ |L〉〈L|, (A2)

and N is the finite size of the position space. We always
consider that the particle starts in the middle of the position
space (i.e., x = 0), so if we set the size of the position space as
N = 2T + 1, where T is the number of time steps, the particle
never actually experiences the boundary conditions. Never-
theless, when analyzing spectral properties of the evolution
operator the boundary conditions are evaluated.

APPENDIX B: A QRW FAILS TO BE UNIFORMLY
DISTRIBUTED IN SPACE FOR N = 4

We now show that a QRW using a time-dependent coin
operator of the form of (4) cannot be uniformly distributed in
position space when considering a symmetric initial state, (9).
Considering that the probability of the particle’s being at x = i
at time step t is given by

Pri(t ) = Tr[(|i〉〈i| ⊗ Îp) · ρ̂(t )], (B1)

we have that, for all t ,

t∑
x=−t

Tr[(|x〉〈x| ⊗ Îp) · ρ̂(t )] = 1, (B2)

where ρ̂(t ) = |ψ (t )〉〈ψ (t )| is the density operator at time step
t , and

ρ̂(t ) = Ût . . . Û1ρ̂(0)Û †
1 . . . Û †

t . (B3)

This is valid for any initial state ρ̂(0), but henceforth we
consider that ρ̂(0) = |ψS〉〈ψS|, where |ψ〉S is the symmetric
state, (9). Note that, due to the cyclic properties of the trace,
for a uniform probability distribution in position space we
should have

Tr[P̂(t ) · ρ̂(0)] = 1

t + 1
, (B4)

where P̂(t ) = Û †
1 . . . Û †

t (|0〉〈0| ⊗ Îc)Ût . . . Û1 for even time
steps and P̂(t ) = Û †

1 . . . Û †
t (|1〉〈1| ⊗ Îc)Ût . . . Û1 for odd time

steps. Thus, it would be necessary only to evaluate the opera-
tor P̂(t ).

Let us prove this directly by evaluating (B2) for t =
1, 2, 3, 4 and substituting the solutions sequentially, searching
for the values of {θi} that will make all the spatial probabilities
equal.

i. t = 1

Prx=−1 = Prx=1 = 1
2 , (B5)

and there is no dependence on θ1. Thus, θ1 can take any value
in [0, π

2 ].

ii. t = 2

Prx=−2 = Prx=2 = 1
2 cos2(θ2),

Prx=0 = sin2(θ2), (B6)

whose solution is θ2 = arctan( 1√
2

).
iii. t = 3

Prx=−3 = Prx=3 = 1
3 cos2(θ3),

Prx=−1 = Prx=1 = 1
2 − 1

3 cos2(θ3), (B7)

whose solution is θ3 = π
6 .

iv.t = 4

Prx=−4 = Prx=4 = 1

4
cos2(θ4),

Prx=−2 = Prx=2 = 1

3
− 1

6
cos2(θ4) +

√
2 cos(θ4) sin(θ4)

12
,

Prx=0 = 1

3
− 1

6
cos2(θ4) −

√
2 cos(θ4) sin(θ4)

12
, (B8)

and in this case, the system is incompatible.

APPENDIX C: OPTIMIZATION FOR THE FINAL STEP

As we did in Fig. 3, let us perform the optimization process
imposing only the condition that the probability distribution
be uniform in the last step, where instead of using Eq. (11) we
define a new function,

F ′(θ0, . . . , θT ) = 1 − S(θ0, . . . , θT )

ST
max

, (C1)

where S is the Shannon entropy. Function (C1) is normalized
so that F = 1 for a completely localized particle, and F = 0
for a completely uniform distributed particle in the last time
step. The results are shown in Fig. 9. As expected, the values
of F are considerably lower (seven orders of magnitude) and
the Shannon entropy only matches the maximum value at the
last time step. Regarding the θ values, they exceed π

4 and do
not approach 0. Moreover, they do not show any recognizable
pattern. As expected, the robustness is high and the procedure
tolerates higher noise in the parameters. The optimization in
the last step could be useful, for example, for preparing the
system in a uniform distribution for a given time step.

APPENDIX D: OPTIMAL PARAMETERS IN THE
LONG-TIME LIMIT

Let us estimate the behavior of the optimal θ values for
long times. Let us consider the positions x = +1 and x = −1
for an odd time step t and x = 0 for even time steps t + 1 so
that

|ψ−1(t )〉 = | − 1〉(r−1|↑〉 + l−1|↓〉), (D1)

|ψ1(t )〉 = |1〉(r1|↑〉 + l1|↓〉), (D2)

|ψ0(t + 1)〉 = |1〉(r0| ↑〉 + l0| ↓〉), (D3)
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FIG. 9. Optimized sequences of the θ sequences for T = 1, . . . ,15, 20, 25, 30, 35, 40, and 45 for the last-time step optimization, Eq. (C1).
(a) Evolution of the F ′ value for different time step optimizations. (b) Exponential of the Shannon entropy of the probability distribution
in position space and (c) variance for the optimum sequence for T = 5, 10, 15, 20, 25, 30, 35, 40, and 45. (d) Optimized sequences of θ

parameters for T = 1 up to T = 15. The dashed horizontal red line corresponds to π

4 (Hadamard). (e) Optimized sequences of θ parameters
for T = 1, . . . ,15, 20, 25, 30, 30, 35, 40, and 45. The dashed horizontal red line corresponds to π

4 (Hadamard). (f) Time evolution of the
von Neumman entropy of the reduced density matrix as a measure of entanglement for the optimized sequences of θ parameters for T = 1
to T = 15. The black line corresponds to the mean value of 1000 simulations with random θ parameters. The dashed horizontal red line
corresponds to the situation of maximum entanglement ln(2). (g) Stability of the optimized sequences of θ parameters against increasing
perturbations (noise) of the θ value (see text).

where r−1, r1, l−1, and l1 ∈ C are the probability amplitudes
(where we have omitted the time dependence), and r0 and l0
are given by

r0 = r−1 cos θt + l−1 sin θt , (D4)

l0 = r1 sin θt − l1 cos θt . (D5)

Due to the uniform probability distribution restriction and
because |ψR(t )|2 and |ψL(t )|2 are symmetric with respect to
x = 0, the following conditions are fulfilled:

|r−1|2 + |l−1|2 = |r1|2 + |l1|2 = 1

t + 1
, (D6)

|r1|2 = |l−1|2, (D7)

|r−1|2 = |l1|2, (D8)

|r0|2 = |l0|2 = 1

2(t + 2)
. (D9)

Considering (D7), (D8), and (D9) we get

r∗
1 l1 + r1l∗

1 = −(r∗
−1l−1 + r−1l∗

−1), (D10)

which can be expressed as

Re(r∗
1 l1) = −Re(r∗

−1l−1), (D11)

so that the condition |r0|2 + |l0|2 = 1
t+2 results in

|r1|2 sin2 θt + |r−1|2 cos2 θt − 2 cos θt sin θt Re(r∗
1 l1)

= 1

2(t + 2)
. (D12)

Let us make a further assumption: |r1|2 ≈ |r−1|2 for t � 1,
if we can assume that the probability distributions are linear
or, at least, smooth enough, as the numerical results suggest.
Thus, (D12) becomes

4 cos θt sin θt Re(r∗
1 l1) ∼ 1

t + 1
− 1

t + 2
∼ 1

t2
. (D13)

Considering condition (D6) it can be expected that Re(r∗
1 l1) ∼

1
t and therefore θt ∼ 1

2 arcsin ( 8
t ). So, for long times it is

expected that the values of θ will be slowly decaying.
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