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Resonant generation of a p-wave Cooper pair in a non-Hermitian Kitaev chain
at the exceptional point
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We investigate a non-Hermitian extension of a Kitaev chain by considering imaginary p-wave pairing
amplitudes. The exact solution shows that the phase diagram consists of two phases with real and complex
Bogoliubov–de Gennes spectra, associated with the PT -symmetry breaking, which is separated by a hyperbolic
exceptional line. The exceptional points (EPs) correspond to a specific Cooper pair state (1 + c†

k c†
−k )|0〉 with

movable k when the parameters vary along the exceptional line. The non-Hermiticity around EP supports
resonant generation of such a pair state from the vacuum state |0〉 of fermions via the critical dynamic process.
In addition, we propose a scheme to generate a superconducting state through a dynamic method.
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I. INTRODUCTION

The Kitaev model is a lattice model of a p-wave super-
conducting wire, which realizes Majorana zero modes at the
ends of the chain [1]. This has been demonstrated by unpaired
Majorana modes exponentially localized at the ends of open
Kitaev chains [2–4]. The main feature of this model origi-
nates from the pairing term, which violates the conservation
of the fermion number but preserves its parity, leading to
the superconducting phase. The amplitudes for pair creation
and annihilation play an important role in the existence of
the gapped superconducting phase. In general, most of the
investigations on this model have focused on the case with
a Hermitian pairing term. A non-Hermitian term is no longer
forbidden both in theory and experiment since the discovery
that a certain class of non-Hermitian Hamiltonians could
exhibit entirely real spectra [5,6]. The origin of the reality of
the spectrum of a non-Hermitian Hamiltonian is the pseudo-
Hermiticity of the Hamiltonian operator [7]. It motivates a
non-Hermitian extension of the Kitaev model. Many contri-
butions have been devoted to non-Hermitian Kitaev models
[8–13] and Ising models [14,15] within the pseudo-Hermitian
framework. Also, the experimental schemes for realizing the
Kitaev model and related non-Hermitian systems have been
presented in Refs. [16] and [17], respectively. In addition,
the peculiar features of a non-Hermitian system do not only
manifest in statics but also dynamics. From the perspective of
non-Hermitian quantum mechanics, it is also a challenge to
deal with many-particle dynamics.

In this paper, we investigate a non-Hermitian extension of
the Kitaev chain by considering imaginary p-wave pairing
amplitudes. Theoretically, an open system is regarded as a
subsystem of an infinite Hermitian system, while a non-
Hermitian Hamiltonian is introduced to describe the physics
of the subsystem in a phenomenological way [18]. Non-
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Hermitian p-wave pairing amplitudes may arise from the case,
in which the subsystem and the surrounding system are in the
superconducting phase. When the whole system is in some
nonequilibrium superconducting states, the subsystem should
be effectively described by a non-Hermitian pair creation and
annihilation. As a concrete step toward this, the quantum
tunneling of particle pairs has been studied for two weakly
interacting systems as a superconducting tunnel junction [19].
Technically speaking, a non-Hermitian pairing term is not so
surprising, because it is equivalent to an imaginary on-site
potential (see Appendix A). Non-Hermitian systems exhibit
many peculiar dynamic behaviors that never occurred in
Hermitian systems. One of the remarkable features is the
dynamics at the exceptional point (EP) [20–26] or the spectral
singularity (SS) [27–31], where the system has a coalescence
state. Recently, there are some works for non-Hermitian
many-body EPs [32,33], many-body dynamics [34], and the
many-body EP-related dynamics for a noninteracting system
[35] and the quantum spin system [36]. In this work, we
focus on the EP-related dynamic behavior for the many-body
interacting fermion system.

Based on the exact solution, we find that the exceptional
line is a hyperbolic line in the parameter space, which sep-
arates two regions with real and complex Bogoliubov–de
Gennes spectra, associated with the unbroken and the bro-
ken PT -symmetric phase, respectively. The EPs move in k
space when the parameters vary along the exceptional line. In
addition, the critical dynamics supports resonant generation
of a p-wave Cooper pair: a specific pair state c†

kc
c†
−kc

|0〉 with
selected opposite momentum kc can be generated from the
vacuum state |0〉 of fermions by the natural time evolution.
The selected kc ranges over the Brillouin zone, determined
by the parameters. The underlying mechanism stems from
the critical dynamics around the EP that projects an initial
state onto the coalescing state. Our work also exemplifies the
dynamic nature of a non-Hermitian interacting many-particle
system. As an application, it provides an alternative way to
generate a superconducting state from an empty state via a
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critical dynamic process rather than cooling down the temper-
ature, and the key feature of this model is that the theoretical
results can be demonstrated and tested experimentally via a
two-site system, which can exhibit similar EP dynamics as
the original model (see Appendix B).

This paper is organized as follows. In Sec. II, we describe
the model Hamiltonian. In Sec. III, based on the solutions,
we present the phase diagram. In Sec. IV, we study the
dynamics in the unbroken-symmetry region, including the
time evolution at exceptional lines. In Sec. V, we focus
on the critical dynamics for the vacuum state as the initial
state. In Sec. VI, we propose a scheme to generate a super-
conducting state. Finally, we give a summary and discussion
in Sec. VII.

II. NON-HERMITIAN KITAEV MODEL

We consider the following fermionic Hamiltonian on a
lattice of length N :

H =
N∑

j=1

[−Jc†
j c j+1 + H.c. − i�c†

j c
†
j+1

− i�c j+1c j + μ(2n j − 1)], (1)

where c†
j (c j ) is a fermionic creation (annihilation) operator

on site j, n j = c†
j c j , J the tunneling rate, μ the chemical

potential, and i� the strength of the p-wave pair creation
(annihilation). We define cN+1 = c1 for the periodic boundary
condition. The Hamiltonian (1) has a rich phase diagram in
its Hermitian version, i.e., i� → �, which is a spin-polarized
p-wave superconductor in one dimension. This system is
known for having topological phases in which there is a zero
energy Majorana mode at each end of a long chain. It is
also the fermionized version of the familiar one-dimensional
transverse-field Ising model [37], which is one of the simplest
solvable models exhibiting quantum criticality and demon-
strating a quantum phase transition with spontaneous symme-
try breaking [38]. In this work, we consider a non-Hermitian
extension by imaginary pairing amplitude i�. Comparing
with the non-Hermitian Kitaev model in previous works
[8–14], the present model has parity-time-reversal (PT ) sym-
metry (proved below) and its non-Hermiticity arises from the
imaginary pairing term rather than from the on-site potential
term. We will show that the quasiparticle spectrum can have
two movable EPs, resulting in some exclusive features differ-
ent from its Hermitian version.

Before solving the Hamiltonian, it is profitable to investi-
gate the symmetry of the system. By the direct derivation, we
have [PT ,H] = 0, where the antilinear time-reversal opera-
tor T has the function T iT = −i, and (P )−1clP = cN−l+1.
As a usual pseudo-Hermitian system [39], the PT symmetry
in the present model plays the same role to the phase diagram.
The spectrum of H can be real if all the eigenstates can
be written as a PT -symmetric form, while complex when
the corresponding eigenstates break the PT symmetry. The
concept of EPs in this paper specifies the locations in the
parameter space, at which the complex spectrum starts to
appear (in general, an EP is any point with a coalescing state).
We concentrate our work on the real-spectrum (or unbroken

symmetry) region, avoiding the exponentially increased Dirac
probability.

In this work, we focus on the dynamics of such a super-
conducting system, which motivates a more systematic study.
Taking the Fourier transformation

c j = 1√
N

∑
k

eik jck, (2)

for the Hamiltonian (1), with wave vector k ∈ (−π, π ], we
have

H = −
∑

k

[2(J cos k − μ)c†
kck

+� sin k(c−kck + c†
−kc†

k ) + μ]. (3)

For the convenience of further analysis, we express the Hamil-
tonian by using the Nambu representation

H =
∑

π>k>0

Hk, (4)

Hk = 2(c†
k c−k )

(
μ − J cos k � sin k
−� sin k J cos k − μ

)(
ck

c†
−k

)
, (5)

where the Hamiltonian Hk in each invariant subspace satisfies
the commutation relation

[Hk,Hk′ ] = 0. (6)

This allows us to treat the diagonalization and the dynam-
ics governed by Hk individually. So far the procedure is the
same as those for solving the Hermitian version of H. To di-
agonalize a non-Hermitian Hamiltonian, we should introduce
the Bogoliubov transformation in the complex version:

γk = cos θkck − i sin θkc†
−k,

γ k = cos θkc†
k + i sin θkc−k, (7)

where the complex angle θk is determined by

tan (2θk ) = i� sin k

μ − J cos k
. (8)

It is a crucial step to diagonalize a non-Hermitian Hamilto-
nian, which essentially establishes the biorthogonal modes. It
is easy to check that the complex Bogoliubov modes (γk, γ k )
satisfy the anticommutation relations

{γk, γ k′ } = δk,k′ ,

{γk, γk′ } = {γ k, γ k′ } = 0, (9)

which result in the diagonal form of the Hamiltonian

H =
∑

k

εk

(
γ kγk − 1

2

)
. (10)

Here

εk = 2
√

(μ − J cos k)2 − �2 sin2 k (11)

is the dispersion relation of the quasiparticle. Note that the
Hamiltonian H is still non-Hermitian due to the fact that γ k �=
γ

†
k . In addition, quasispectrum εk can be real or imaginary, but

not zero since the complex Bogoliubov modes (γk, γ k ) are not
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well defined if εk = 0, which will be discussed in the next
section.

III. PHASE DIAGRAM

According to the theory for a pseudo-Hermitian system
[39], the whole parameter space consists of two kinds of
regions: a symmetry-unbroken one with a fully real spec-
trum and a symmetry-broken one with a complex spectrum,
which originates from the overthreshold imaginary pairing
amplitudes. The reason can be seen from the following
derivation. For a given k, the Hamiltonian Hk in the basis
(|0〉k|0〉−k , |1〉k|1〉−k) is expressed as a 2×2 matrix

Hk = 2

(
J cos k − μ −� sin k

� sin k μ − J cos k

)
. (12)

The eigenstate |ψ±
k 〉 with even parity of the particle number is∣∣ψ±

k

〉 = 1√
	±

nh

(|0〉k|0〉−k + β±
k |1〉k|1〉−k ), (13)

where 	±
nh = 1 + |β±

k |2 is the normalization coefficient in the
context of a Dirac inner product with

β±
k = � sin k

J cos k − μ ± εk/2
. (14)

We note that

PT |ψ±
k 〉 = |ψ±

k 〉, for (εk )2 > 0,

PT |ψ±
k 〉 = |ψ∓

k 〉, for (εk )2 < 0, (15)

for the unbroken and the broken PT -symmetric phase, where
we used the relation

(PT )−1c†
kPT = e−ikc†

k . (16)

As expected, the symmetry of the eigenstates is associated
with the reality of the energy level. An eigenstate of H is
constructed as the form

|�〉 =
∏

π>k>0

∣∣ϕλ
k

〉
, (17)

where the index λ = 1, 2 labels the eigenstate in each k sector,
|ϕ1,2

k 〉 = |ψ+,−
k 〉, with the eigenenergy

E =
∑

π>k>0

ελ
k , (18)

with ε1,2
k = ε+,−

k . Therefore, the reality of εk determines the
reality of the spectrum of H, since a single imaginary εk

can result in the complex spectrum of H. A quantum phase
transition occurs when the complex spectrum appears. Then
the phase boundary of H locates at the touching point of curve
εk at k axis. The phase boundary (or EP line) in parameter
space (μ − � plane) is determined by the equations [40]

εkc =
[
∂εk

∂k

]
k=kc

= 0. (19)

The boundary is obtained as

μ2
c − �2

c = J2, (20)

with

kc = arccos
J

μc
. (21)

In this situation, Hkc cannot be expressed as the complex
Bogoliubov modes (γkc , γ kc

) since the matrix of Hkc in an
even particle number sector has a Jordan block form,

Mc = −2�2
c

μc

(
1 −1
1 −1

)
, (22)

which is no longer diagonalizable. Two eigenvectors of Mc

coalesce to a single one (1, 1)T, leading to a set of coalescing
eigenstates of H, including the coalescing ground state. Re-
markably, Hkc governs a peculiar dynamics, which is the focus
of this work. The phase diagram on parameter μ − � plane is
plotted in Fig. 1(a). The real part of quasiparticle spectra for
several typical points in symmetry-unbroken, broken phases,
and on the EP lines are plotted in Figs. 1(b) and 1(c). It
shows that the pair of EPs are movable and meet at a fixed
point. Such a gapless phase is different from its Hermitian
version, where the band touching point is the degenerate point
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FIG. 1. (a) Phase diagram of the non-Hermitian Kitaev model with imaginary p-wave pairing amplitudes. The phase boundary is hyperbolic
exceptional lines (dark magenta), which separate two regions with real (purple) and complex (yellow) Bogoliubov–de Gennes spectra,
associated with the unbroken PT -symmetric phase and the broken PT -symmetric phase, respectively. (b) Real part of quasiparticle spectra
for three typical points indicated in (a) with “∗”, representing unbroken phase (light blue line with “o”), EP line (light green line with “+”), and
broken phase (light pink line), respectively. (c) Quasiparticle spectra for three typical points at the phase boundary line indicated in (a) with
filled circle, empty circle, and “+”, respectively. The corresponding EPs are movable and merge at fixed k = 0 or k = π .
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and it will result in different dynamical behavior in the non-
Hermitian Kitaev model, especially near the phase boundary.

IV. DYNAMICS

We study the dynamics in the unbroken-symmetry region,
in which εk is always real, including the time evolution at
exceptional lines. Based on the above analysis, the dynamics
is governed by the time evolution operator

U (t ) = exp(−iHt ) =
∏

π>k>0

Uk (t ), (23)

where

Uk (t ) = exp(−iHkt ). (24)

The explicit form of Uk (t ) is determined by the diagonal form
of Hk , i.e.,

Hk = εk (γ kγk + γ −kγ−k − 1). (25)

However, one of the exclusive features of a non-Hermitian
system is that Hk is nondiagonalizable when k = kc. There-
fore, we will deal with Uk (t ) in two aspects.

(i) In the case of k �= kc, we have

Uk (t ) = 2[cos(εkt ) − 1]γ̄kγk γ̄−kγ−k

+ (1 − eiεkt )(γ̄−kγ−k + γ̄kγk ) + eiεkt , (26)

where we have used the identity (γ kγk )2 = γ kγk . This
result is also valid for imaginary εk . The vacuum
state of γk is constructed as |Vac〉k = γk|0〉, where |0〉
is the vacuum state of ck . Two states (|00〉k, |11〉k ) =
(|Vac〉k|Vac〉−k, γ̄k γ̄−k|Vac〉k|Vac〉−k ) are both the eigenstates
of Hk . The time evolution of such two states are

Uk (t )

(|00〉k
|11〉k

)
=

(
exp (iεkt )|00〉k

exp (−iεkt )|11〉k

)
, (27)

which indicates that it looks like the one in a Hermitian
system if εk is real. The corresponding Dirac probability,
|Uk (t )|mn〉k|2 (m, n = 1, 0), is conservative. However, the
Dirac probability of a superposition of two such eigenstates
in the even particle number subspace is a periodic function
of time with period π/εk . It is noted that when k tends to kc,
this period goes to infinity (or nonperiod), which is one of the
properties of the critical dynamics.

(ii) In the case of k = kc, Hkc cannot be expressed as the
complex Bogoliubov modes (γkc , γ kc

). Nevertheless, we can
rewrite Hkc in the form

Hkc = −2�2
c

μc

(
sz

kc
+ isy

kc

)
(28)

by introducing pseudospin operators [41]

sx
k = 1

2
(c†

−kc†
k + ckc−k ),

sy
k = 1

2i
(c†

−kc†
k − ckc−k ),

sz
k = 1

2
(c†

kck + c†
−kc−k − 1), (29)

which satisfy Lie algebra [sα
k , sβ

k ] = iεαβγ sγ

k , with εαβγ being
the Levi-Civita symbol. The corresponding time evolution

operator has the form

Ukc (t ) = exp(−iHkct ) = 1 − iHkct, (30)

based on the identity (sz
k + isy

k )2 = 0, or (Hkc )2 = 0.
Obviously, the coalescing eigenstate of Hkc is the spin-

up state in x direction, sx
kc
|x〉 = 1

2 |x〉, and the corresponding
eigenstates are

|±x〉 = |0〉k|0〉−k ± |1〉k|1〉−k . (31)

Then the dynamics of the Jordan block is very clear, i.e.,

Ukc (t )|x〉 = |x〉, (32)

Ukc (t )| − x〉 = | − x〉 + i4
(
�2

c

/
μc

)
t |x〉. (33)

Any initial states with component |x〉 obey a nonperiodic (or
infinite period) dynamics, which accords with the dynamics
of Hk with k → kc. In addition, the evolved state Ukc (t )| − x〉
converges to |x〉 as time increases. This property also appears
in the dynamics of Hk with k → kc. Therefore, the system
around EPs should exhibit some peculiar critical dynamics.
The dynamics of Hkc alone cannot induce any macroscopic
phenomenon, while a set of Hk near EPs may result in a many-
particle effect.

V. p-WAVE PAIR GENERATION

In this section, we investigate the critical dynamical behav-
ior by applying the obtained U (t ) on a simple initial state. We
start with the time evolution of the vacuum state of operators
c±k as an initial state, i.e.,

|ψk (0)〉 = |0〉k|0〉−k . (34)

In the case of k �= kc, we have

|ψk (t )〉 = Uk (t )|ψk (0)〉
= [−2i sin (εkt ) sin2 θk + exp (iεkt )]|0〉k|0〉−k

− sin (2θk ) sin (εkt )|1〉k|1〉−k, (35)

while, for k = kc, we have∣∣ψkc (t )
〉 = (1 + it )|0〉kc

|0〉−kc
− it |1〉kc

|1〉−kc
. (36)

Accordingly, considering a vacuum state of all fermions
(empty state) as an initial state

|�(0)〉 =
∏
k>0

|ψk (0)〉 =
∏
k>0

|0〉k|0〉−k, (37)

we have

|�(t )〉 =
∏
k>0

Uk (t )|ψk (0)〉. (38)

It is expected that p-wave pairs are generated from the empty
state. We are interested in the normalized population of the
p-wave pair

N (t ) = 〈�(t )|N̂ |�(t )〉
〈�(t )|�(t )〉 =

∑
k>0

〈ψk (t )|N̂k|ψk (t )〉
〈ψk (t )|ψk (t )〉 , (39)

where the total p-wave pair number operator is

N̂ =
∑
k>0

N̂k =
∑
k>0

nkn−k . (40)
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FIG. 2. Plots of (a) Nk , (b) N (t ), and (c) Nk (t ), which are defined in Eqs. (45), (46), and (43). The parameters are N = 40 and (J, �, μ) =
(1,

√
3, 2).

Then N (t ) can be evaluated from Nk (t ),

N (t ) =
∑
k>0

Nk (t ) =
∑
k>0

〈ψk (t )|N̂k|ψk (t )〉
〈ψk (t )|ψk (t )〉 , (41)

and the distribution of Nk (t ) determines the property of the
nonequilibrium state. For the case of k �= kc, we have

〈�k (t )|�k (t )〉 = 2|sin 2θk|2 sin2 (εkt ) + 1 (42)

and

Nk (t ) = [� sin k sin (tεk )]2

(εk/2)2 + 2[� sin k sin (tεk )]2 , (43)

which is a periodic function of time with period Tk = π/εk .
We note that we have εk ≈ 0 in the vicinity of k ≈ kc, and
the period become very long. It indicates that we always have
Nk (t ) ≈ 1/2 except for some short intervals. For the case of
k = kc, Eq. (36) shows that the normalized pair number is

Nkc (t ) = t2

1 + 2t2
, (44)

which obeys limt→∞Nkc (t ) = 1/2, which is in accord with
the case with k �= kc but an infinitely long period. In order
to demonstrate the property of the evolved state, we define the
average normalized pair number distribution,

Nk = 1

Tk

∫ Tk

0
Nk (t )dt, (45)

and the total average normalized pair number,

N (t ) = 1

π

∫ π

0
Nk (t )dk. (46)

We plot quantities Nk , N (t ), and Nk (t ) for concrete cases
in Fig. 2. It indicates that the majority of modes become
quasistable after a period of time. Accordingly, the evolved
many-body state |�(t )〉 should exhibit as a macroscopic equi-
librium state. To demonstrate this point, we calculate the
time evolution of expectation values of the other two physical
observables, kinetic energy Ê and order parameter P̂, in the
present non-Hermitian Kitaev model.

(i) The operator of kinetic energy Ê is defined as

Ê =
N∑

j=1

(c†
j c j+1 + H.c.) =

∑
k>0

Êk, (47)

and the time evolution of the expectation value of Ê is

E (t ) = 〈�(t )|Ê |�(t )〉
〈�(t )|�(t )〉 =

∑
k>0

〈ψk (t )|Êk|ψk (t )〉
〈ψk (t )|ψk (t )〉 . (48)

In the case of k �= kc, the evolved state is represented in
Eq. (35) and then we can get

Ek (t ) = 〈ψk (t )|Êk|ψk (t )〉
〈ψk (t )|ψk (t )〉

= 4 cos k[� sin k sin (tεk )]2

2[� sin k sin (tεk )]2 + (εk/2)2 . (49)

In the case of k = kc, the evolved state is represented in
Eq. (36) and corresponding Ekc (t ) can be expressed as

Ekc (t ) = 〈ψkc (t )|Êk|ψkc (t )〉
〈ψkc (t )|ψkc (t )〉 = 4t2 cos kc

1 + 2t2
. (50)

(ii) The operator of order parameter P̂ is defined as

P̂ =
N∑

j=1

(c†
j c

†
j+1 + H.c.) =

∑
k>0

P̂k (51)

and the time evolution of the expectation value of P̂ is

P(t ) = 〈�(t )|P̂|�(t )〉
〈�(t )|�(t )〉 =

∑
k>0

〈ψk (t )|P̂k|ψk (t )〉
〈ψk (t )|ψk (t )〉 . (52)

In the case of k �= kc, we have

Pk (t ) = 〈ψk (t )|P̂k|ψk (t )〉
〈ψk (t )|ψk (t )〉

= −�εk sin2 k sin (2εkt )

2(� sin k)2 sin2 (εkt ) + (εk/2)2 , (53)

while, for k = kc, we have

Pkc (t ) = 〈ψkc (t )|P̂k|ψkc (t )〉
〈ψkc (t )|ψkc (t )〉 = −4t sin kc

1 + 2t2
. (54)
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FIG. 3. Plots of (a) Ek , (b) E (t ), (c) Ek (t ), (d) Pk , (e) P(t ), and (f) Pk (t ), which are defined in Eqs. (55), (57), (49), (56), (58), and (53).
The parameters are N = 400 and (J,�,μ) = (1,

√
3, 2). It shows that the average of observables become steady as time increases.

We define the average normalized kinetic-energy and order-
parameter distributions in the k space as

Ek = 1

Tk

∫ Tk

0
Ek (t )dt (55)

and

Pk = 1

Tk

∫ Tk

0
Pk (t )dt . (56)

The total average normalized kinetic energy and order param-
eter are

E (t ) = 1

π

∫ π

0
Ek (t )dk (57)

and

P(t ) = 1

π

∫ π

0
Pk (t )dk. (58)

We plot quantities Ek , E (t ), Ek (t ), Pk , P(t ), and Pk (t ) for
concrete cases in Fig. 3. It indicates that our conclusion still
holds for physical observables Ê and P̂. In the following
section, we will investigate the possible property of such a
state.

VI. DYNAMICAL GENERATION OF
A SUPERCONDUCTING STATE

In this section, as an application of the above result, we
investigate the possibility of dynamical generation of the
superconducting state via a non-Hermitian Kitaev model. The
scheme is that, taking the empty state

∏
k>0 |0〉k|0〉−k as an

initial state, the final state, which approaches the ground
state of a Hermitian Kitaev Hamiltonian H , is achieved by
a driven non-Hermitian Kitaev Hamiltonian H at EP. Before
proceeding, we briefly review the properties of a Hermitian

Kitaev model with the Hamiltonian

H =
N∑

j=1

[−Jc†
j c j+1 + H.c. − i�hc†

j c
†
j+1

+ i�hc j+1c j + μh(2n j − 1)]. (59)

It has been shown to have a topologically nontrivial (trivial)
ground state, when |μh| < |J| (|μh| > |J|) in Ref. [1]. The
phase diagram is plotted in Fig. 4, with an H-shape boundary
separating topologically nontrivial and trivial phases, charac-

FIG. 4. Phase diagram of Hermitian Kitaev model on the pa-
rameter μh − �h plane. The sky blue, yellow, and purple regions
correspond to the winding number −1, 0, and 1, respectively. Dark
magenta lines indicate the phase-transition lines.
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FIG. 5. Numerical simulations of Ok defined in Eq. (71) and O(t ) defined in Eq. (70). The four panels in the first row and the second row
are the plots of Ok at time t = 50J−1 and 100J−1, respectively. The red lines represent the corresponding O, which are the values (a1) 0.376,
(a2) 0.390, (b1) 0.771, (b2) 0.780, (c1) 0.936, (c2) 0.939, (d1) 0.964, and (d2) 0.964. The four panels in the third row are the plots of O(t ) with
the same parameters in the two above rows. The parameters are N = 61, J = 1, � = �h = 1, and μ = √

J2 + �2. Each column of the graph
has the same set of parameters, i.e., (a1)–(a3) μh = −5, (b1)–(b3) μh = −0.5, (c1)–(c3) μh = 0.9, and (d1)–(d3) μh = μ. The parameters of
the Hermitian Kitaev model in (c1)–(c3) and (d1)–(d3) support topologically nontrivial and trivial superconducting ground states, respectively.

terized by winding number N . By the similar procedure as
above, we have

H =
∑

π>k>0

Hk, (60)

Hk = 2(c†
k c−k )

(
μh − J cos k �h sin k

�h sin k J cos k − μh

)(
ck

c†
−k

)
,

(61)

and the Hamiltonian Hk in each invariant subspace satisfies
the commutation relation

[Hk, Hk′ ] = 0. (62)

For a given k, the Hamiltonian Hk in the basis (|0〉k|0〉−k ,
|1〉k|1〉−k) is expressed as 2×2 matrix

hk = 2

(
J cos k − μh �h sin k

�h sin k μh − J cos k

)
. (63)

The eigenstate |ϕ±
k 〉 with even parity of the particle number is

|ϕ±
k 〉 = 1√

	±
h

(|0〉k|0〉−k + b±
k |1〉k|1〉−k ), (64)

where 	±
h = 1 + |b±

k |2 is the normalization coefficient in the
context of a Dirac inner product with

b±
k = �h sin k

J cos k − μh + ε±
k /2

(65)

and corresponding energies are

ε±
k = ±2

√
(μh − J cos k)2 + �2

h sin2 k. (66)

Accordingly, the ground-state wave function can be expressed
as

|G〉 =
∏

π>k>0

|ϕ−
k 〉. (67)

We note that, for a topological nontrivial ground state, we have

lim
k→0

|ϕ−
k 〉 = |1〉k|1〉−k, lim

k→π
|ϕ−

k 〉 = |0〉k|0〉−k, (68)

while

lim
k→0

|ϕ−
k 〉 = |0〉k|0〉−k, lim

k→π
|ϕ−

k 〉 = |0〉k|0〉−k, (69)

for a topological trivial ground state. On the other hand, for
the non-Hermitian system, we know that there is a stable final
state limt→∞ |ψkc (t )〉 ∝ (|0〉kc

|0〉−kc
− |1〉kc

|1〉−kc
), according
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to Eq. (36). If we take a matching set of parameters, the stable
final state can be an eigenmode of |G〉, i.e., |ψkc (t )〉 = |ϕ−

kc
〉

after normalization. It is probable to obtain a state dynami-
cally under the Hamiltonian H, which is similar to a ground
state of H . To characterize how close of an evolved state to a
superconducting state we introduce a quantity

O(t ) = 1

N

∑
k

Ok (t ), (70)

where

Ok (t ) = 〈ϕ−
k |ψk (t )〉 (71)

is the overlap of a specific topological superconducting mode
|ϕ−

k 〉 and a dynamically generated state |ψk (t )〉 via the non-
Hermitian system.

We compute the quantity O(t ) for various sets of param-
eters (J,�,μ) and (J,�h, μh ) to search optimal cases with
large O(t ). We find that there are many cases with large
O(t ). Here we take four typical cases to demonstrate our
results. We plot O(t ) and Ok at certain instants in Fig. 5,
which show that O(t ) oscillates with a very small amplitude.
It also indicates that through such a dynamical method, a
quasisuperconducting state involving topological trivial and
nontrivial can be generated from a simple initial state.

VII. SUMMARY

In summary, we have studied the non-Hermitian extension
of a Kitaev chain by considering imaginary p-wave pairing
amplitudes. Based on the analysis of the exact solution we
find that exceptional lines are hyperbolic lines, which separate
two regions with real and complex Bogoliubov–de Gennes
spectra, associated with PT -symmetry breaking. The EPs are
movable in k space as the parameters vary along the excep-
tional lines. The non-Hermiticity around EP supports resonant
generation of the p-wave Cooper pair state via the critical
dynamic process. A specific pair state (1 + c†

kc†
−k )|0〉 with se-

lecting momentum k can be generated from the vacuum state
|0〉 of fermions and be frozen forever. The remarkable result
obtained by analytical approaches and numerical simulations
are that the dynamically generated state via the non-Hermitian
system is very close to a specific superconducting ground
state, which can be topologically nontrivial or not. This find-
ing provides an alternative way to generate a superconducting
state via a critical dynamic process rather than cooling down
the temperature. In general, a Hermitian superconductor is an
isolated system without particle exchange to the environment.
The superconducting state appears after the temperature de-
creases below the transition point. During the cooling process,
the system keeps in an equilibrium thermal state. In contrast,
a superconducting state in the present non-Hermitian system
is obtained by a dynamic process. Roughly speaking, it can
be regarded as the result of Cooper-pair flowing in from the
environment. Actually, the key feature of the theoretical re-
sults is due to the EP dynamics. This can be demonstrated and
tested experimentally via a two-site system, which can exhibit
similar EP dynamics as the original model. In Appendix B,
we present a two-site system to address this point.
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APPENDIX A: POSSIBLE ORIGIN OF
THE NON-HERMITIAN PAIRING

Here, we provide a way to understand the physical origin
of the pairing term with imaginary amplitudes. We will do it
by presenting an equivalent Hamiltonian which is not surpris-
ing in the non-Hermitian quantum mechanics. We start our
examination by introducing a particle-hole transformation

c†
j → ic j, c j → −ic†

j (A1)

only for a site with even j (one of the sublattices of a bipartite
lattice), at which the relation {c j, c†

j } = 1 still holds, but n j →
1 − n j . Then the original Hamiltonian Eq. (1) becomes its
equivalent Hamiltonian

Heq =
N∑

j=1

[(−1) j+1iJ (c†
j c

†
j+1 − c j+1c j )

+�(c†
j c j+1 − c†

j+1c j ) + (−1) j+1μ(2c†
j c j − 1)].

(A2)

It is still a non-Hermitian Kitaev model, with staggered
chemical potentials and pairing amplitudes. In contrast to the
original one, the non-Hermiticity arises from the hopping term

Hhop = �

N∑
j=1

(c†
j c j+1 − c†

j+1c j ) (A3)

with non-Hermitian hopping strength. The non-Hermitian
hopping term is not a new concept. In Ref. [42], it is pro-
posed that an imaginary hopping term can be obtained by
the combination of on-site imaginary potentials and magnetic
flux. In Ref. [17], the realization of a non-Hermitian magnon
hopping term in an ultracold atomic system is also proposed.
In addition, such a term is also mentioned in Ref. [34].

Nevertheless, here we would like to understand the physi-
cal meaning of the imaginary hopping term in an alternative
way. Taking Fourier transformation

ck = 1√
N

N∑
j=1

e−ik jc j, (A4)

we have

Hhop = i2�
∑

k

(sin k)nk . (A5)

It is clear that Hhop can be regarded as the pure imaginary on-
site potential in k space. In principle, the coordinate space and
the momentum space are considered as equal terms. It turns
out that the imaginary potential at the lth site can originate
from the coupling to the environment, c†

l bl + b†
l cl , where bl

denotes the particle operator in the environment. In parallel,
the imaginary potential at the kth site in momentum space can
originate from the coupling to the environment, c†

kbk + b†
kck ,

where bk denotes the particle operator in the environment. The
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Fourier transformation

ck = 1√
N

N∑
j=1

e−ik jc j,

bk = 1√
N

N∑
j=1

e−ik jb j (A6)

tells us that the term c†
kbk + b†

kck corresponds to a collective
tunneling of particles between the central system and the
environment. For a simple case, in which the whole system
is multiple coupled wires, the interwire coupling can be
responsible for the non-Hermitian term.

APPENDIX B: TWO-SITE KITAEV MODEL

Consider the original Hamiltonian on a two-site system,
which has the form

H = −[Jc†
1c2 + H.c. + i�(c†

1c†
2 + c2c1)

−μ(2c†
1c1 − 1) − μ(2c†

2c2 − 1)]. (B1)

By introducing a particle-hole transformation

c†
2 → −c2, c2 → −c†

2, (B2)

we get its equivalent Hamiltonian

Heq = J (c†
1c†

2 + c2c1) + i�(c†
1c2 + c†

2c1)

+2μ(c†
1c1 − c†

2c2). (B3)

Taking the linear transformation

cL = c1 + c2√
2

, cR = c1 − c2√
2

, (B4)

we have

Heq = 2μ(c†
LcR + c†

RcL) − J (c†
Lc†

R + cRcL)

+ i�(c†
LcL − c†

RcR), (B5)

which represents a Kiteav model with PT (double well)
imaginary potential.

Furthermore, taking Jordan-Wigner transformation

cL = −σ z
Lσ−

L , cR = −σ z
Rσ−

R , (B6)

we have

Heq = −2μ(σ+
L σ−

R + σ−
L σ+

R ) − J (σ+
L σ+

R + σ−
L σ−

R )

− 2i�
(
σ z

L − σ z
R

)
, (B7)

or the anisotropic XY model

Heq = −2(J + 2μ)σ x
Lσ x

R + 2(J − 2μ)σ y
Lσ

y
R

− 2i�
(
σ z

L − σ z
R

)
. (B8)

Importantly, the complex magnetic field is no longer a compo-
nent of a toy model, and it is claimed that the non-Hermitian
XY model can be implemented using three-level atoms with
spontaneous decay [43]. Accordingly, our results can be seen
experimentally with trapped ions, cavity QED, and atoms in
optical lattices.
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