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In this paper, we study the exact dynamics of general open systems interacting with their environments through
particle exchanges. The paper includes two main results. First, by taking advantage of the propagating function in
the coherent state representation, we obtain the exact solution of the reduced density matrix, which is expressed
in terms of the nonequilibrium Green functions. Second, in the dynamical perspective, we provide a rigorous
thermalization process of open quantum systems.
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I. INTRODUCTION

In the real world, physical systems are inevitably coupled
to environments, which makes the theory of open quantum
systems vastly useful in very diverse research fields, including
physics, chemistry, biology, and engineering. The system-
atic study of open quantum systems has aroused researcher
interest since the 1960s [1–7], and has become more and
more important for the developing fields of quantum informa-
tion processing [7–9], quantum transport theory [10,11], and
rapidly improving time-resolved measurement technologies
[12,13]. One of the most crucial problems in dealing with
open quantum systems is how to determine explicitly the
evolution of open quantum system states, through which all
the information about the system dynamics can be obtained.
However, due to the contamination of a huge environment,
the system dynamics is nonunitary and always involves com-
plicated fluctuations and dissipation. As a consequence, to
date most open quantum systems can only be dealt with per-
turbative methods, such as the Born-Markov approximation
or cutting off in the Nakajima-Zwanzig operator projective
technique [3–5]. Only for a few classes of open quantum
systems, e.g., the harmonic oscillator in quantum Brownian
motion [14,15] and the open systems interacting with particle-
exchange coupling [16–20], can an exact master equation be
obtained, let alone the exact state evolution.

In a series of papers [16–20], we have obtained the gen-
eral exact master equation for open quantum systems whose
interactions with reservoirs only involve particle exchanges.
This large class of open quantum systems is an extension of
the famous Fano-Anderson model [21,22] which character-
izes many physical phenomena in different systems, such as
Fano resonance in atomic physics and nanoelectronic systems
[23], Anderson localization in condensed matter physics [21],
photon-atom bound states in photonic crystals [24–26], quan-
tum transport in various junctions [10], impurity defects in
solids [27], etc. With the recent progress on the exact master
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equation for such a large class of noninteracting open quantum
systems [16–19], various perspectives of open systems can be
studied, e.g., memory effects [28–31], entanglement dynamics
[32–34], non-Markovian decoherence [17,35,36], exact tran-
sient quantum transport [11,37,38], etc.

In this paper, one main result we obtained is the solution of
the exact master equation, i.e., the exact form of the reduced
density matrix of an open system at an arbitrary later time.
Note that the time dependence of the reduced density matrix
includes complete information about the system dynamics,
and it offers more perspectives in studying the memory effects
[28,29,39,40], entanglement dynamics, and dynamical phase
transition [33,41]. Using the result of the reduced density ma-
trix, in this paper we also study general thermalization, which
is another important and hot topic for both experimentalists
[42,43] and theorists [44–55] in recent years. In equilibrium
statistic mechanics, the thermal distribution is based on the
assumption of equal probability of all permissible microstates
[56]. However, the foundation of thermalization has always
been a tough problem and a long-term goal of physicists [53].
In the past decade, by taking the eigenstate thermalization hy-
pothesis, researchers have studied the thermalization of closed
quantum systems and have achieved some interesting re-
sults in understanding the underlying physics [44–46,48–54].
In contrast, in this paper, we discuss the thermalization of
open systems from the dynamical perspective. With the exact
evolution of open quantum systems, such an aim is achieved.

The rest of the paper is organized as follows. In Sec. II, we
introduce the system we concern ourselves with and briefly
review the previous results related to our present work. In
Sec. III, we derive the exact solution of the reduced density
matrix. In Sec. IV, we explain the physical consequences of
the solution and discuss the general thermalization of open
systems. A brief summary is given in Sec. V.

II. OVERVIEW OF THE EXACT MASTER EQUATION

The systems we are interested in are characterized by the
bosonic (fermionic) Hamiltonian HS = ∑d

i, j=1 εi ja
†
i a j , and

interact with a bosonic (fermionic) environment described by
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HE = ∑
k εkb†

kbk , via the interaction Hint = ∑
j,k (Vjka†

j bk +
H.c.). Here a†

j and a j are the creation and annihilation op-
erators of the discrete single-particle energy level j in the
system; b†

k and bk are the creation and annihilation operators
of the continuous single-particle mode k in the environment;
εii and εk give the corresponding single-particle energy spectra
of the system and the environment; εi j (i �= j) characterize the
transitions between different single-particle levels; and Vjk is
the interaction strength between the jth single-particle energy
level in the system and mode k in the environment. If the
creation and annihilation operators satisfy the commutation
(anticommutation) relations, the corresponding systems is
bosonic (fermionic).

We assume that initially the system and the environment
are decoupled [57], i.e., ρtot (0) = ρ(0) ⊗ ρE(0), where ρ(0)
is an arbitrary physical state of the system and ρE(0) =
⊗ke−β(εk−μ)b†

kbk /Z is the thermal state of the environment
with inverse temperature β and chemical potential μ. Here,
Z = ∏

k[1 ∓ e−β(εk−μ)]∓1 denotes the grand partition func-
tion of the environment, with the upper and lower signs
corresponding to the bosonic and fermionic cases respectively,
and hereafter we keep to this convention. The dynamics of the
open system is completely determined by the reduced density
matrix which is obtained by tracing over all the environmental
degrees of freedom from the total density matrix,

ρ(t ) = TrE[U (t, 0)ρtot(0)U†(t, 0)], (1)

where U (t, 0) = exp { 1
ih̄ (HS + HE + Hint )t} is the time evolu-

tion operator of the total system.
In the coherent state representation, the reduced density

matrix at generic time t > 0 is connected to the initial state
through the propagating function J (η†, η′, t |ζ′†, ζ, 0) [17,19],
i.e.,

〈η|ρ(t )|η′〉=
∫

dμ(ζ, ζ′)〈ζ|ρ(0)|ζ′〉J (η†, η′, t |ζ′†, ζ, 0), (2)

where ζ† = (ζ ∗
1 · · · ζ ∗

d ) and ζ = (ζ1 · · · ζd )T, with
the components being complex (Grassmannian) for bosons
(fermions); |ζ〉 = ea†ζ|0〉 and 〈ζ| = 〈0|eζ†a are the un-
normalized coherent states, in which a† = (a†

1 · · · a†
d),

a = (a1 · · · ad)T, and |0〉 and 〈0| are the vacuum states
[58]; dμ(ζ, ζ′) = dμ(ζ)dμ(ζ′) is the integral measure,
with dμ(ζ) = ∏d

j=1(d2ζ j/π )e−ζ ∗
j ζ j for bosons and dμ(ζ) =∏d

j=1 dζ ∗
j dζ je

−ζ ∗
j ζ j for fermions.

With the coherent state path-integral approach, the propa-
gating function can be derived, reading [17,19]

J (η†, η′, t |ζ′†, ζ, 0) = [det w(t )]±1 exp{η†J1(t )ζ ± η†J2(t )η′

± ζ′†J3(t )ζ + ζ′†J†
1(t )η′}, (3)

where w(t ) = [I ± v(t )]−1, J1(t ) = w(t )u(t ), J2(t ) = I −
w(t ), J3(t ) = I − u†(t )w(t )u(t ), with u(t ) and v(t ) standing
for the nonequilibrium Green functions. In the following,
for simplicity of notation, we abbreviate the time depen-
dence when encountering complicated formulas involving
these quantities. More specifically, u(t ) is the spectral Green
function with elements defined as ui j (t ) = 〈[ai(t ), a†

j (0)]∓〉,
and v(t ) is the fluctuating correlation function originated from

the environment [18,19], i.e.,

v(t ) =
∫ t

0
dt1

∫ t

0
dt2 u(t − t1) g̃(t1 − t2) u†(t − t2), (4)

which has the same form as the Keldysh correlation Green
function. Here, g̃(t1 − t2) = ∫

dε
2π

f (ε)J(ε)e−iε(t1−t2 ) denotes a
system-bath correction, with f (ε) = 1

eβ(ε−μ)∓1 standing for the
initial particle distribution of the environment and Ji j (ε) =
2π

∑
k VikV ∗

jkδ(ε − εk ) being the matrix element of the spec-
tral density matrix J(ε).

Taking advantage of Eqs. (2) and (3), the master equation
has been derived [16–19], reading

dρ(t )

dt
= 1

i
[H̃S(t ), ρ(t )] +

∑
i j

{γi j (t )[2a jρ(t )a†
i

− a†
i a jρ(t ) − ρ(t )a†

i a j] + γ̃i j (t )[a†
i ρ(t )a j

± a jρ(t )a†
i ∓ a†

i a jρ(t ) − ρ(t )aja
†
i ]}. (5)

In this master equation, H̃S(t ) = ∑
i j ε̃i j (t )a†

i a j is the renor-
malized system Hamiltonian; γi j (t ) and γ̃i j (t ) characterize the
dissipation and fluctuations induced by the system’s coupling
with the environment, respectively. The coefficients ε̃i j (t ),
γi j (t ), and γ̃i j (t ) are elements of Hermitian matrices and are
determined entirely by the nonequilibrium Green functions
u(t ) and v(t ):

ĩεi j (t ) + γi j (t ) = −[u̇(t )u−1(t )]i j, (6a)

γ̃i j (t ) = v̇i j (t ) − [u̇(t )u−1(t )v(t ) + H.c.]i j . (6b)

The above formulation shows that the dynamics of open quan-
tum systems are fully determined by u(t ) and v(t ) through the
above master equation.

Furthermore, the general solution of the spectral Green
function u(t ) can be expressed as [16]

u(t ) =
∑

l

Zl e
−iεl t +

∫
dε

2π
D(ε)e−iεt . (7)

The quantities εl , Zl , and D(ε) are all connected with the
Green function in the energy domain,

U (z) = 1

zI − εS − �(z)
, (8)

which is the modified Laplace transform of u(t ) with respect
to time; εS is the matrix formed by the parameters εi j in the
system Hamiltonian and �(z) = ∫

dε
2π

J(ε)
z−ε

is the self-energy
correction of the system. Explicitly, εl is the pole of U (z)
in the real axis and the energy of the lth localized state (or
localized mode [16]); Zl is the corresponding amplitude, read-
ing Zl = 1

2π i

∮
Cl

dz U (z) with Cl standing for the positively
oriented curve in the neighborhood of z = εl ; and D(ε) is the
continuous part of the Green function spectrum.

Physically, the first term (the discrete spectrum) of Eq. (7)
describes the dissipationless dynamics of the system due to
the localized states generated from the coupling between the
system and environment. The second term (the continuous
spectrum) describes the dissipation (spontaneous decay) of
the system. The decay rates are given by Eq. (6a) in the master
equation. In the weak-coupling regime, D(ε) represents the
spectrum broadening due to the coupling to the reservoir.
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However, in the strong coupling regime, the energy renor-
malization marginalizes the system spectrum εS so that D(ε)
is dominated by the spectral density. This also results in the
occurrence of the localized states, i.e., the first term in Eq. (7),
when the pole condition det[εl − εS − �(εl )] = 0 is satisfied.
Once we have the general solution of u(t ), the correlation
Green function v(t ) can be determined from Eq. (4), which
is a manifestation of the fluctuation-dissipation theorem in the
time domain [16]. This completes our exact master equation
formulation. In fact, the spectral Green function u(t ), the cor-
relation Green function v(t ), and their physical interpretation
can also be seen from an alternative derivation in terms of the
quantum Langevin equation given orginally in Refs. [20,59]
and also in Appendix A.

III. THE EXACT SYSTEM STATE EVOLUTION

With the initial system state ρ(0) and the solution of the
Green functions u(t ) and v(t ), the reduced density matrix
ρ(t ) at an arbitrary instant can be determined in principle
from the exact master equation (5). However, because the
coefficients are all time dependent, it is not easy to solve
the master equation directly. In fact, Eqs. (2) and (3) are
already the exact solution of the reduced density matrix in the
coherent state representation. In this section, we will attempt
to find the general operator form of this solution. First, in
Sec. III A, we shall introduce some conventions and derive the
matrix elements of ρ(0) in the coherent state representation.
In Sec. III B, we obtain the matrix elements of ρ(t ) at arbitrary
later time. In Sec. III C, the exact form of ρ(t ) will be given.

A. Representation of the initial system state

To obtain the density matrix elements at arbitrary time, one
needs to carry out the integrals of Eq. (2) with the explicit
expression of 〈ζ|ρ(0)|ζ′〉. Define the Fock state

|I〉 = a†
I√

i1! · · · id !
|0〉, 〈I| = 〈0| aI√

i1! · · · id !
, (9)

where

a†
I = (a†

1)i1 · · · (a†
d )id , (10a)

aI = (a†
I )† = (ad )id · · · (a1)i1 . (10b)

In the formulas, I = (i1, i2, · · · , id ) is a class of d-dim se-
quences corresponding to the particle occupation in the sys-
tem, with in denoting the occupation number in the nth level.
For fermions in = 0, 1 and for bosons in = 0, 1, 2, . . . . The
initial system density matrix can be generally expressed as

ρ(0) =
∑

IJ

ρIJ (0)
a†

I|0〉〈0|aJ√
i1! · · · id ! j1! · · · jd !

, (11)

where the summation is over all the possible physical pairs
of I and J . For massive particles, the reduced density matrix
elements with different massive particle number vanish; that
is, there is no overlap between Fock states with different
massive particle numbers. This is because massive particles
cannot be generated or destroyed in the nonrelativistic regime
even though they can be transferred. Thus, we further have the
constraint i1 + · · · + id = j1 + · · · + jd . With the initial state

in Eq. (11) and the definition of coherent states, it is easy to
find

〈ζ|ρ(0)|ζ′〉 =
∑

IJ

ρIJ (0)
ζ†

I ζ
′
J√

i1! · · · id ! j1! · · · jd !
, (12)

where ζ†
I and ζ′

J follow conventions similar to those in Eq. (9),
i.e., ζ†

I = (ζ ∗
1 )i1 · · · (ζ ∗

d )id and ζ′
J = (ζ ′

d ) jd · · · (ζ ′
1) j1 .

B. Evolution of the density matrix elements
in the coherent state representation

Following Eqs. (3) and (12), Eq. (2) can be reexpressed as

〈η|ρ(t )|η′〉 = (det w)±1e±η†J2η
′ ∑

IJ

ρIJ (0)√
i1! · · · id ! j1! · · · jd !

×
∫

dμ(ζ, ζ′)ζ†
I ζ

′
Jeη†J1ζ+ζ′†J†

1η
′+ζ′†J3ζ. (13)

In order to obtain the explicit form of 〈η|ρ(t )|η′〉, one needs to
simplify the integral. The result is given in the following (see
Appendix B for the details).

1. Bosonic case

In the bosonic case, the result is∑
I ′J ′

P+|(J3)J ′,I ′ |+(η†J1)I ′ (J†
1η

′)J ′ , (14)

where we have used the following conventions:
(i) I ′ = (i′1, i′2, · · · , i′d ) and I ′ = (i′1, i′2, · · · , i′d ) are d-dim

sequences of non-negative integers, with i′k + i′k = ik for 1 �
k � d . The summation

∑
I ′J ′ is over all the possible pairs of I ′

and J ′ satisfying the constraint i′1 + · · · + i′d = j′1 + · · · + j′d .
(ii) P+ = Ci1

i′1
· · ·Cid

i′d
C j1

j′1
· · ·C jd

j′d
, with Cn

k = n!
k!(n−k)! stand-

ing for the binomial coefficient.
(iii) |(J3)J ′,I ′ |+ = perm[(J3)J ′,I ′] stands for the permanent

of the matrix (J3)J ′,I ′ [see Eq. (B5)].
(iv) (J3)J ′,I ′ is the matrix obtained by first taking j′m copies

of the mth row of J3 in Eq. (3) for each n and then taking i′n
copies of the nth column of the matrix obtained by the first
step [see Eqs. (B6) and (B7)].

(v) η†J1 and J†
1η

′ are vectors in d-dimensional spaces, and
(η†J1)I ′ and (J†

1η
′)J ′ follow a convention similar to that in

Eq. (12).

2. Fermionic case

In the fermionic scenario, the integral can be simplified to∑
I ′J ′

P−|(J3)J ′,I ′ |−(η†J1)I ′ (J†
1η

′)J ′ . (15)

Here, we have used the following conventions:
(i) I ′, I ′, J ′, J ′, and the summation follow the same con-

ventions as in the bosonic case, except that all the elements in
the sequences are either 0 or 1.

(ii) P− = s(I, I ′)s(J, J ′), with s(I, I ′) is the sign being
defined through ζ†

I = s(I, I ′)ζ†
I ′ζ

†
I ′ .

(iii) |(J3)J ′,I ′ |− = det[(J3)J ′,I ′] stands for the determinant
of the matrix (J3)J ′,I ′ .
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(iv) (J3)J ′,I ′ follows the same convention as in the bosonic
case. However, as all the elements in I ′ and J ′ are either 0 or
1, (J3)J ′,I ′ is in fact a submatrix of J3.

(v) (η†J1)I ′ and (J†
1η

′)J ′ follow the same convention as in
the bosonic case.

3. Common expression

Equations (14) and (15) can be summarized as∑
I ′J ′

P±|(J3)J ′,I ′ |±(η†J1)I ′ (J†
1η

′)J ′ . (16)

Thus, in the coherent state representation, the elements of ρ(t )
can be given by

〈η|ρ(t )|η′〉 = (det w)±1
∑

IJ

ρIJ (0)√
i1! · · · id ! j1! · · · jd !

×
∑
I ′J ′

P±|(J3)J ′,I ′ |±(η†J1)I ′e±η†J2η
′
(J†

1η
′)J ′ .

(17)

C. Exact form of the density matrix

The reduced density matrix ρ(t ) satisfying Eq. (17) can be
explicitly written as

ρ(t )=
∑

IJ

ρIJ (0)
∑
I ′J ′

P±
|(J3)J ′,I ′ |±(a†J1)I ′ρ th(t )(J†

1a)J ′√
i1! · · · id ! j1! · · · jd !

,

(18)

where

ρ th(t ) = (det w)±1 exp{a† ln[±J2] a} (19)

is a thermal-like state [47]; a†J1 and J†
1a stand for vector op-

erators, and (a†J1)I ′ and (J†
1a)J ′ follow the same conventions

as those in Eq. (9).
Equation (18) is directly obtained from Eq. (17) with the

identity

〈η|(a†J1)I ′ea† ln[±J2] a(J†
1a)J ′ |η′〉

= (η†J1)I ′e±η†J2η
′
(J†

1η
′)J ′ , (20)

which can be easily derived with the properties of coherent
states that

〈η|(a†J1)I ′ = 〈η|(η†J1)I ′ , (21a)

(J†
1a)J ′ |η′〉 = (J†

1η
′)J ′ |η′〉, (21b)

and

〈η|ea† ln[±J2] a|η′〉 = e±η†J2η
′
. (22)

IV. PHYSICAL INTERPRETATION OF THE SOLUTION
AND THE THERMALIZATION

In this section, we shall discuss the underlying physics of
the solution. The physical interpretation of the solution will
be given in Sec. IV A, and the thermalization problem will be
discussed in Sec. IV B.

A. Physical interpretation of the solution

To explain the physical consequences contained in
Eq. (18), we consider two limiting cases first. One is that there
is no particle in the environment initially, and the other is that
there is no particle in the system initially. Finally, we shall
consider the joint effect and the general solution.

1. No particle in the environment initially

In this case, the environment is initially in a vacuum state,
so that f (ε) = 0 and v(t ) = 0, namely there are no thermal
fluctuations. Consequently, in Eqs. (18) and (19), J1 → u,
J2 → 0, J3 → I − u†u, and ρ th(t ) → |0〉〈0|. As a result, ρ(t )
is simply reduced to

ρ(t ) =
∑

IJ

ρIJ (0)

×
∑
I ′J ′

P±
|(I − u†u)J ′,I ′ |±(a†u)I ′|0〉〈0|(u†a)J ′√

i1! · · · id ! j1! · · · jd !
. (23)

Compared with the form of the initial state of Eq. (11), one
can see that, under the time evolution, the factor

a†
I|0〉〈0|aJ →

∑
I ′J ′

P±|(I−u†u)J ′,I ′ |±(a†u)I ′|0〉〈0|(u†a)J ′ .

Note that u describes the dissipation (decay) dynamics of the
system [16], i.e., initially u(t = 0) = I and then it decays in
time, as given by Eq. (7). The quantity I − u†u characterizes
the probability of particles dissipating into the environment.
As a result, the solution in Eq. (23) describes a pure dissipa-
tion process.

2. No particle in the system initially

In this case, the system initial state is in the vacuum
state, ρ(0) =|0〉〈0|, so that no particle can be dissipated into
the environment. This corresponds to the case where all the
coefficients ρIJ (0) are 0 except the one for which I = J =
{0, . . . , 0}. Following Eq. (18), one can easily find that

ρ(t ) = ρ th(t ) = 1

[det(I ± v)]±1
exp

{
a† ln

(
v

I ± v

)
a
}
.

(24)

Note that v(t ) isthe time correlation function of the thermal
fluctuating (noise) force induced from the environment, which
can be derived explicitly from the quantum Langevin equation
for the system operator by eliminating all the environmental
degrees of freedom (see Refs. [20,59] or Appendix A). It
is these thermal fluctuating processes that make the system
thermalize with the environment, as we will discuss later.
Therefore, the solution (24) is a consequence of thermal
fluctuation processes induced by the environment.

3. Joint effect between fluctuation and dissipation

Now we consider the general result of Eq. (18). In
Sec. IV A 1, we show that particles initially in the system
will dissipate into the environment described by u. From
Sec. IV A 2, we learn that the thermal-like state ρ th(t ), as
a function of v only, is realized by the particle transitions
induced by the thermal fluctuations from the environment.
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In reality, these two processes must simultaneously occur
due to the fluctuation-dissipation relation [16]. When initially
particles exist in both the system and the environment, dis-
sipation and fluctuations take place together, which results
in the modification of I − u†u → I − u† 1

I±v
u = J3 and u →

1
I±v

u = J1, where 1
I±v

is a factor due to thermal fluctuations
as we discussed in the last subsection, IV A 2. Thus, mixing
Eqs. (23) and (24) together with the above modification leads
to the general solution of the reduced density matrix, i.e.,
Eq. (18). This is the result of various possible dissipation and
fluctuation processes under the constraint of the fluctuation-
dissipation relation, i.e., Eq. (4), during the time evolution of
open quantum systems.

B. The thermalization

In this subsection, we shall study the asymptotic behavior
of the state as the time approaches infinity. The absence or
presence of localized states determines whether the system
can be finally thermalized [38,46,47], so we consider these
two cases separately from the general solution of the reduced
density matrix.

In the case that there are no localized states (see
Appendix A), u(t ) and v(t ) would finally evolve to

lim
t→∞ u(t ) = 0, (25a)

lim
t→∞ v(t ) =

∫
dε

2π
f (ε)D(ε) := n. (25b)

In this case, the final state of the system would be (see
Appendix C for the details)

lim
t→∞ ρ(t ) = ρ th(t → ∞)

= 1

[det(I ± n)]±1
exp

{
a† ln

(
n

I ± n

)
a
}
. (26)

Equation (26) shows that the final particle distribution in the
system is completely characterized by the matrix n [60], i.e.,

Tr[ρ(∞)a†
j ai] = ni j . (27)

With the expression of n in Eq. (25b) and the properties of
the spectral function D(ε) [that it is positive-semidefinite and∫

dε
2π

D(ε) = I], the final particle distribution of the system can
be seen as a weighted sum of the Bose-Einstein or Fermi-
Dirac distribution over the spectral function D(ε). That is,
without the existence of localized states, the system would
finally reach the thermal-like state of Eq. (26), instead of
the Gibbs thermal state of the original system (characterized
by εS) contacting very weakly with the reservoir at given
temperature and chemical potential, as we will discuss next.

When the coupling strength between the system and the
environment is very weak, then the spectral density J(ε) and
the Lamb shift �(ε) both tend to vanish, i.e.,

J(ε) → 0, �(ε) → 0. (28)

Following

D(ε)= 1

ε−εS−�(ε)+ iJ(ε)
2

J(ε)
1

ε−εS−�(ε)− iJ(ε)
2

(29)

and the careful analysis in Appendix D, one can find that,
under condition (28),

D(ε) → 2πδ(εI − εS). (30)

That is, when the system-environment coupling becomes very
weak, the spectrum broadening and Lamb shift of the system
energy levels can be negligible, making the spectrum of the
system converge to that of the isolated system. As a conse-
quence of Eqs. (30) and (25b), n approaches the Bose-Einstein
or Fermi-Dirac distribution, i.e.,

n → f (εS) = 1

eβ(εS−μ) ∓ 1
. (31)

Thus, Eq. (26) converges to

ρ(t → ∞) = 1

Tr[e−βa†(εS−μ)a]
exp{−βa†(εS − μ)a}, (32)

which is exactly the Gibbs thermal state of the system with
HS = a†εSa in the grand canonical ensemble at inverse tem-
perature β and chemical potential μ of the environment. This
provides a rigorous proof that, in the weak-coupling limit,
the exact evolution of a noninteracting open quantum system
would reproduce in the steady state limit the Gibbs thermal
state in equilibrium statistical mechanics.

On the other hand, if there are localized states, their con-
tribution to the oscillations in u(t ) [see Eq. (7)] would survive
as t approaches infinity, i.e.,

u(t → ∞) =
∑

l

Zl e
−iεl t . (33)

Following the expression of the reduced density matrix in
Eq. (18), the final state must be expressed in terms of the
coefficients ρIJ (0), i.e., the system keeps the memory of
its initial state. Therefore, the system cannot be thermalized
[38,46,47].

V. SUMMARY

In this paper, we investigated a general solution of open
quantum systems interacting with the environment through
particle exchanges. The exact evolution of the reduced den-
sity matrix is given in terms of the nonequilibrium Green
functions. We explained the physical consequences of the
solution. With the exact density matrix, we studied the ther-
malization process. We obtained the result of equilibrium
statistical mechanics from the dynamical perspective and went
beyond it. That is, when there are no localized states and
the system-environment coupling is very weak, the final state
would be as expected from the standard statistical mechanics;
for no localized states but relatively strong coupling regime,
the steady state would be thermal-like, which departs from
the Gibbs thermal states; when there are localized states, the
system keeps the memory on the initial state and therefore
cannot be thermalized.

With the explicit expression of the reduced density matrix,
one can obtain complete information about the system dy-
namics, which is quite important for the rapidly developing
quantum thermodynamics and quantum information, because
their central physical quantity, entropy, is directly related to
the microstates of the system. It is also noteworthy that the
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model studied in our work involves non-Markovian nature.
With the explicit form of the density matrix evolution, one can
study the memory effects from more perspectives, e.g., quan-
tum coherence, entanglement, and dynamical phase transition.
Although we only considered the single-reservoir case, the
results can be directly extended to the multireservoir case by
just extending the corresponding expressions of the nonequi-
librium Green functions u(t ) and v(t ) to multiple reservoirs
(multiple leads in nanodevices or quantum devices, for exam-
ple). Further works remain to be published in the future.

Finally, we should point out that the thermalization
derived in this paper is for decoupled initial states between
the system and the reservoir. We have shown that when the
system and the environment are initially correlated with
each other, the spectral Green function u(t ) for dissipation
is independent of the initial states, but the correlation Green
function v(t ) will contain the information of the initial
system-reservoir correlations [61,62]. However, different
types of initial correlations may result in different forms of
master equations [61,63]. These may make the steady state

different from the thermalized state we obtained in this work.
In the weak-coupling regime, the initial system-environment
correlation is negligible and our solution of thermalization
is generic. On the other hand, in the strong coupling regime,
it is not difficult to prepare experimentally the system
in a state initially decoupled from the environment state.
Then the thermalization solution given in this work can be
experimentally explored also for the strong coupling regime,
which is currently a very challenging topic in the study of
quantum thermodynamics. The more general thermalization
involving the system-environment initial correlations and
interesting systems remains to be investigated further.
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APPENDIX A: CORRELATION GREEN FUNCTION v(t ) AND ITS ASYMPTOTIC FORM

The Green function v(t ) can be found to be the time correlation function of the thermal fluctuating (noise) force induced by the
environment [20,59]. To see this physical picture clearly, one can derive the equation of motion for the creation and annihilation
operators for both the system and the environment in the Heisenberg picture. Then one should formally solve the equation of
motion for the environmental operators, and substitute the solution into the equation of motion for the system operator. Finally,
one will arrive at the following exact quantum Langevin equation [59]:

d

dt
ai(t ) + i

∑
j

εi ja j (t ) +
∑

j

∫ t

0
dτ gi j (t − τ )a j (τ ) = −i

∑
k

Vikbk (0)e−iεkt , (A1)

where gi j (t − τ ) = ∫
dε
2π

Ji j (ε)e−iε(t−τ ). The quantum Langevin equation shows that the third term in the left-hand side of the
above equation is the dissipation (damping) term and the term in right-hand side of the equation is the environment-induced
noise force. Because of the linearity of the above equation, the general solution of Eq. (A1) can be written as

ai(t ) =
∑

j

ui j (t )a j (0) + Fi(t ). (A2)

In the first term of Eq. (A2), ui j (t ) is the spectral Green function obeying the Dyson equation,

d

dt
ui j (t ) + i

∑
j′

εi j′u j′ j (t ) +
∑

j′

∫ t

0
dτgi j′ (t − τ )u j′ j (τ ) = 0, (A3)

that describes the dissipation of the system. The second term in Eq. (A2),

Fi(t ) = −i
∑

j,k

∫ t

0
dτui j (t − τ )Vjke−iεkτ bk (0), (A4)

carries all the noise associated with the initial thermal state of the environment. The Green function vii′ (t ) is the time correlation
function of this noise force [59]:

vii′ (τ, t ) = 〈F †
i′ (t )Fi(τ )〉 =

∑
k

f (εk )
∑

j′

∫ t

0
dt2u∗

i′ j′ (t − t2)V ∗
j′keiεkt2

∑
j

∫ τ

0
dt1ui j (τ − t1)Vjke−iεkt1 (A5)

=
∑
j, j′

∫ τ

0
dt1

∫ t

0
dt2 ui j (τ − t1) g̃ j j′ (t1 − t2) u∗

i′ j′ (t − t2), (A6)

which is just Keldysh’s correlation Green function, where f (εk ) = 〈b†
k (0)bk (0)〉 is the particle distribution in the initial thermal

state of the environment. When τ = t , the above equation is reduced to Eq. (4).
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In the following, we aim to find the expression of v(t ) when t approaches infinity. To obtain the result, we first need to identify
the asymptotic expression of the integrals in Eq. (A5). The integral in the third summation can be transformed to∫ t

0
dτ ui j (t − τ )Vjke−iεkτ = i

∫ ∞

−∞

dε

2π
Ui j (ε + i0+)Vjke−iεt

∫ t

0
dτ ei(ε−εk )τ . (A7)

If there are no localized states in the total system, with the identity
∫ ∞

0 dτ ei(ε−εk )τ = i
ε−εk+i0+ , Eq. (A5) is simply reduced to

lim
t→∞ vii′ (t ) ≡ lim

t→∞ vii′ (t, t ) =
∑

k

f (εk )
∑
j, j′

VjkV
†

k j′Ui j (εk + i0+)U †
j′i′ (εk + i0+). (A8)

Take advantage of the definition of the spectral density, and take the continuous limit of k, the above equation can be transformed
to

lim
t→∞ vii′ (t ) =

∫
dε

2π
f (ε)

∑
j, j′

Ui j (ε + i0+)Jj j′ (ε)U †
j′i′ (ε + i0+). (A9)

In terms of the matrix representation, it can be expressed as

lim
t→∞ v(t ) =

∫
dε

2π
f (ε)U (ε + i0+)J(ε)U†(ε + i0+). (A10)

Following Eq. (29), it can be further simplified to

lim
t→∞ v(t ) =

∫
dε

2π
f (ε)D(ε), (A11)

which reproduces the general equilibrium fluctuation-dissipation theorem [14].

APPENDIX B: SIMPLIFICATION OF THE INTEGRAL IN EQ. (13)

1. Bosonic case

From Eq. (13), for bosons,∫
dμ(ζ, ζ′)ζ′†

I ζ′
Je

ζ′†J3ζ+ζ′†J†
1η

′+η†J1ζ

=
∫ d∏

n=1

d2ζnd2ζ ′
n

π2
ζ′†

I ζ′
J exp

{
−(ζ† ζ′†)

(
1 0

−J3 1

)(
ζ

ζ′

)
+ (ζ† ζ′†)

(
0

J†
1η

′

)
+ (η†J1 0)

(
ζ

ζ′

)}

= ∂α∗
JαI

∫ d∏
n=1

d2ζnd2ζ ′
n

π2
exp

{
−(ζ† ζ′†)

(
1 0

−J3 1

)(
ζ

ζ′

)
+ (ζ† ζ′†)

(
α

J†
1η

′

)
+ (η†J1 α†)

(
ζ

ζ′

)}∣∣∣∣
α,α†=0

= ∂α∗
JαI e

α†J3α+η†J1α+α†J†
1η

′ |α,α†=0, (B1)

where we have used the convention ∂α∗
JαI := (∂α∗

d
) jd · · · (∂α∗

1
) j1 (∂α1 )i1 · · · (∂αd )id and the formula of the Gaussian integral [64].

∂α†
JαI

eα†J3α+α†J†
1η

′+η†J1α|α=α∗=0 is only related to the coefficient of α
id
d · · · αi1

1 α
∗ j1
1 · · ·α∗ jd

d in the polynomial expansion of

eα†J3α+α†J†
1η

′+η†J1α. Note

eα†J3α+α†J†
1η

′+η†J1α =
∞∑

k1,k2,k3=0

(α†J3α)k1

k1!

(η†J1α)k2

k2!

(α†J†
1η

′)k3

k3!
. (B2)

The terms with factor α
id
d · · · αi1

1 α
∗ j1
1 · · ·α∗ jd

d can be obtained through the following:

(i) (α†J3α)i′1+···+i′d
(i′1+···+i′d )! contributes to α

i′d
d · · ·αi′1

1 α
∗ j′1
1 · · · α∗ j′d

d ,

(ii) (η†J1α)i′1+···+i′d
(i′1+···+i′d )!

contributes to α
i′d
d · · ·αi′1

1 ,

(iii) (α†J†
1η

′ ) j′1+···+ j′d

( j′1+···+ j′d )!
contributes to α

∗ j′1
1 · · ·α∗ j′d

d ,

where i′1, . . . , i′d , j′1, . . . , j′d , i′1, . . . , i′d , j′1, . . . , j′d satisfy the constraints

i′1, . . . , i′d , j′1, . . . , j′d , i′1, . . . , i′d , j′1, . . . , j′d ∈ {0, 1, 2, . . . }; (B3a)

i′1 = i1 − i′1, . . . , i′d = id − i′d ; (B3b)
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j′1 = j1 − j′1, . . . , j′d = jd − j′d ; (B3c)

i′1 + · · · + i′d = j′1 + · · · + j′d . (B3d)

Note,

(i) the coefficient of α
i′d
d · · · αi′1

1 α
∗ j′1
1 · · ·α∗ j′d

d in (α†J3α)i′1+···+i′d
(i′1+···+i′d )! is

perm[(J3 )J′ ,I′ ]
i′1!···i′d ! j′1!··· j′d ! (see the following for the explanation of these

symbols);

(ii) the coefficient of α
i′d
d · · · αi′1

1 in (η†J1α)i′1+···+i′d
(i′1+···+i′d )!

is [(η†J1 )1]i′1 ···[(η†J1 )d ]i′d
i′1!···i′d !

= (η†J1 )
I′

i′1!···i′d !
;

(iii) the coefficient of α
∗ j′1
1 · · ·α∗ j′d

d in (α†J†
1η

′ ) j′1+···+ j′d

( j′1+···+ j′d )!
is [(J†

1η
′ )d ] j′d ···[(J†

1η
′ )1] j′1

j′1!··· j′d !
= (J†

1η
′ )

J′
j′1!··· j′d !

,

therefore, the coefficient of α
id
d · · · αi1

1 α
∗ j1
1 · · ·α∗ jd

d in (α†J3α)i′1+···+i′d
(i′1+···+i′d )!

(α†J†
1η

′ ) j′1+···+ j′d

( j′1+···+ j′d )!
(η†J1α)i′1+···+i′d

(i′1+···+i′d )!
is

perm[(J3)J ′,I ′]

i′1! · · · i′d ! j′1! · · · j′d !

(η†J1)I ′

i′1! · · · i′d !

(J†
1η

′)J ′

j′1! · · · j′d !
. (B4)

The symbol perm[(·)] stands for the permanant of the square matrix (·). For an n × n matrix A, the permanant is defined as

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ (i), (B5)

where Sn is the symmetric group of the set {1, 2, . . . , n}, and Ai,σ (i) is the matrix element of A in the ith row and σ (i)th column.
The symbol (J3)J ′,I ′ stands for the block matrix

(J3)J ′,I ′ =

⎛⎜⎝Xj′1×i′1 · · · Xj′1×i′d
...

. . .
...

Xj′d ×i′1 · · · Xj′d ×i′d

⎞⎟⎠ (B6)

with the block Xj′m×i′n standing for the j′m × i′n matrix whose elements are all (J3)mn, i.e.,

Xj′m×i′n =

⎛⎜⎝(J3)mn · · · (J3)mn
...

. . .
...

(J3)mn · · · (J3)mn

⎞⎟⎠. (B7)

Here, (J3)mn stands for the matrix element of the matrix J3 in the mth row and nth column.
The total coefficient of α

id
d · · · αi1

1 α
∗ j1
1 · · · α∗ jd

d in Eq. (B2) is the summation of all the terms in Eq. (B4) with i′(·)’s and j′(·)’s
satisfying Eq. (B3), i.e., ∑

i′1,··· ,i′d , j′1,··· , j′d

perm[(J3)J ′,I ′ ]

i′1! · · · i′d ! j′1! · · · j′d !

(η†J1)I ′

i′1! · · · i′d !

(J†
1η

′)J ′

j′1! · · · j′d !
. (B8)

Also note that

∂α†
JαI

(
α

id
d · · · αi1

1 α
∗ j1
1 · · · α∗ jd

d

) = i1! · · · id ! j1! · · · jd !, (B9)

therefore

∂α†
JαI

eα†J3α+α†J†
1η

′+η†J1α|α=α†=0 =
∑

i′1,...,i
′
d , j′1,..., j′d

Ci1
i′1

· · ·Cid
i′d

C j1
j′1

· · ·C jd
j′d

perm[(J3)J ′,I ′](η†J1)I ′ (J†
1η

′)J ′ , (B10)

where Cn
k = n!

k!(n−k)! stands for the binomial coefficient. Denote∑
I ′J ′

(·) =
∑

i′1,...,i
′
d , j′1,..., j′d

(·), P+ = Ci1
i′1

· · ·Cid
i′d

C j1
j′1

· · ·C jd
j′d
, |(J3)J ′,I ′ |+ = perm[(J3)J ′,I ′], (B11)

in which the constraints over I ′ and J ′ are the same as those in Eq. (B3); then the result can be reexpressed as∫
dμ(ζ, ζ′)ζ′†

I ζ′
Jeζ′†J3ζ+ζ′†J†

1η
′+η†J1ζ =

∑
I ′J ′

P+|(J3)J ′,I ′ |+(η†J1)I ′ (J†
1η

′)J ′ . (B12)
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2. Fermionic case

From Eq. (13), for fermions, we have∫
dμ(ζ, ζ′)ζ′†

I ζ′
Je−ζ′†J3ζ+ζ′†J†

1η
′+η†J1ζ

=
∫ d∏

n=1

(dζ ∗
n dζndζ ′∗

n dζ ′
n)ζ′†

I ζ′
Jexp

{
−(ζ† ζ′†)

(
1 0
J3 1

)(
ζ

ζ′

)
+ (ζ† ζ′†)

(
0

J†
1η

′

)
+ (η†J1 0)

(
ζ

ζ′

)}

= ∂α∗
JαI

∫ d∏
n=1

(dζ ∗
n dζndζ ′∗

n dζ ′
n) exp

{
−(ζ† ζ′†)

(
1 0
J3 1

)(
ζ

ζ′

)
+ (ζ† ζ′†)

(
α

J†
1η

′

)
+ (η†J1 α†)

(
ζ

ζ′

)}∣∣∣∣
α,α†=0

= ∂α∗
JαI e

−α†J3α+η†J1α+α†J†
1η

′ |α,α†=0, (B13)

where we have used the convention ∂α∗
JαI := (∂α∗

d
) jd · · · (∂α∗

1
) j1 (∂α1 )i1 · · · (∂αd )id and the formula of Grassmannian Gaussian

integral [64].
∂α†

JαI
e−α†J3α+α†J†

1η
′+η†J1α|α=α∗=0 is only related to the coefficient of α

id
d · · ·αi1

1 α
∗ j1
1 · · · α∗ jd

d in the polynomial expansion of

e−α†J3α+α†J†
1η

′+η†J1α. Note

e−α†J3α+α†J†
1η

′+η†J1α =
∞∑

k1,k2,k3=0

(−α†J3α)k1

k1!

(η†J1α)k2

k2!

(α†J†
1η

′)k3

k3!
; (B14)

the terms with factor α
id
d · · ·αi1

1 α
∗ j1
1 · · · α∗ jd

d can be obtained through the following:

(i) (−α†J3α)i′1+···+i′d
(i′1+···+i′d )! contributes to α

i′d
d · · · αi′1

1 α
∗ j′1
1 · · ·α∗ j′d

d ,

(ii) (η†J1α)i′1+···+i′d
(i′1+···+i′d )!

contributes to α
i′d
d · · ·αi′1

1 ,

(iii) (α†J†
1η

′ ) j′1+···+ j′d

( j′1+···+ j′d )!
contributes to α

∗ j′1
1 · · ·α∗ j′d

d ,

where i′1, . . . , i′d , j′1, . . . , j′d , i′1, . . . , i′d , j′1, . . . , j′d satisfy the constraint

i′1, . . . , i′d , j′1, . . . , j′d , i′1, . . . , i′d , j′1, . . . , j′d ∈ {0, 1}; (B15a)

i′1 = i1 − i′1, . . . , i′d = id − i′d ; (B15b)

j′1 = j1 − j′1, . . . , j′d = jd − j′d ; (B15c)

i′1 + · · · + i′d = j′1 + · · · + j′d . (B15d)

Note that
(i) the coefficient of α

i′d
d · · · αi′1

1 α
∗ j′1
1 · · ·α∗ j′d

d in (−α†J3α)i′1+···+i′d
(i′1+···+i′d )! is det[(J3)J ′,I ′ ], where det[(·)] stands for the determinant of the

matrix (·) and (J3)J ′,I ′ is the block matrix similar to that in Eq. (B6) except that the j′(·)’s and i′(·)’s are either 0 or 1;

(ii) the coefficient of α
i′d
d · · · αi′1

1 in (η†J1α)i′1+···+i′d
(i′1+···+i′d )!

is (η†J1)I ′ ;

(iii) the coefficient of α
∗ j′1
1 · · ·α∗ j′d

d in (α†J†
1η

′ ) j′1+···+ j′d

( j′1+···+ j′d )!
is (J†

1η
′)J ′ ;

and

α
id
d · · ·αi1

1 α
∗ j1
1 · · · α∗ jd

d = s(I, I ′)s(J, J ′)αi′d
d · · ·αi′1

1 α
∗ j′1
1 · · · α∗ j′d

d α
i′d
d · · · αi′1

1 α
∗ j′1
1 · · · α∗ j′d

d , (B16)

where s(I, I ′) is defined through the relation ζ†
I = s(I, I ′)ζ†

I ′ζ
†
I ′ .

Therefore, the coefficient of α
id
d · · · αi1

1 α
∗ j1
1 · · · α∗ jd

d in (−α†J3α)i′1+···+i′d
(i′1+···+i′d )!

(α†J†
1η

′ ) j′1+···+ j′d

( j′1+···+ j′d )!
(η†J1α)i′1+···+i′d

(i′1+···+i′d )!
is

s(I, I ′)s(J, J ′) det[(J3)J ′,I ′ ](η†J1)I ′ (J†
1η

′)J ′ . The total coefficient of α
id
d · · · αi1

1 α
∗ j1
1 · · ·α∗ jd

d in Eq. (B14) is the summation of
all the possible terms with i′(·)’s and j′(·)’s satisfying Eq. (B15), which is denoted as∑

i′1,··· ,i′d , j′1,··· , j′d

s(I, I ′)s(J, J ′) det[(J3)J ′,I ′](η†J1)I ′ (J†
1η

′)J ′ . (B17)

Also note that for Grassmannian variables

∂α†
JαI

(
α

id
d · · · αi1

1 α
∗ j1
1 · · ·α∗ jd

d

) = 1, (B18)
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therefore

∂α†
JαI

e−α†J3α+α†J†
1η

′+η†J1α|α=α†=0 =
∑

i′1,··· ,i′d , j′1,··· , j′d

s(I, I ′)s(J, J ′) det[(J3)J ′,I ′](η†J1)I ′ (J†
1η

′)J ′ . (B19)

Denote ∑
I ′J ′

(·) =
∑

i′1,...,i
′
d , j′1,..., j′d

(·), P− = s(I, I ′)s(J, J ′), |(J3)J ′,I ′ |− = det[(J3)J ′,I ′], (B20)

in which the constraints over I ′ and J ′ are the same as those in Eq. (B15), then the final result can be formulated as∫
dμ(ζ, ζ′)ζ′†

I ζ′
Je−ζ′†J3ζ+ζ′†J†

1η
′+η†J1ζ =

∑
I ′J ′

P−|(J3)J ′,I ′ |−(η†J1)I ′ (J†
1η

′)J ′ . (B21)

APPENDIX C: EQUILIBRIUM STATE OF THE SYSTEM

If the total system possesses no localized states, the open system would finally reach an equilibrium state. Following the
expression of the reduced density matrix in Eq. (18) and the asymptotic expression of u(t ) and v(t ) in Eq. (25), when t approaches
infinity, only the terms with I ′ = J ′ = {0, . . . , 0} would survive, i.e.,

ρ(∞) =
∑

IJ

ρIJ (0)
|(J3)J,I |±ρ th(∞)√
i1! · · · id ! j1! · · · jd !

. (C1)

Because J3 reduces to the identity matrix I as u vanishes, the matrix (J3)J,I would approach a block-diagonal matrix in the form

(J3)J,I =

⎛⎜⎜⎝
((J3)J,I )1

((J3)J,I )2
. . .

((J3)J,I )d

⎞⎟⎟⎠ (C2)

where

((J3)J,I )n =

⎛⎜⎝1 · · · 1
...

. . .
...

1 · · · 1

⎞⎟⎠
jn×in

. (C3)

The permanent and determinant of (J3)J,I then share a common expression, reading

|(J3)J,I |± =
{

0 (I �= J ),
i1! · · · id ! (I = J ). (C4)

Following Eq. (C1), ρ(∞) can be simplified to

ρ(∞) =
∑
I=J

ρIJ (0)ρ th(∞). (C5)

With the normalization condition that
∑

I=J ρIJ (0) = 1, it can be finally written as

ρ(∞) = ρ th(∞) = ea† ln( v(∞)
I±v(∞) )a

[det(I ± v(∞))]±1
= ea† ln( n

I±n )a

[det(I ± n)]±1
. (C6)

APPENDIX D: ASYMPTOTIC FORM OF D(ε) AS THE COUPLING STRENGTH VANISHES

When J(ε) → 0 and �(ε) → 0, the spectrum

D(ε) = 1

ε − εS − �(ε) + i J(ε)
2

J(ε)
1

ε − εS − �(ε) − i J(ε)
2

(D1)

is vanishing for the values of ε such that the matrices ε − εS − �(ε) ± i J(ε)
2 are invertible. Because J(ε) → 0 and �(ε) → 0,

the condition can be simplified as ε − εS being invertible. Therefore, D(ε) is nonvanishing only for ε equaling an eigenvalue ελ

of εS. So in order to grasp the asymptotic behavior of D(ε), one only needs to analyze the behavior of D(ε) around ε = ελ.
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Consider the behavior of 1
ε−εS−�(ε)±i J(ε)

2

for ε ≈ ελ in the weak-coupling limit. Denote the eigenspace of εS corresponding to

the eigenvalue ελ as Hλ; then the matrix ε − εS − �(ε) ± i J(ε)
2 can be written in blocks, reading

ε − εS − �(ε) ± i

2
J(ε) =

(
(ε − ελ)Iλ − �λλ(ε) ± i

2 Jλλ(ε)
[−�(ε) ± i

2 J(ε)
]
λλ⊥[−�(ε) ± i

2 J(ε)
]
λ⊥λ

[
ε − εS − �(ε) ± i

2 J(ε)
]
λ⊥λ⊥

)
, (D2)

where the subscripts λ and λ⊥ correspond to the space Hλ and its orthogonal complement, respectively. Because J(ε) ≈ 0 and
�(ε) ≈ 0, the inverse of ε − εS − �(ε) ± i

2 J(ε) is approximately

1

ε − εS − �(ε) ± i
2 J(ε)

≈
(

1
(ε−ελ )Iλ−�λλ(ε)± i

2 Jλλ(ε)
0

0 1
ε−(εS )

λ⊥λ⊥

)
, (D3)

where Iλ is the identity in Hλ. [In this equation, we have kept the term (ε − ελ)Iλ because we shall consider the behavior of
the functions for ε ≈ ελ.] Following Eqs. (D1) and (D3), and taking advantage of the property J(ε) ≈ 0, the expression of D(ε)
around ε ≈ ελ can be approximately written as

D(ε) ≈ 1

(ε − ελ)Iλ − �λλ(ε) + i
2 Jλλ(ε)

Jλλ(ε)
1

(ε − ελ)Iλ − �λλ(ε) − i
2 Jλλ(ε)

. (D4)

To obtain the limiting behavior, we first take the weak-coupling limit, and then let ε approach ελ. When the coupling is very weak,
the real part of (ε − ελ)Iλ − �λλ(ε) ± i

2 Jλλ(ε) is dominated by (ε − ελ)Iλ. Consequently, Eq. (D4) can be further simplified to

D(ε) ≈ Jλλ(ε)

(ε − ελ)2Iλ + [Jλλ(ε)]2/4
. (D5)

After expressing the right-hand side of the equation in the eigenbasis of Jλλ(ε), one can easily find that the diagonal elements
all approach 2πδ(ε − ελ) as J(ε) vanishes. That is, for ε near ελ,

D(ε) → 2πδ(ε − ελ)Iλ. (D6)

For every λ, such a conclusion is always true. Therefore, for all ε,

D(ε) → 2π
∑

λ

δ(ε − ελ)Iλ = 2πδ(εI − εS). (D7)
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