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A method is proposed to describe Fermi or Bose systems coupled to one or several heat baths composed
of fermions and/or bosons. The method, called the coupled equations of motion method, properly includes
non-Markovian effects. The approach is exact in the full-coupling approximation when only bosonic particles
are present in the system and baths. The approach provides an approximate treatment when fermions are
present either in the system and/or in one or several environments. Our approach has the advantage of properly
respecting the Pauli exclusion principle for fermions during the evolution. We illustrate the approach for the
single fermionic or bosonic oscillator coupled to one or two heat baths assuming different types of quantum
statistics (fermion or boson) for them. The cases of a Fermi system coupled to fermion or boson heat baths or a
mixture of both are analyzed in detail. With the future goal of treating Fermi systems formed of an increasing
number of two-level systems (qubits), we discuss possible simplifications that could be made in the equations of
motion and their limits of validity in terms of the system-bath coupling or of the initial heat bath temperatures.
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I. INTRODUCTION

The description of dissipation and decoherence is an im-
portant subject of investigation, especially in view of the
current boom in quantum technologies [1,2] (see also the
discussion in Ref. [3]). In this field, the system of interest
is a number of qubits that are inherently coupled to one or
several environments [4–6]. The effect of this coupling is
rather dramatic since it induces a nonunitary evolution of
the system, and ultimately tends to destroy the interesting
quantum aspects, driving the system to classical physics.
Controlling the transition from quantum to classical physics is
becoming crucial in this context. By changing the properties
of the baths, one might first study the transition from the
Markovian to the non-Markovian regime. In particular, it has
been recently underlined that non-Markovian dynamics and
their impact should be explored more systematically [1,2].

Non-Markovian effects and their description is an active
field of research in the theory of open quantum systems
[7–10], especially with the aim of developing accurate and
versatile approaches. With the progress of manipulating atoms
and molecules, one might engineer systems and/or environ-
ments that can be formed of fermionic or bosonic parti-
cles. Another example is the atomic nuclei where nucleons
(fermions) act as a reservoir for the collective excitations
treated as bosons [11]. Treating fermions is finally of special
interest in the context of quantum computing due to the one-
to-one mapping between spin systems and fermions on lattices
[12].

*denis.lacroix@ijclab.in2p3.fr

Our primary goal here is to develop a unified approach
able to describe fermions or bosons coupled to a set of baths
that can also be a mixture of fermions and bosons. Systems
coupled to several reservoirs are of special interest in different
fields of physics. To quote a few of them, we mention the
example of cavity quantum electrodynamics [13], Jaynes-
Cummings lattices [14], photon-ion interfaces [15], ion chain
systems [16], or phonon-induced spin squeezing [17] (see also
examples in Refs. [18–21]).

In the following, we first recall some recent progress we
have made in the description of systems coupled to several
heat baths [21–27]. We then discuss in detail the extra sub-
tleties that appear for Fermi systems or environments com-
pared to the Bose case. In the case of the bosonic system and
environments, an exact treatment is a priori possible including
fully the non-Markovian effects. When fermions are present in
the system or in the surrounding baths, some approximations
are required. We describe in Sec. III a specific methodology to
treat a Fermi system coupled to Fermi, Bose, or Fermi-Bose
mixtures of baths. In this approach, where the non-Markovian
effects are included, special attention is paid to respect the
Pauli exclusion principle for Fermi degrees of freedom. The
approach is then illustrated for the system coupled to one or
several heat baths in Sec. IV.

II. METHOD

We follow here our previous work [21–27] and consider a
Fermi or Bose system coupled to one or several baths. Some
of the baths could be composed of fermions and some other
of bosons. In our previous studies we gradually considered
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problems of increasing complexity, i.e., changing the quantum
statistics of the system or bath, considering more general
coupling, and/or increasing the number of baths.

A single fermionic or bosonic oscillator coupled to an
environment is considered. The system+environment Hamil-
tonian is taken as

H = HS + HE + HSE. (1)

The system and environment Hamiltonians, denoted respec-
tively by HS and HE , are given by

HS = h̄ω1a†
1a1, HE =

∑
ν

h̄ωνa†
νaν . (2)

For the moment, we do not specify if there is one or several
baths and simply assume that the quantum nature (fermionic
or bosonic) of each pair of creation or annihilation operators
(a†

ν, aν ) is specified through the relation

aνa†
ν = 1 + ενa†

νaν, (3)

where εν = +1 (−1) for bosons (fermions). We also use
the convention ν = 1 (ν > 1) for the system (for the en-
vironment). Note that, in the present model, the fermionic
heat bath is described by an infinite set of two-level systems
initially at thermal equilibrium. Besides the commutation or
anticommutation rules of creation or annihilation operators,
the difference between a bosonic and fermionic bath stems
from the initial occupation probability denoted by n(ων ) that
corresponds either to Bose-Einstein or Fermi-Dirac occupa-
tion probability. A pictorial view of the heat bath was given in
Fig. 1 of Ref. [23].

In the following, we will consider the full-coupling case
(FC), in which the coupling between the system and environ-
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FIG. 1. Time evolution of the occupation probability in the sys-
tem n1(t ) = M11(t ) obtained by solving Eqs. (8) (red solid line) or by
solving the set of equations (16) (black dashed line). Panels (a) and
(c) correspond to the case of a bosonic system coupled to a bosonic
bath starting from n1(0) = 0 and n1(1) = 1, respectively. Panels
(b) and (d) correspond to the case of a fermionic system coupled
to a fermionic bath again starting from n1(0) = 0 and n1(1) = 1,
respectively. In all cases, the bath properties are given by c1 = 0.1,
γ1/� = 12, and T1/� = 1. Note that, in the B-B case, the two
approaches are equivalent and the two curves displayed in panels
(a) and (c) cannot be distinguished.

ment is as follows:

HSE = HFC =
∑
ν>1

gν (a†
1 + a1)(a†

ν + aν ). (4)

The present formulation is rather flexible and includes the
possibility that some environmental particles obey fermion
statistics while others obey boson statistics. It also includes
the possibility that the environment can be decomposed into
several baths with eventually different quantum natures and
different initial temperatures. We note that the Hamiltonian
(1) can be used to describe a single qubit surrounded by
one or several heat baths. In our previous work, we used
the Heisenberg representation to obtain a solution to the
system+environment problem taking into account possible
non-Markovian effects [21–27]. The solution we provided,
once the frequency is properly renormalized (see discussion
below), is exact for the FC coupling when only bosonic parti-
cles are considered for both the system and the heat baths. The
situation is more delicate in the FC case when fermions (either
in the bath and/or one of the environments) are involved.
In this case, the problem could not be solved exactly and a
specific prescription should be made to obtain a closed form
of the equations of motion to be solved. A first solution to this
problem was given in Refs. [22,25]. Such a solution resulted
in a quite reasonable description of the Fermi systems coupled
to one or several baths. Numerical applications have recently
shown however that occupation numbers of the systems with
the fermionic heat bath(s) can sometimes slightly exceed 1.
This points out that some modifications of the method might
be needed. Another interesting result was the absence of an
asymptotic stationary solution when the system is coupled
to a mixture of fermionic and bosonic heat baths [26]. In
the following, we propose an alternative solution that avoids
the occurrence of nonphysical occupation numbers during the
evolution.

A. Summary and illustration of our previous work

We summarize here the strategy we employed previously
starting from the Heisenberg equations of motion for the
system and heat-bath creation operators:

d

dt
a†

1 = iω1a†
1 + i(1 − [1 − ε1]a†

1a1)
∑

ν

gν[a†
ν + aν], (5)

d

dt
a†

α = iωαa†
α + igα (1 − [1 − εα]a†

αaα )[a†
1 + a1]. (6)

When all particles are bosons, we have [1 − ε1] = [1 − εα] =
0 for all α > 1. The equations of motion become a linear
set of equations between the creation and annihilation oper-
ators. In this case, the problem is solved exactly using the
Laplace transform technique (see, for instance, Ref. [23]). In
Refs. [24,25], we have also illustrated that such a problem
can be accurately solved by using the discretized environ-
ment method (DEM) together with the special Bogolyubov
transformation [28] between the creation and annihilation
operators (see Sec. IV of Ref. [25]). An alternative solution to
the present problem could be to consider directly the coupled
equations of motion (CEM) for the normal and anomalous
densities, denoted respectively by M and K , associated to the
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system+environment. Using the notations1

Mνα = 〈a†
νaμ〉, Gνα (t ) = 〈aνa†

α〉,
Kνα = 〈a†

νa†
α〉, K∗

να = 〈aαaν〉, (7)

we obtain for the boson system coupled to the bosonic en-
vironment the set of coupled equations for the M and K
components:

dM11

dt
= i

∑
ν

gν (Mν1 − M1ν ) + i
∑

ν

gν (K∗
1ν − K1ν ),

dM1α

dt
= i(ω1 − ωα )M1α + i

∑
ν

gν (Mνα + K∗
αν ) − igα (M11 + K11),

dMαβ

dt
= i(ωα − ωβ )Mαβ + igα (M1β + K∗

β1) − igβ (Mα1 + Kα1),
(8)

dK11

dt
= 2iω1K11 + i

∑
ν

gν (Kν1 + M1ν + Gν1 + K1ν ),

dK1α

dt
= i(ω1 + ωα )K1α + i

∑
ν

gν (Gνα + Kνα ) + igα (M11 + K11),

dKαβ

dt
= i(ωα + ωβ )Kαβ + igα (G1β + K1β ) + igβ (Mα1 + Kα1).

Solving these equations numerically, we obtain the exact
solution of the problem when only bosons are presented in
both the system and baths. As illustrated below, this method
is strictly equivalent to the one we used in Refs. [23,24].

B. Numerical solution of Eq. (8) with discretization of heat bath

Here, we consider the system with frequency � (we use
the convention h̄ = 1 throughout the paper) and all energies
and coupling constants are given in units of �. Time is given
in �−1 units. We assume that the system is coupled to one or
several baths. Each bath, labeled by i, has a Lorentz-Drude
spectral function given by

Ji(ω) = ci

π
ω

γ 2
i

γ 2
i + ω2

. (9)

The two parameters ci and γi determine the coupling strength
with the system and the memory effect, respectively. In order
to solve the CEM, a finite discrete number of levels ν is used
for each environment. In practice, we follow the procedure
proposed in Ref. [24]. For a given environment, a finite set of
frequencies ων is used according to

ων = 
ω(n + 1/2), n = 0, . . . , Nmax. (10)

Then, the coupling gν entering in the Hamiltonian is given
by gν = √


ωJi(ων ). Further details and discussions can be
found in Ref. [24]. Note that the discretization of ω can be
taken nonuniform. In practice, small 
ω are required only in
the vicinity of � to get a good numerical accuracy and larger

ω can be used away from the system frequency. We use
this property to reduce the total number of states necessary

1Note that for the sake of simplicity, we use slightly different con-
vention for the indices ordering compared to the standard definition
of the normal and anomalous densities in many-body systems [11].

for each bath. In the following applications, we use Nmax =
400 states with 
ω that depends on n such that 
ωn+1 =
λ
ωn with 
ω0/� = 0.01 and λ = 1.015. The choice of the
values for three parameters 
ω0, λ, and Nmax is critical to
properly achieve good numerical accuracy. In particular, these
parameters should be chosen in such a way that 
ωn � � in
the vicinity of � and T � ωNmax , while keeping Nmax not too
high in order to obtain the result in a reasonable numerical
time. The choice of the parameters for the discretization has
been validated for the boson system coupled to a bosonic
bath by comparing with the results obtained using the Laplace
transform technique [23].

To avoid the unphysical shift of the system frequency
induced by the coupling with the baths, this frequency is
renormalized prior to the calculation as it is always done
[29]. For the FC case, the frequency ω1 used in Eqs. (8) is
as follows:

ω1 = � + 4
∑

ν

g2
ν

ων

. (11)

Finally, each heat bath is characterized by its initial temper-
ature Ti such that the initial occupation nν (0) of the state in
the bath i is given by (using the convention kB = 1 for the
Bolztmann constant)

nν (0) = Mνν (0) = 1

exp (ων/Ti ) − εν

. (12)

The results are shown in Fig. 1 for the Bose system coupled
to a single bosonic bath. The time evolution of occupation
probability is obtained by solving the set of equations (8) for
the FC coupling using the discretization of the environment.
The results perfectly match those obtained in Ref. [23] using
the Laplace transform technique. When we write down the
creation and annihilation operators a†

1 and a1 (a†
ν and aν), we

mean the creation and annihilation operators of transition with
the corresponding energy h̄ω1 (h̄ων). So, each a1 (a†

ν) and a1
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(aν) is the product of creation and annihilation operators of a
particle. In our formalism, there is a conversion of excitation
quanta from the fermionic or bosonic system to the bosonic
or fermionic environment or vice versa. Since only the level
associated to a†

1 is populated or depopulated by the coupling,
the number of particles in the system as a function of time
directly identifies with the quantity n1(t ).

C. Direct extension of Eqs. (8) when fermions are involved

In the following, we will systematically use the shorthand
notation B-B, F-F, B-F, and F-B, where the first letter refers
to the system statistics (B=bosons and F=fermions), while
the second letter refers to the bath statistics. When more
than one bath is considered, we use the convention System-
Bath1-Bath2- · · · .

Equations (8) provide an exact treatment of the B-B case.
Based on simple arguments, we previously proposed to treat
the F-F case by neglecting the terms (1 − ε1)a†

1a1 and (1 −
εα )a†

αaα in Eqs. (5) and (6) when the system and baths are
both composed of fermions. This direct mapping from bosons
to fermions has the great advantage to give linear Heisen-
berg equations also for the F-F case while the bath properly
imposes asymptotically the Fermi statistics to the system in
the weak-coupling–high-temperature limit. The results of this
approximate treatment are also shown in Fig. 1 for the F-F
case. We clearly see in this figure [panel (d)] that, while the
asymptotic behavior is expected to be properly treated, the
price to pay with the simplified treatment is the occurrence of
unphysical behavior at the initial timescale with occupation
numbers larger than 1. This stems from the fact that the
Pauli exclusion principle might be broken during the time
evolution. Indeed, in Eqs. (8), nothing prevents one from
having K11(t ) = 〈(a†

1)2〉 nonzero during the evolution even if
the system is fermionic.

Nevertheless, the simplified treatment has additional in-
teresting properties that have been used to overcome this
difficulty. One of them is the possibility to map exactly
Eqs. (9) into the simple time-local diffusion equation for the
occupation probability:

dn1(t )

dt
= −2λ1(t )n1(t ) + 2D1(t ), (13)

including fully non-Markovian effects. Using this equation
and some symmetry properties of the master equation ob-
tained for n1(t ) with the nonlinear termed, it was shown
in Ref. [22] that the F-B and B-F case can be accurately
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FIG. 2. Same as in Fig. 1, but for the mixed quantum statistics
case of the boson system coupled to the fermion bath (B-F) [(a) and
(c)] and for the fermion system coupled to boson bath (F-B) [(b) and
(d)]. The bath properties are given by c1 = 0.1, γ1/� = 12, and
T1/� = 1. In all cases, the red solid line corresponds to the result
obtained with the Laplace transform approach in Ref. [22]. The black
dashed line corresponds to the result obtained with Eqs. (16).

described using the diffusion equation (13) with modified
transport coefficients. This approach leads to the proper
asymptotic limit even though the Fermi nature of the system
or bath might be slightly broken. The results obtained with
this method for the F-B and B-F cases are illustrated in Fig. 2.

III. TREATMENT OF F-F, B-F, AND F-B CASES
ENFORCING THE PAULI EXCLUSION PRINCIPLE

In the present paper we propose a treatment that respects
the Fermi nature of the particle all along the nonequilibrium
evolution. This implies to explicitly account for the nonlinear
term in the Heisenberg equation of motion. The situation
is similar to the many-body problem of interacting particles
where the one-body density-matrix evolution depends on
the two-body density, whose evolution is itself coupled to
the three-body density and so on and so forth, leading to
the so-called Bogolyubov-Born-Green-Kirkwood-Yvon hier-
archy [30–36].

The general form of the equations of motion, which is valid
regardless of the quantum natures of the system or bath, is
given as

d〈a†
1a1〉

dt
= i

∑
ν

gν (〈a†
νa1〉 − 〈a†

1aν〉) + i
∑

ν

gν (〈aνa1〉 − 〈a†
1a†

ν〉),

d〈a†
1aα〉

dt
= i(ω1 − ωα )〈a†

1aα〉 + i
∑

ν

gν〈(1 − [1 − ε1]a†
1a1)[a†

νaα + aνaα]〉 − igα〈(1 − [1 − εα]a†
αaα )[a†

1a1 + a†
1a†

1]〉,

d〈a†
αaβ〉

dt
= i(ωα − ωβ )〈a†

αaβ〉 + igα〈(1 − [1 − εα]a†
αaα )[a†

1aβ + a1aβ]〉 − igβ〈[a†
αa†

1 + a†
αa1](1 − [1 − εβ]a†

βaβ )〉,

d〈a†
1a†

1〉
dt

= 2iω1〈a†
1a†

1〉 + i
1 + ε1

2

∑
ν

gν (〈(1 − [1 − ε1]a†
1a1)[a†

νa†
1 + aνa†

1]〉 + 〈[a†
1a†

ν + a†
1aν](1 − [1 − ε1]a†

1a1)〉),
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d〈a†
1a†

α〉
dt

= i(ω1 + ωα )〈a†
1a†

α〉 + i
∑

ν

gν〈(1 − [1 − ε1]a†
1a1)[a†

νa†
α + aνa†

α]〉 + igα〈[a†
1a1 + a†

1a†
1](1 − [1 − εα]a†

αaα )〉,

d〈a†
αa†

α〉
dt

= 2iωα〈a†
αa†

α〉 + i
1 + εα

2
gα (〈a†

αa1〉 + 〈a†
αa†

1〉 + 〈a1a†
α〉 + 〈a†

1a†
α〉),

d〈a†
αa†

β〉
dt

= i(ωα + ωα )〈a†
αa†

β〉 + igα〈(1 − [1 − εα]a†
αaα )[a†

1a†
β + a1a†

β]〉 + igβ〈[a†
αa†

1 + a†
αa1](1 − [1 − εβ]a†

βaβ )〉. (14)

When the system and environment contain only bosons, we
have [1 − ε1] = [1 − εα] = 0 for all α and we recover the set
of equations (8). The evolution of the occupation number M11

depends on the off-diagonal elements M1ν , Mν1, K1ν , and K∗
1ν

of the normal and anomalous densities whose evolutions de-
pend on 〈a†

1a1a†
νaα〉, 〈a†

1a1aνaα〉, 〈a†
αaαa†

1a†
1〉, 〈a†

αaαa†
1a1〉,....

These degrees of freedom are themselves coupled to higher-
order moments related to higher-order quantum fluctuations.
The full problem cannot be solved exactly, due to the number
of degrees of freedom that should be followed in time when
fermions are considered.

If the system is driven by the fermionic and/or bosonic
harmonic potentials that destroy high-order quantum fluctua-
tions, then these fluctuations are presented as a product of two
diagonal elements or a product of diagonal (M11, Mαα , K11,
Kαα) and off-diagonal (Mνα , K∗

αν , Kνα , where α �= ν) elements
of the normal and anomalous densities,

〈a†
1a1a†

νaα〉 � 〈a†
1a1〉〈a†

νaα〉 = M11Mνα,

〈a†
1a1aνaα〉 � 〈a†

1a1〉〈aνaα〉 = M11K∗
αν,

〈a†
αaαa†

1a†
1〉 � 〈a†

αaα〉〈a†
1a†

1〉 = MααK11,

〈a†
αaαa†

1a1〉 � 〈a†
αaα〉〈a†

1a1〉 = MααM11,

· · · (15)

This truncation procedure is equivalent to the linearization
of the equations of motion with respect to the off-diagonal
elements Mαβ , Kαβ , K∗

αβ (α �= β, including the cases of α =
1, β = 1). The right-hand sides of these equations contain
the terms with the off-diagonal elements only in the first
order, i.e., the terms containing a product of two off-diagonal
elements are neglected, since they are very small with respect
to the corresponding terms that are proportional to a product
of two diagonal elements or a product of diagonal and off-
diagonal elements.

Employing the mean-field type approximation (15), we
obtain from the exact Eqs. (14) the closed set of equations
of motion:

dM11

dt
= i

∑
ν

gν (Mν1 − M1ν ) + i
∑

ν

gν (K∗
1ν − K1ν ),

dM1α

dt
= i(ω1 − ωα )M1α + iξ1(t )

∑
ν

gν (Mνα + K∗
αν ) − igαξα (t )(M11 + K11),

dMαα

dt
= igα (M1α − Mα1 + K∗

α1 − Kα1),

dMαβ

dt
= i(ωα − ωβ )Mαβ + igαξα (t )(M1β + K∗

β1) − igβξβ (t )(Mα1 + Kα1),
(16)

dK11

dt
= 2iω1K11 + i

(1 + ε1)

2

∑
ν

gν (Kν1 + M1ν + Gν1 + K1ν ),

dK1α

dt
= i(ω1 + ωα )K1α + iξ1(t )

∑
ν

gν (Gνα + Kνα ) + igαξα (t )(M11 + K11),

dKαα

dt
= 2iωαKαα + i

(1 + εα )

2
gα (Mα1 + Kα1 + G1α + Kα1),

dKαβ

dt
= i(ωα + ωβ )Kαβ + igαξα (t )(G1β + K1β ) + igβξβ (t )(Mα1 + Kα1),

where ξα (t ) = 〈[aα, a†
α]〉 (including the case of α = 1). This

set of equations is the main result of the present work.
It can be applied regardless of the quantum natures of
the system or baths (fermionic or bosonic) as well as to
the system coupled to several baths. In the following, the

method will be called coupled equations of motion (CEM)
method.

There are a number of properties of M, G, and K com-
ponents which help us to solve these equations. Assuming
that each bath is composed of a set of independent two-level
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systems, we have for all α and β:

Kαβ = Kβα,

Gαβ = Mβα (α �= β ),

Gαα = 1 + εαMαα.

The last relation implies that we also have ξα (t ) = 1 + [εα −
1]Mαα .

When the system and baths are all composed of bosons,
we have ξ1(t ) = 1 and ξα (t ) = 1 for all α and it could be
easily shown that Eqs. (16) are reduced to Eqs. (8). Therefore,
we also obtain an exact solution of the problem in the B-B
case. Another important property visible in (16) is that, if we
assume α to be fermionic, we have simply K̇αα = 2iωαKαα .
Since at initial time Kαα (0) = 0 for fermions, this property is
also respected at all times as it should be.

The truncation procedure leading to the set of coupled
equations (16) was tested for the F-F, F-B, and B-F cases.
We found that, for these systems, the occupation numbers
M11 calculated with (16) and within the Langevin approach
of Refs. [21–27], taking into account the Pauli principle, have
almost the same time dependencies and asymptotic values.
This indirectly justifies our truncation procedure.

IV. APPLICATIONS

A. System coupled to single heat bath

In the following, the results obtained for the FC Hamilto-
nian using the CEM approach for a system coupled to one
bath with various quantum statistics are compared with our
previous calculations in Fig. 1 for the B-B and F-F and in
Fig. 2 for the B-F and F-B cases.

There are a number of remarks that can be made from
the comparison. Since Eqs. (16) are identical to Eqs. (8) in
the B-B case, we obviously observe in Fig. 1 [panels (a)
and (c)] that results of the two sets of equations coincide.
In all cases, we see in Figs. 1 and 2 that the timescale
to reach the asymptotic equilibrium is compatible with our
previous estimates. However, when fermions are present in
the system and/or bath, the amplitudes of oscillation during
the descent to equilibrium are reduced in our approach. This
is particularly visible when the system is fermionic where
the oscillations completely disappear. The asymptotic limit
is more modified in the F-B or B-F case (Fig. 2) and to a
lesser extent in the F-F case (Fig. 1). When the system is
fermionic, we see by comparing Figs. 1 and 2 that the quantum
nature (fermionic or bosonic) of the bath affects the evolution
much less compared to the case of a bosonic system. This will
be systematically observed in all illustrations given below.
Another generic feature is the absence of unphysical values
for the occupation probabilities of a fermionic system when
Eqs. (16) are solved. This gives indirect indication that the
fermionic nature of the system is properly accounted for.

B. Toward simplified treatments of a fermionic or bosonic
system coupled to a single heat bath

We propose here a method to treat the Fermi (or Bose)
systems coupled to one or several heat baths by solving dis-
cretized versions of different heat baths together with numeri-
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FIG. 3. Comparison of the evolution of n1(t ) in the FC coupling
for a system coupled to a single bath obtained within the CEM
approach (black solid lines) at T1/� = 2 (left panels) and T1/� = 5
(right panels). Results are systematically compared to the CEM
approach assuming Kαβ = 0 and Mαβ = 0 for α �= β during the
evolution (red dashed line). Here, α and β belong to the bath. The
combinations of the system and heat bath are indicated in each panel.
All calculations are performed at γ1/� = 12 and c1 = 0.1.

cal integration of a closed set of equations between the normal
and anomalous densities of the system+environment. The
discretization technique can be rather costly numerically. With
the aim to treat more elaborated systems (with many qubits)
coupled to many heat baths, we further explore the possibility
to obtain a simpler framework compared to Eqs. (16).

One possibility is to assume that the off-diagonal matrix
elements Mαβ and Kαβ in Eqs. (16) are zero when both α and
β belong to the bath. This approximation, that is expected
to be accurate in the weak-coupling regime, is discussed in
more details in the Appendix A. In particular, a connection
with the diffusion equation (13) is made. We compare in
Fig. 3 the full and approximate treatments for the F-F, F-B,
B-F, and B-B cases. We clearly see from this figure that the
approximation leads to unphysical occupation numbers for
the bosonic system. Surprisingly enough, for Fermi systems,
although not perfect, the approximation turns out to reproduce
quite well the full evolution whatever is the nature of the bath.
We finally also checked numerically for the F-F case that
the approximation is better when the temperature increases
but degrades when the coupling strength increases. The same
conclusion can be drawn for a Fermi system coupled to several
baths independent of the quantum nature of the baths.
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FIG. 4. Comparison of the evolution of n1(t ) in the FC coupling
for the system coupled to a single bath obtained within the CEM
approach (black solid lines) at T1/� = 2 (left panels) and T1/� = 5
(right panels). Results are systematically compared to the CEM ap-
proach assuming that the anomalous density is zero (K = 0) together
with Mαβ = 0 for α �= β during the evolution (red dashed line). Here,
α and β belong to the bath. The combinations of the system and heat
bath are indicated in each panel. All calculations are performed at
γ1/� = 12 and c1 = 0.1.

We explored the possibility to obtain the alternative sim-
plified description of a bosonic system coupled to a bosonic
or fermionic system. For the bosonic case, one cannot set
only part of the anomalous density K to zero. As clearly
seen in Eqs. (16), this comes from the coupling between the
diagonal and off-diagonal matrix elements. For the fermionic
case, the situation is different because the diagonal part of
K is automatically zero. When we neglect only part of the
components of K for the boson system, we obtain unphysical
results. As an alternative to the previous approximation for
the boson system, one can also set all components of K to zero
together with Mαβ = 0 if α and β are both in the environment.
We compare in Fig. 4 the approximate evolution with the full
CEM evolution. By setting K = 0, the unphysical evolution
observed in Fig. 3 for the bosonic system disappears. We see
that such an approximation is satisfactorily reproducing the
asymptotic behavior but some important physics is missed
during the evolution to equilibrium. Note that this approxima-
tion can also be applied to the Fermi system (Fig. 4) but the
reproduction of the full CEM approach degrades compared to
the red lines in Fig. 3.

In the present section, we discussed the possibility to
simplify the description of Fermi-Bose systems coupled to an
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FIG. 5. Evolution of n1(t ) obtained in the FC case for the Fermi
system coupled to two fermionic baths (a) (notation F-F1-F2) and for
the Bose system coupled to two bosonic baths (b) (notation B-B1-B2)
using the CEM approach. Two baths have the same temperature
T1/� = T2/� = 1 and the same coupling strengths c1 = c2 = 0.1.
The blue solid line corresponds to γ1/� = γ2/� = 12, while the red
dashed line is obtained at γ1/� = 12 and γ2/� = 20.

environment by neglecting the components of the normal Mαβ

and anomalous Kαβ densities when α and β are both in the
environment in accordance with the eigenstate thermalization
hypothesis (ETH) [37–43]. It would be interesting to investi-
gate further possible connection with the ETH and its domain
of different regimes of validity when the quantum nature of
the system changes from fermions to bosons.

C. Results for a system coupled with two heat baths

Besides the possibility to treat a mixture of fermions and
bosons, one of the attractive aspects of the present method
is the possibility to treat the coexistence of several baths.
Equations (16) to be solved are unchanged when considering
several baths. The main difference is the sizes of the M and
K matrices that both increase with the number of baths after
discretizing each environment. We consider below a two-level
system coupled to two baths. Each bath, discretized using the
method presented in Sec. II B (see also [24]), is characterized
by the parameters ci and γi as well as its initial temperature Ti

(i = 1, 2).

1. System coupled to two heat baths of the same quantum nature

As the first illustration, we consider the same conditions as
in Ref. [21] where the system is coupled to several heat baths
of the same quantum nature, i.e., the F-F1-F2 and B-B1-B2

cases. These two cases are presented in Fig. 5 and can be
compared to Fig. 3 of Ref. [21]. For the B-B1-B2 case, we
again perfectly recover our previous result. This could be
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FIG. 6. Evolution of n1(t ) for the F-F1-F2 (black solid line),
B-B1-B2 (green dashed line), F-B1-F2 (red dotted line), B-F1-B2

cases (blue dotted-dashed line), F-B1-B2 (cyan long-dashed line),
and B-F1-F2 (pink short dashed-dotted line) obtained with the CEM
approach and FC coupling starting from n1(0) = 0 (a) and n1(0) = 1
(b). The coupling strengths, spectral properties, and temperatures
are set to c1 = c2 = 0.1, γ1/� = 10, γ2/� = 15, T1/� = 1, and
T2/� = 2.0. In panel (b), the results for the F-B1-F2, F-B1-B2, and
F-F1-F2 cases are almost identical.

considered as a numerical test because the Laplace transform
method used in Ref. [21] and the present approach based on
Eqs. (16) are strictly equivalent and exact.

For the case of a fermionic system coupled to two
fermionic baths, some differences are observed with [21],
although the global shape and asymptotic limit are similar. In
general, while the timescale before reaching equilibrium and
the asymptotic limit is globally in agreement with Ref. [21], a
difference is the absence of oscillations during the thermaliza-
tion process. We also checked numerically, as was analytically
proved in our previous work, that the system coupled to two
identical baths (the same γi and the same temperature) can
be treated as the system coupled to the single bath but with
coupling strength equal to c = c1 + c2.

2. System coupled to two heat baths of mixed quantum natures

We now analyze the change in the evolution compared
to the previous case when one of the baths or both baths
have different quantum natures compared to the system. Such
situations are illustrated in Fig. 6. To uncover the effect of
changing fermion into boson or vice versa, we compare situ-
ations where all other parameters are unchanged, i.e., spectral
function parameters, coupling strength, and bath temperature
remain the same.

The first conclusion one could draw from Fig. 6 is that, for
the Fermi system, the nature of the heat bath does not affect
its evolution much. This is clearly the opposite of the bosonic

system for which replacing the bosonic bath by the fermionic
bath induces significant modification both in the intermediate
time evolution and asymptotic limit reached by the occupation
probability.

Another aspect, which is visible in Fig. 6, is that an
asymptotic stationary limit is always reached whatever the
nature of the system and heat baths. This is in particular
the case for the fermionic system coupled to two baths,
one fermionic and one bosonic. The convergence towards
the stationary limit is systematically observed whatever the
properties of the baths, i.e., when changing the coupling
strength, the spectral properties, and/or temperatures of two
heat baths. This conclusion is different from the one we
obtained previously for the F-B1-F2. Using a slightly different
approximation, we have shown that a stationary solution
might never be reached [26]. It should be noted however that
both our previous prescriptions to the problem [21,22,25–27]
and the present one are only approximate when fermions are
considered either in the system and/or baths. The approach
proposed here has however the advantage to account properly
for the Pauli principle for fermions. This could also be seen
from the occupation that remains bounded between 0 and 1.
The possibility to reach or not a stationary limit when mixing
baths with different quantum natures is an interesting aspect.
In particular, dedicated experiments would be interesting to
clarify this issue.

Because the bosonic systems coupled to one or several
baths have been extensively investigated in our previous stud-
ies [21–27], in the following, we focus on the Fermi systems
and study in more detail the evolutions obtained with the
approach proposed here.

D. Detailed study of a Fermi system coupled to one or two
bosonic and/or fermionic heat baths

We systematically use Eqs. (16) to simulate the evolution
of the Fermi two-level system coupled to one or two baths at
various couplings, thermal, and spectral properties. As illus-
trated in Figs. 5 and 6, the evolution of n1(t ) is rather simple
and seems to correspond to the decay process. Based on this
observation and with the goal to infer generic properties of
the system evolution due to the surrounding environment, we
fit the occupation number evolution n f (t ) = n1(t ) with the
simple function

n f (t ) = n f (∞) + [n f (0) − n f (∞)]e− f t . (17)

In the following study, we will consider the case n f (0) = 1.
n f (∞) and  f are fitted on the evolutions and correspond
respectively to the asymptotic occupation number and to the
decay time τ f = 1/ f . Despite its simplicity, Eq. (17) turns
out to provide a rather precise description of the evolution for
the whole range of couplings and temperatures considered.
The systematic evolutions of  f and n f (∞) obtained in the
presence of one or two baths are reported in Fig. 7.

Focusing first on the single bath case, we observe that
the F-F and F-B cases lead to rather similar properties at
low temperature. The evolutions of the Fermi systems at low
temperature (T/� < 1) appear to be rather insensitive to the
quantum nature of the bath and/or if one or several baths are
coupled to the system. When the temperature of the bath(s)
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FIG. 7. Evolution of nf (∞) (a) and  f (b) obtained by fitting
the evolution of nf (t ) with expression (17) for the Fermi system
coupled to one or two baths with various initial temperatures. The
blue circles correspond to the F-F case, where the bath properties are
set to c1 = 0.1 and γ1/� = 12. The red squares correspond to the
F-B case where the only difference with the previous case is that the
Fermi bath is replaced by the Bose bath. The green stars correspond
to the F-B1-F2 case with c1 = c2 = 0.05, and γ1/� = γ2/� = 12.
Note the F-B1-B2 and F-F1-F2 (not shown) match exactly the F-B
and F-F case with a coupling equal to c1 + c2. In the multibaths case,
we assume that all baths are at the same temperature, T1 = T2 = T .
In both panels, the inset is a focus on the low-temperature limit. The
green open squares correspond to the result of Eq. (18).

increases, we see significant differences in  f and to a lesser
extent in n f (∞) depending on the quantum nature of the
baths. For n f (∞), we see only small differences between the
F-F and F-B cases. It is interesting however to mention that
the asymptotic occupation number of the F-B1-F2 matches
the one of the F-B case for all temperatures. Therefore, for
two baths with different quantum natures but with equivalent
spectral properties, the bosonic bath seems to decide the
asymptotic behavior.

In the F-F case, the decay time is almost independent of
the temperature while, for the F-B case,  f linearly increases
with temperature at T/� > 1. This implies that the transient
time to equilibrium is much shorter if the fermionic system
is coupled to a bosonic bath rather than to a fermionic bath.
We also observe in Fig. 7 that  f obtained for the F-B1-F2

case is in between the F-F and F-B cases. More precisely, we
have  f = (FF + FB)/2, where we use the notations FF

(FB) for the value of  f obtained in the F-F (F-B) case. We
further investigated this simple behavior in the F-B1-F2 case
by varying the coupling values of c1 and c2, while keeping
c1 + c2 = 0.1. The evolution of  f is displayed as a function
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FIG. 8. Evolution of  f obtained for the F-B1-F2 as a function of
c1/(c1 + c2) assuming that c1 + c2 = 0.1. The structural properties
of the two baths are the same as in Fig. 7, while T1/� = T2/� =
5. The stars at the extremes correspond to the reference F-F (F-B)
calculations put artificially at c1/(c1 + c2) = 1 (0). The dashed line
is a linear interpolation between the two stars.

of c1/(c1 + c2) in Fig. 8 at T1/� = T2/� = 5. We observe in
this figure that we have approximately

 f � c1

(c1 + c2)
FF + c2

(c1 + c2)
FB, (18)

which is a very simple relationship.
Note that, if we change the temperature, we change the

absolute value of the dependence presented in Fig. 8, but all
conclusions remain valid. Such a behavior can again be tested
in the experimental observations. In particular, one might
imagine by mixing several baths and changing the relative
strengths of the couplings with the system to control the decay
properties even if the temperatures of different baths are kept
fixed.

The approximate treatment of an open quantum Fermi
system discussed in Sec. IV B and the Appendix A turns out
to be useful to understand qualitatively the conclusion made
from Figs. 7 and 8. We have checked numerically that the ap-
proximation is also accurate when the Fermi system is coupled
to several baths in the high-temperature–weak-coupling limit.
As shown in the Appendix A, the simple linear relation (18)
can be explained consistently with this simplification. Indeed,
starting from the analytical equations (A9) for the asymptotic
occupation probability and decay time, one can explain why
the decay time is independent of temperature in the case of
the Fermi bath, while it increases with the temperature for the
Bose bath.

V. CONCLUSION

We proposed here an approach called CEM to describe
the single fermionic or bosonic oscillator coupled to one or
several baths eventually mixing different quantum natures of
the particles (fermions or bosons). The approach is exact when
only bosonic degrees of freedom are considered and provide
an approximate solution when fermions are also present either
in the system and/or in the bath. In this approach, a particular
attention is paid to properly account for the Pauli principle
for the fermions. The approach is illustrated for the system
coupled to a single bath where the system or bath can be either
fermionic or bosonic. For Fermi systems, we showed that the
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proper treatment of the Fermi nature is essential to obtain an
accurate treatment of the evolution.

The approach includes non-Markovian effects and is rather
versatile and we do not anticipate any specific difficulty in
applying it to the baths with complex structure. We illus-
trated the method for a system coupled to two baths with
various quantum statistics. One of the important aspects that
differs from our previous solution [26,27] to this problem
is that Fermi systems coupled to two baths always reach
an asymptotic stationary limit. Since in the present work,
similar to Ref. [26], the approach we propose is not exact, the
existence or not of an asymptotic time-independent solution
is an interesting debate. In particular, it would be interesting
to give an experimental clarification to this aspect. Besides
the asymptotic behavior, we observe that Fermi systems have
relatively simple decay properties compared to boson systems
coupled to the same baths. We showed that the decay time of
the Fermi system coupled to the fermionic and bosonic baths
can be easily related to the cases of the system coupled to only
one bosonic bath or to only one fermionic bath.

In the present work, we focused our attention on a single
qubit coupled to a set of environments including fully non-
Markovian effects. The theory can a priori be extended to
obtain numerical simulation of an ensemble of qubits with the
price of increasing the numerical cost. With the target goal to
be able to treat eventually several hundreds of qubits we also
explore the possibility to obtain simplified theories of Fermi
systems while not degrading the description of evolution. We
show that, in some regime of coupling or temperature, the
simplification can indeed be made.
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APPENDIX: SIMPLIFIED FORM OF EQUATIONS OF MOTION FOR A FERMI SYSTEM COUPLED
TO ONE OR SEVERAL BATHS

We consider here the case of a Fermi system coupled to one or several baths. Assuming Kαβ (t ) = Mαβ (t ) = 0 when α and β

components are in the bath with α �= β and introducing the notations

nα (t ) = Mαα (t ), n̄α (t ) = 1 + εαnα (t ), (A1)

Eqs. (16) are simplified as

ṅ1(t ) = i
∑

ν

gν (Mν1 − M1ν ) + i
∑

ν

gν (K∗
1ν − K1ν ),

ṅα (t ) = igα (M1α − Mα1) + igα (K∗
1α − K1α ),

Ṁ1α = i(ω1 − ωα )M1α + igα[n̄1(t )nα (t ) − n1(t )n̄α (t )],

K̇1α = i(ω1 + ωα )K1α + igα[n̄1(t )n̄α (t ) − n1(t )nα (t )]. (A2)

The numerical integration of these equations of motion is much less demanding than the original set of equations (16). This
could be seen from the fact that the original number of coupled equations was 2N2

tot, where Ntot is the total number of creation
and annihilation operators for the system+baths, while the number of coupled equations in (A2) is reduced to (3Ntot − 2).

1. Pauli master equation with memory effect

Related approximation has been discussed, for instance, in Refs. [21,22]. Following these references, one might eventually
obtain the closed form of the equations for n1(t ) and nα (t ) by formally integrating the last two equations. Using the fact that
M1α (0) = K1α (0) = 0, we have the formal solution:

igα[Mα1(t ) − M1α (t )] = 2g2
α

∫ t

0
cos([ω1 − ωα][t − τ ])[n̄1(τ )nα (τ ) − n1(τ )n̄α (τ )],

igα[K∗
1α (t ) − K1α (t )] = 2g2

α

∫ t

0
cos([ω1 + ωα][t − τ ])[n̄1(τ )n̄α (τ ) − n1(τ )nα (τ )].

The evolution of the system occupation probabilities is written as the Pauli master equation:

dn1(t )

dt
=

∫ t

0

{
W1

+(t, τ )n̄1(τ ) − W1
−(t, τ )n1(τ )

}
dτ, (A3)

with

W1
+(t, τ ) = 2

∑
α

g2
α[cos([ω1 − ωα][t − τ ])nα (τ ) + cos([ω1 + ωα][t − τ ])n̄α (τ )],

W1
−(t, τ ) = 2

∑
α

g2
α[cos([ω1 − ωα][t − τ ])n̄α (τ ) + cos([ω1 + ωα][t − τ ])nα (τ )].
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These expressions can eventually be complemented by the set of equivalent master equations for the nα (t ) (not shown here). In the
following, we use the notations G1(τ ) = W1

+(t, τ ) + W1
−(t, τ ) and F1(τ ) = W1

+(t, τ ) − W1
−(t, τ ). Some simple manipulations

result in the expressions

G1(t, τ ) = 4 cos(ω1τ )
∑

α

g2
α cos(ωατ )[nα (τ ) + n̄α (τ )], (A4)

F1(t, τ ) = 4 sin(ω1τ )
∑

α

g2
α sin(ωατ )[nα (τ ) − n̄α (τ )]. (A5)

2. Simple approximate form for system evolution in the weak-coupling regime

Starting from the master equation (A2), one might try to see if the equation of motion of the system occupation number can
be written in terms of a time-local equation while properly keeping non-Markovian effects. Our goal is to make a connection
with the simple form (17) used to fit the n1(t ) evolution. For this, we first rewrite the master equation as

dn1(t )

dt
= −

∫ t

0
G1(t, τ )n1(τ )dτ +

∫ t

0
W1

+(t, τ )dτ, (A6)

where we use the fact that the system is fermionic. Note that G1(t, τ ) is linked to the decay time of the Fermi system. If the bath
contains only fermions, i.e., for all α we have nα (τ ) + n̄α (τ ) = 1, this quantity becomes independent of the initial temperature
of the baths. Starting from this expression, using the expression for gα given in Sec. II B, and taking the continuous limit for the
bath, we deduce for a fermionic bath

G1(t, τ ) = 4 cos(ω1τ )
∫ +∞

0
dω J1(ω) cos(ωτ ), (A7)

where J1(ω) is the spectral function (9).
From now on, we assume that the coupling between the system and bath is weak enough and we can only retain terms up to

the second order in g2
α . Consistent with this approximation, one might eventually make the replacement n1(τ ) � n1(t ) together

with nα (τ ) � nα (0) in the integral in time such that we obtain

dn1(t )

dt
� − f (t )n1(t ) + D f (t ), (A8)

where we use

 f (t ) �
∫ t

0
G1(τ )dτ, D f (t ) � 1

2

∫ t

0

[
G1(τ ) + F1(τ )

]
dτ, (A9)

with

G1(τ ) = 4 cos(ω1τ )
∑

α

g2
α cos(ωατ )[nα (0) + n̄α (0)],

F1(τ ) = 4 sin(ω1τ )
∑

α

g2
α sin(ωατ )[nα (0) − n̄α (0)].

Equations (A8) and (A9) can be generalized to the case of several baths.
From these expressions, we see that G1(τ ) and therefore  f calculated with Eqs. (A9) are independent of temperature for the

fermion bath (Fig. 7). However,  f depends on temperature for the bosonic bath.
Note finally that, in the simplified scenario presented here, one deduces a simple time-local equation, valid a priori in

the weak-coupling regime. This equation however includes partially non-Markovian effects. As a side remark, it would be
interesting to investigate the possibility of extending the time-convolutionless approach of Refs. [29,44–47] to obtain a systematic
constructive framework leading to the time-local equation of motion for the system with higher-order corrections in the coupling.
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