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We investigate a case of the Hu-Paz-Zhang master equation of the Caldeira-Leggett model without Lindblad
form obtained in the weak-coupling limit up to the second-order perturbation. In our study, we use Gaussian
initial states to be able to employ a sufficient and necessary condition, which can expose positivity violations
of the density operator during the time evolution. We demonstrate that the evolution of the non-Markovian
master equation has problems when the stationary solution is not a positive operator, i.e., does not have physical
interpretation. We also show that solutions always remain physical for small times of evolution. Moreover, we
identify a strong anomalous behavior, when the trace of the solution is diverging. We also provide results for the
corresponding Markovian master equation and show that positivity violations occur for various types of initial
conditions even when the stationary solution is a positive operator. Based on our numerical results, we conclude
that this non-Markovian master equation is superior to the corresponding Markovian one.
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I. INTRODUCTION

A density operator completely describes the state of a
quantum mechanical system and it is defined as a positive
trace class operator of trace one [1]. A quantum system in
study can be subject to interactions with its environment,
which is colloquially referred to as an open quantum system.
It is expected that the whole system evolves unitarily and,
by tracing out the environment’s degrees of freedom, one
obtains a positive trace preserving map acting on the states
of the open system [2]. If one further assumes an initially
uncorrelated joint state, then a stronger kind of positivity,
called complete positivity, is obtained [3]. Some particular
aspects of this assumption have been discussed in Refs. [4–8].
In physical applications, these maps are subject to further
approximations, which either leads to Markovian or non-
Markovian master equations [9]. However, the positivity of
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the approximation-free map may be violated by various ap-
proximations, implying that complete positivity fails as well.

A known case is the Caldeira-Leggett model [10] of
the quantum Brownian motion [11,12], where different ap-
proaches may result in a master equation, which may not
preserve the positivity of the density operator for short times
[13–16]. In the model of Unruh and Zurek [17] (where the
environment is modeled differently from the Caldeira-Leggett
model), issues have also been found with respect to rapid de-
coherence for short-time evolutions. The well-known master
equation of Caldeira and Leggett has been extended by Hu,
Paz, and Zhang (HPZ), who obtained an exact non-Markovian
master equation [14],

ih̄
∂ρ̂

∂t
= [Ĥ0, ρ̂] − iDpp(t )[x̂, [x̂, ρ̂]]

+ λ(t )[x̂, { p̂, ρ̂}] + 2iDpx(t )[x̂, [ p̂, ρ̂]],

where Ĥ0 is the Hamiltonian of the open quantum system.
Dpp(t ), λ(t ), and Dpx(t ) are time-dependent coefficients for
which one has explicit expressions (see [14] or [18]). A
particular case of this master equation, when the interaction
between the system and environment is weak, is given by
Eq. (2) for the explicit expressions of the time-dependent
coefficients. This case covers both the Caldeira-Leggett
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master equation [10] of high temperatures and an extension
for lower temperatures [19]. Despite the weak-coupling ap-
proximation, the master equation has still found applications
even decades later in several areas of quantum mechanics,
such as quantum optomechanics [20] or quantum estimation
theory [21]. These works consider the perturbative approach
in the weak coupling up to the second order, which is also
the first nonvanishing term in the perturbation series [9]. In
fact, this version of the HPZ master equation has drawn much
attention in the last decade and therefore it is worthwhile
to investigate, in detail, the circumstances under which the
time evolution is able to preserve the positivity of the density
operator.

The main parameters of the Caldeira-Leggett model are the
temperature of the thermal bath and the spectral density of the
environment. In the phenomenological modeling, one expects
that the spectral density goes to zero for very high frequencies.
A special case is when the spectral density is proportional to
the frequency for small values of frequency, i.e., the ohmic
spectral density, which gives rise to a frequency-independent
damping rate. Other spectral densities have also been subject
to investigations; see, e.g., [14,22,23]. In this paper, we choose
the ohmic spectral density with a Lorentz-Drude cutoff func-
tion. Furthermore, we consider the open quantum system to
be a quantum harmonic oscillator.

Recently, questions related to the positivity preservation of
several Markovian master equations were investigated with
the help of purities of density operators [24]. The authors
exploited the fact that the purity indicates positivity violation
when it takes values bigger than one. They have been able
to identify cases where positivity violations occur. Unfortu-
nately, the purity is a necessary but not sufficient condition
to determine the positivity of a self-adjoint operator with
trace one. In this paper, we consider a non-Markovian master
equation with its Markovian counterpart, which is obtained
from the non-Markovian one by taking the limits in the coeffi-
cients t → ∞. Both the Markovian and the non-Markovian
master equation can be formally solved [22,24,25] for all
possible initial conditions. However, the obtained solutions in
the phase-space representation cannot determine, in general,
the positivity of associated Weyl operators [26,27] because
one has to verify either a noncountable or a countable set of
inequalities. In the special case of Gaussian density operators,
all the eigenvalues can be analytically determined [28,29], and
furthermore their structure implies that the Gaussian solution
is positive if and only if the purity is between zero and one.
In particular, results in [22] imply that these types of master
equations preserve the Gaussian form of any initially Gaussian
state for all times. Therefore, in the case of a Gaussian
ansatz, we are able to use a necessary and sufficient condition
to monitor the positivity of the evolving density operator.
Furthermore, both master equations can be transformed into
a system of ordinary differential equations.

The paper is organized as follows. In Sec. II, we introduce
the non-Markovian master equation and derive the system of
linear differential equations for coefficients of the Gaussian
ansatz. In Sec. III, we study the positivity of the station-
ary solution. In parameter space, we identify regions where
positivity violations can occur. Concrete examples of these
violations are given in Sec. IV. Here, we concentrate on

the differences of the Markovian and non-Markovian time
evolutions of initial Gaussian density operators. Section V
summarizes our main results. Technical details are provided
in the three Appendices.

II. NON-MARKOVIAN MASTER EQUATION
WITH GAUSSIAN INITIAL CONDITIONS

In this section, we discuss basic features of the HPZ master
equation [14,25,30] by focusing on terms up to the second-
order expansion in the weak-coupling strength [31]. The non-
Markovian master equation for a quantum harmonic oscillator
with physically observable frequency ωp and mass m reads

ih̄
∂ρ̂

∂t
=

[
p̂2

2m
+ mω2

p(t )x̂2

2
, ρ̂

]
− iDpp(t )[x̂, [x̂, ρ̂]]

+ λ(t )[x̂, { p̂, ρ̂}] + 2iDpx(t )[x̂, [ p̂, ρ̂]], (1)

where [,] stands for commutators, while {, } stands for anti-
commutators. In the weak-coupling limit, the coefficients in
the second-order expansion entering the master equation read

ω2
p(t ) = ω2

b − 2

m

∫ t

0
dsD(s) cos(ω0s),

λ(t ) = 1

mω0

∫ t

0
dsD(s) sin(ω0s),

Dpx(t ) = 1

2mω0

∫ t

0
dsD1(s) sin(ω0s),

Dpp(t ) =
∫ t

0
dsD1(s) cos(ω0s),

(2)

where ωb contains the environment-induced frequency shift of
the original oscillator frequency ω0. We have introduced the
following correlation functions:

D(s) =
∫ ∞

0
dωJ (ω) sin(ωs), (3)

D1(s) =
∫ ∞

0
dωJ (ω) coth

(
h̄ω

2kBT

)
cos(ωs), (4)

where T is the temperature of the thermal bath. Making use of
an ohmic spectral density with a Lorentz-Drude type function
and a high-frequency cutoff �,

J (ω) = 2mγ

π
ω

�2

�2 + ω2
,

where γ is the frequency-independent damping constant, the
bath correlation D(s) can be determined analytically as

D(s) = 2mγ�2 exp(−�s), s � 0. (5)

For the other correlation function D1(s), see Eq. (A1) in
Appendix A. Furthermore, for t > 0,

ω2
p(t ) = ω2

0 + 2γ� − 2

m

∫ t

0
dsD(s) cos(ω0s) = ω2

0 + 2γ�

− 2γ�2

�2 + ω2
0

e−�t [�e�t − � cos (ω0t ) + ω0 sin (ω0t )],
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where, for t � 1, ωp(t ) is approximately equal to ω0, and

λ(t ) = γ

ω0

�2

�2 + ω2
0

e−�t [ω0e�t − ω0 cos (ω0t )

−� sin (ω0t )].

Closed formulas for Dpx(t ) and Dpp(t ) are given in
Appendix A. It is important to note that in the high-
temperature limit kBT � h̄� � h̄ω0, we have ωp(t → ∞) =
ω0, Dpx(t → ∞) = γ kBT/(h̄�), Dpp(t → ∞) = 2mγ kBT ,
and λ(t → ∞) = γ , which yields exactly the Caldeira-
Leggett master equation, i.e., the term γ kBT/(h̄�)[x̂, [ p̂, ρ̂]]
is very small compared to the other two terms. Furthermore,
these coefficients also cover an extended master equation of
Caldeira et al. [19] for lower temperatures by taking only
� � ω0 in (2), which results in their finding Dpp(t → ∞) =
mγ h̄ω0 coth h̄ω0/(2kBT ). However, in this particular case of
the HPZ master equation, the weak damping assumption
ω0 � γ is not required.

Now, we rewrite Eq . (1) in the position representation,

ih̄
∂

∂t
ρ(x, y, t ) =

[
h̄2

2m

(
∂2

∂y2
− ∂2

∂x2

)
+ mω2

p(t )

2
(x2 − y2)

− iDpp(t )(x − y)2 − ih̄λ(t )(x − y)

×
(

∂

∂x
− ∂

∂y

)
+ 2h̄Dpx(t )(x − y)

×
(

∂

∂x
+ ∂

∂y

)]
ρ(x, y, t ). (6)

Naively, the non-Markovian master equation starts at t = 0
as a von Neumann equation because all the time-dependent
coefficients in (2) are zero for t = 0, except for ωp(t ). This
would imply that positivity violations never occur around
t = 0. We prove this fact rigorously for an arbitrary Gaussian
initial state in Appendices B and C. For longer times, it is not
guaranteed that positivity will not be violated. Another prop-
erty of (6) is that the Gaussian initial state remains Gaussian
during the whole evolution. In [22], the time evolution of a
Wigner function [see Eq. (78) of their paper] starting from an
arbitrary initial condition is given. If this initial Wigner func-
tion is Gaussian, then this result shows that at an arbitrary time
t > 0, the solution is also a Gaussian with time-dependent co-
efficients in the exponent. The Wigner function and ρ(x, y, t )
are connected by Wigner-Weyl transformation, which maps
a Gaussian function to Gaussian ones. Consequently, if we
choose ρ(x, y, t = 0) to be Gaussian, it will be Gaussian at
later times too, but with time-dependent coefficients. More
concretely, we consider the following Gaussian in the position
representation:

ρ(x, y, t ) = exp{−A(t )(x − y)2 − iB(t )(x2 − y2)

−C(t )(x + y)2 − iD(t )(x − y)

− E (t )(x + y) − N (t )}, (7)

where the time-dependent parameters A, B, C, D, E , and N
are real because ρ̂ is self-adjoint. Assuming positive A(t ) and
C(t ), the eigenvalue problem in the position representation for

a fixed t , ∫ ∞

−∞
ρ(x, y)φn(y) dy = λnφn(x), (8)

has been considered in detail in Ref. [29]. The spectrum
{λn}n∈N0 of (7) depends only on A and C for all t � 0:

λn = λ0λ
n,

λ0 = 2
√

C√
A + √

C
, λ =

√
A − √

C√
A + √

C
.

If 0 < A < C, then the Gaussian self-adjoint operator fails to
be positive. Clearly, all eigenvalues are in the interval [0,1] iff

A � C � 0. (9)

If Eq. (9) is not true at a given time t , then the Gaussian
function ρ(x, y, t ) has no physical interpretation, and Eq. (9)
is a sufficient and necessary condition to detect unphysical
behavior during the time evolution. We are going to test its
validity by investigating A/C. Note that the purity is given by
Tr ρ̂2 = √

C/A.
The time-dependent coefficients A, B, C, D, and E obey

a system of nonlinear nonautonomous differential equations.
However, using the transformation

ρ(k,
, t ) =
∫ ∞

−∞
dx eikxρ

(
x + 


2
, x − 


2
, t

)
, (10)

given in [17,29], we obtain the equation of motion for
ρ(k,
, t ),

∂

∂t
ρ(k,
, t ) =

[
h̄k

m

∂

∂

− mω2

p(t )

h̄



∂

∂k
− Dpp(t )

h̄

2

− 2λ(t )

∂

∂

− 2Dpx(t )k


]
ρ(k,
, t ).

Note that the above equation of motion contains only first-
order derivatives and therefore it is easier to construct its
solutions. In this representation, the Gaussian form of (7) is
also preserved and reads

ρ(k,
, t ) = exp{−c1(t )k2 − c2(t )k
 − c3(t )
2

− ic4(t )k − ic5(t )
 − c6(t )}, (11)

where the time-dependent coefficients c1, c2, c3, c4, c5, and c6

are real and obey the following system of linear differential
equations:

ċ1 = h̄c2

m
, ċ2 = 2Dpx(t ) + 2h̄c3

m
− 2

mω2
p(t )

h̄
c1 − 2λ(t )c2,

ċ3 = Dpp(t )

h̄
− mω2

p(t )

h̄
c2 − 4λ(t )c3, ċ4 = h̄c5

m
,

ċ5 = −mω2
p(t )

h̄
c4 − 2λ(t )c5, ċ6 = 0. (12)

The first three and the last three equations decouple. The first
three can be written compactly as follows:

ċ(t ) = M(t )c(t ) + v(t ), (13)
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where cT (t ) = (c1, c2, c3) (the superscript T denotes the
transposition),

M(t ) =

⎛
⎜⎜⎝

0 h̄
m 0

−2
mω2

p(t )
h̄ −2λ(t ) 2h̄

m

0 −mω2
p(t )
h̄ −4λ(t )

⎞
⎟⎟⎠, (14)

and

v(t ) =
⎛
⎝ 0

2Dpx(t )
Dpp(t )/h̄

⎞
⎠.

The coefficients A, B, and C are related to c through the
transformation (10) as

A = c3 − c2
2

4c1
, B = − c2

4c1
, C = 1

16c1
. (15)

We can already see the advantage of the new phase-space
representation ρ(k,
) because solving (13) is better suited for
our subsequent investigation of the ratio A/C. However, the
solution of (13) is still not simple because the matrices M(t )
and M(t ′) do not commute at different times t �= t ′ and the
vector v(t ) is also time dependent. A formal solution with the
help of a time-ordered exponential can be given, but does not
seem to be helpful for us. Therefore, we are going to focus on
the numerical solutions of (13) and carry out a brief analysis
on the stationary state.

III. A BRIEF ANALYTICAL STUDY
OF THE STATIONARY STATE

In this section, we investigate the positivity of the station-
ary state. After a long time, a Markovian limit is obtained,
which yields

ω2
p(t → ∞) = (

ω(M )
p

)2
, λ(t → ∞) = λ(M ),

(16)
Dpx(t → ∞) = D(M )

px , Dpp(t → ∞) = D(M )
pp ,

where the details about Markovian values (denoted with su-
perscripts M) are given in Appendix A. Thus, M(t ) and v(t )
tend to constants M(M ) and v(M ). The stationary solution of
c(t ) can be expressed as

c(M ) = −[
M(M )]−1

v(M ).

Approaching the stationary state is governed by the
three eigenvalues of M, which are (−2)λ(t ) and

(−2)[λ(t ) ±
√
λ2(t ) − ω2

p(t )]. For t > 0, real parts of all
three eigenvalues are negative, and thus M(t ) is contractive,
which ensures that starting from arbitrary initial conditions
c(0), the trajectory c(t ) tends to its Markovian limit. In the
asymptotic region, λ(t ) and ωp(t ) must be replaced by their
respective Markovian values.

In the asymptotic regime, where all the time-dependent
coefficients of the equation of motion have already reached
their stationary values, the test A/C � 1 can be written as

A(M )

C(M )
=

(
D(M )

pp

)2 + 4mλ(M )D(M )
pp D(M )

px

m2(λ(M ) )2(ω(M ) )2
. (17)

0
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III.

II.

I.

k B
T

/(
− hω

0)

γ /ω0

FIG. 1. Parameter space plot of kBT/(h̄ω0) vs γ /ω0 at fixed
�/ω0 = 20. The solid thick line shows the critical line γ =
γcrit (kBT ). The dashed line indicates the temperature T̃ . Regions I, II,
and III are discussed in the main text. Crosses indicate the parameters
used in Figs. 2–11.

On the critical line A(M )/C(M ) = 1, the damping factor γ can
be expressed as

γ = γcrit (�, kBT, ω0) = �2 + ω2
0

�

coth2
( h̄ω0

2kBT

) − 1

Z (�, kBT, ω0)
, (18)

where

Z (�, kBT, ω0) = 2 − 4
kBT

h̄ω0
coth

h̄ω0

2kBT

{
−1 + h̄�

2πkBT

×
[
�

(
ih̄ω0

2πkBT

)
+ �

( −ih̄ω0

2πkBT

)

− 2�

(
h̄�

2πkBT

)]}
, (19)

and � is the digamma function [32]. The denominator
Z (�, kBT, ω0) has a zero if we vary kBT , and thus there exists
a certain temperature T̃ at which the damping factor γ tends
to infinity on the critical line; see Fig. 1. Clearly, above T̃ ,
the stationary solution is a density operator for any damping
factor γ ; see region III in Fig. 1. The stationary solution is
not a density operator in region I, i.e., T < T̃ and γ > γcrit .
In this parameter region, we can choose any initial condition
for which the time evolution for ρ̂(t ) eventually violates the
positivity of the density operator. Regions II and III of Fig. 1
guarantee that the asymptotic state is physically allowed, but
this does not guarantee that the full time evolution is phys-
ical. We can also observe that very weak damping γ 	 ω0

allows us to chose the temperature T arbitrarily. This is in
accordance with the result in Ref. [19]. However, a positive
stationary solution still is not a guarantee for a meaningful
time evolution because issues might appear for several kind
of initial conditions, especially if we choose the parameters of
the master equations close to the critical line γcrit .
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Analytical approximations for the critical line can be made
in two cases. If � � ω0, one can expect (see Fig. 1) that
kBT̃ is on the h̄� scale. Let us introduce the quantity x =
kBT̃ /(h̄�). If � � ω0, looking for the zeros for Z in Eq. (19),
the leading terms are

0 = πx + γEM + �

(
1

2πx

)
, (20)

where γEM is the Euler-Mascheroni constant, which is ap-
proximately 0.577. Solving (20) for x, one gets kBT̃ ≈
0.240395 h̄� for large �. It should be noted that this result
has been previously found by Ref. [33], where the stationary
state has been investigated from the point of view of the
Heisenberg uncertainty principle. In the case of Gaussian
density operators, the Heisenberg uncertainty principle and
our test condition A/C � 1 are the same constraints on the
parameter space of the master equation.

A different approximation is possible for γcrit at very low
temperature. Keeping the leading-order terms in Eq. (18) for
kBT 	 h̄ω0 and kBT 	 h̄�, one gets the limiting behavior,

γcrit
∼= 4

�2+ω2
0

�
exp

{ − h̄ω0
kBT

}
2 − 4

π
�
ω0

ln
(

ω0
�

) ≡ Ce− a
T , (21)

where C and a are constants. Clearly, this function is nonan-
alytical in T , and approaches the origin in Fig. 1 with infinite
slope. Inverting (21), one has on the critical line

T ∼= a

ln
(

C
γcrit

) , (22)

for small γcrit .
As we indicated earlier, one can experience positivity

violations during the time evolution. In the following, we
show a few time evolutions which might be interesting for the
reader. In the numerics, we limit ourselves to Gaussian density
operators, which means that we have to follow only the time
evolution of c(t ), from which we extract A and C via (15) and
check the validity of (9) numerically.

IV. NUMERICAL RESULTS

In the previous section, we have discussed the validity
of the stationary solution, which gives a constraint on the
parameters of the master equation. We consider three different
types of initial conditions of (13), namely, coherent, squeezed,
and thermal states. For the sake of completeness, we hereby
reformulate these well-known initial states to our representa-
tion.

Coherent state. This state is defined through the complex
parameter α,

|α〉 =
∞∑

n=0

e− |α|2
2

αn

√
n!

|n〉, α = |α|eiφ, (23)

where |n〉 (n ∈ N0) are the number states and φ is the complex
phase of α. The Wigner function of this coherent state reads

W (x, p) = 1

π h̄
e−[x/d−√

2Re(α)]2−[pd/h̄−√
2Im(α)]2

,

where d is a length and can be taken as

d = w

√
h̄

mω0
≡ wd0,

w is a dimensionless positive number, and d0 is the width of
the quantum harmonic oscillator’s ground state. Due to the
relation

W (x, p) =
(

1

2π

)2 ∫ ∞

−∞
dk

∫ ∞

−∞
d
e−i(kx+
p/h̄)ρ(k,
),

(24)
we obtain

ccoh(0) =
(

d2

4
, 0,

1

4d2

)
. (25)

Squeezed state. In this case, the state is characterized
by two complex parameters α and ζ = |ζ |eiφ . Introducing
the creation a† and annihilation a operators of the quantum
harmonic oscillator, a squeezed state is given by

|α, ζ 〉 = D̂(α)Ŝ(ζ )|0〉, (26)

where D̂(α) = exp(αâ† − α∗â) is the displacement and
Ŝ(ζ ) = exp[ 1

2 (ζ ∗a2 − ζa†2)] is the squeezing operator. After
a lengthy but standard calculation, the Wigner function yields

W (x, p) = 1

π h̄
e−[x/d−√

2Re(α)]2t1−[pd/h̄−√
2Im(α)]2t2

× e[x/d−√
2Re(α)][pd/h̄−√

2Im(α)]t3 ,

where

t1 = e2|ζ |

2
(1 + cos φ) + e−2|ζ |

2
(1 − cos φ),

t2 = e2|ζ |

2
(1 − cos φ) + e−2|ζ |

2
(1 + cos φ),

t3 = (e2|ζ | − e−2|ζ |) sin φ.

(27)

Finally, with the help of (24), we get

csq(0) =
(

d2

4
t2,

1

4
t3,

1

4d2
t1

)
. (28)

Thermal state. This is a Gibbs state characterized by the
thermal equilibrium temperature T ′, which in the number state
representation reads

ρ̂ =
∑

n

nn
th

(1 + nth )n
|n〉〈n|, (29)

with the mean excitation number

nth =
[

exp

(
h̄ω0

kBT ′

)
− 1

]−1

.

We have, for the Wigner function,

W (x, p) = 1

π h̄
e
− x2

d2 (2nth+1)
− p2d2

h̄2 (2nth+1) ,

which yields

cth(0) = coth

(
h̄ω0

2kBT ′

)(
d2

4
, 0,

1

4d2

)
. (30)
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FIG. 2. The parameters used here are γ = ω0, � = 20ω0, and kBT = 10h̄ω0. The initial conditions are w = 1, [c1(0), c2(0), c3(0)] =
[d2

0 /4, 0, 1/(4d2
0 )]. Left panel: Ad2

0 and Cd2
0 as a function of ω0t , where d0 is the width of the quantum harmonic oscillator’s ground state. The

main figure shows the non-Markovian time evolution and the inset shows the Markovian time evolution. Right panel: A/C as a function of ω0t .
The solid and dash-dotted lines show this ratio for the non-Markovian and the Markovian case, respectively. The horizontal thin lines indicate
the asymptotic values in both panels.

Note that the coherent state with w = 1 corresponds to the
ground state of the quantum harmonic oscillator and is con-
tained as trivial special cases of the thermal and squeezed
states.

In all subsequent numerical cases, we will compare the
time evolution of (13) with its Markovian version, which is
obtained by replacing all time-dependent coefficient functions
with their respective limits as t → ∞ i.e.,

ωp(t ) → ω(M )
p , λ(t ) → λ(M ),

Dpx(t ) → D(M )
px , Dpp(t ) → D(M )

pp .

The result of a typical, physically valid time evolution can
be seen in Fig. 2. Here, the parameters are chosen so that the
density operator is physical for any time, i.e., A and C are

positive and A � C. One can observe very similar behavior if
one starts from a squeezed or a thermal state, except A/C starts
from a number bigger than 1 for a thermal state. In the figures,
we use dimensionless units, A and C are multiplied with d2

0 ,
where d0 is the width of the quantum harmonic oscillator’s
ground state.

In Fig. 3, parameters are chosen from region I. It promptly
follows that the asymptotic behavior must be unphysical for
both the Markovian and non-Markovian cases. In Fig. 3(b),
both curves are already below the horizontal line at ω0t ≈ 2;
however, the duration of the physical behavior is longer for
the non-Markovian case at the beginning. The parameters in
Fig. 4 are also from region I; however, the comparison with
the previous case shows that for smaller temperature kBT/h̄ω0

and damping factor γ /ω0, we can see a few oscillations. The
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FIG. 3. The same as for Fig. 2. The parameters used here are γ = ω0, � = 20ω0, and kBT = h̄ω0. The initial conditions are w = 1,
[c1(0), c2(0), c3(0)] = [d2

0 /4, 0, 1/(4d2
0 )]. Positivity violations occur for ω0t > 0.79 (Markovian case) and for ω0t > 2.03 (non-Markovian

case).
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FIG. 4. The same as for Fig. 2. The parameters used here are γ = 0.1ω0, � = 20ω0, and kBT = 0.01h̄ω0. The initial conditions are w = 1,
[c1(0), c2(0), c3(0)] = [d2

0 /4, 0, 1/(4d2
0 )]. Positivity violations occur for ω0t > 0 (Markovian case) and for ω0t > 3.28 (non-Markovian case).

non-Markovian evolution is physical up to ω0t ≈ 3.28 and
later it becomes unphysical because A/C becomes smaller
than one. The Markovian evolution promptly becomes un-
physical at t = 0 and remains for all times. We note that the
parameters γ /ω0, �/ω0, and kBT/h̄ω0 are chosen to be the
same as for the bottom subfigure of Fig. 10.7 in the book by
Breuer and Petruccione [9].

In Fig. 5, we choose a bigger γ than in Fig. 4. All of the
other parameters and initial conditions are the same. The pa-
rameters still belong to region I. Here, something more drastic
happens in both cases. First the ratio of A/C goes below 1
(indicating positivity violation) and, at a later time, A changes
sign and, at an even further time, A and C diverge, changing
signs anew. The Markovian evolution is still unphysical for the
whole time evolution, while non-Markovian evolution shows
physical behavior until A/C goes below one. If any of A and C

become negative, the corresponding Wigner function and Tr ρ̂

do not exist.
In Fig. 6, we used the same parameters as in Fig. 3, except

that γ has been decreased in such a way that the parameters
are now in region II. The non-Markovian evolution is physical
for all time. The Markovian evolution gets unphysical but
bounces back into the A/C � 1 region and remains physical
at later times.

For Fig. 6, the initial condition is a coherent state with
w = 1 in Eq. (25). It is interesting to note that if we vary w, for
example to w = 1/

√
10, the initial behavior of the Markovian

run is completely different (see Fig. 7): The positivity is
promptly violated at t = 0+ and, at a later time, the system
returns back to a physically allowed state. The non-Markovian
time evolution remains physical for all the time, even for this
initial condition.
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FIG. 5. The same as for Fig. 2. The parameters used here are γ = 10ω0, � = 20ω0, and kBT = 0.01h̄ω0. The initial conditions are w = 1,
[c1(0), c2(0), c3(0)] = [d2

0 /4, 0, 1/(4d2
0 )]. Positivity violations occur for ω0t > 0 (Markovian case) and for ω0t > 0.23 (non-Markovian case).

For the non-Markovian case, A changes sign at ω0t ≈ 0.36. A and C diverge at ω0t ≈ 0.44.
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FIG. 6. The same as for Fig. 2. The parameters used here are γ = 0.755ω0, � = 20ω0, and kBT = h̄ω0. The initial conditions are w = 1,
[c1(0), c2(0), c3(0)] = [d2

0 /4, 0, 1/(4d2
0 )]. The Markovian behavior is unphysical for 1.26 < ω0t < 2.68.

An interesting regime is when γ /ω0 and kBT/h̄ω0 are
small. Here we expect a few damped oscillations. In Figs. 8
and 9, our parameters are close to the critical line, but are
still in region II. The non-Markovian time evolution is already
physical at any time. However, the Markovian run shows
several time intervals where the curve of A/C attains values
smaller than one. The same can also be monitored in the
quantity A − C (see Fig. 9).

Let us discuss a few facts about squeezed initial states.
Choosing γ , �, and kBT as in Fig. 6, we have found strong
dependence on the initial conditions of the positivity violation.
In Fig. 10, a large dark region corresponds to the complex
ζ ’s for which positivity violations can happen for the Marko-
vian runs. This is further supported in Fig. 11, where two
individual time evolutions are shown with the same |ζ |, but
opposite sign of φ. For φ = −π/4, the quotient A/C shows
a strong positivity violation, namely, in a small-time interval
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FIG. 7. The same as for Fig. 2(b). The parameters used here
are γ = 0.755ω0, � = 20ω0, and kBT = h̄ω0. The initial conditions
are w = 1/

√
10, [c1(0), c2(0), c3(0)] = [d2

0 /(40), 0, 10/(4d2
0 )]. The

Markovian behavior is unphysical for 0 < ω0t < 0.17.

it becomes negative. There is no violation for φ = π/4. This
particular situation is explained by inequality (C2) at t = 0
(see Appendix C). In fact, c2(0) flips sign for the change
φ → −φ. In the non-Markovian case, we found no positivity
violations at all for this family of initial conditions if the
stationary solution is physical.

Next, we discuss what can happen if one starts from a
thermal state (which is not a pure initial state for T ′ > 0).
Let us consider Fig. 12. We plot the minimal values of the
quotient A/C for individual Markovian runs starting from
thermal initial states. Different curves belong to different
damping factors γ . At T ′ = 0, we start from a coherent state.
All relevant parameters belong to region II. The figure clearly
supports the expectation that if one increases the width of the
initial Gaussian, one can avoid positivity violations. Curves
with decreasing γ are further away from the critical line.
Choosing γ to be bigger than 0.72, there is no positivity
violation even for T ′ = 0.

These numerical investigations suggest that the non-
Markovian evolution becomes unphysical, i.e., A/C < 1, only
when the stationary state is unphysical. This has been in-
vestigated in detail in Sec. III and results in constraints on
the choice of the parameters of the model. However, this is
not true for the Markovian evolution, which may show, for
certain times of the evolution, unphysical behavior. It is indeed
true that the non-Markovian evolution is still more reliable
than the Markovian one.

V. SUMMARY AND FINAL REMARKS

Summarizing, we have investigated a HPZ master equation
of the Caldeira-Leggett model with a quantum harmonic oscil-
lator, where we have considered the weak-coupling limit up to
the second order in the coupling parameter and ohmic spectral
density with a Lorentz-Drude cutoff function. The restriction
to weak coupling does not necessarily mean that the influence
of the bath on the system is weak, i.e., weak damping. The
large number of bath modes may act collectively and thereby
have a strong influence on the open system, even if each mode
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FIG. 8. The same as for Fig. 2. The parameters used here are γ = 0.1ω0, � = 20ω0, and kBT = 0.397055h̄ω0. The initial conditions are
w = 1, [c1(0), c2(0), c3(0)] = [d2

0 /4, 0, 1/(4d2
0 )]. Several positivity violations are for the Markovian case.

is perturbatively weakly coupled to it; see, for example, [34].
Therefore, we have begun our analysis without any restriction
on the parameters of model.

Our goal has been to identify unphysical behavior of this
master equation by means of following time evolutions of the
initial density operators and examining whether the evolving
density operators lose their positivity. This is a very delicate
problem for general initial density operators because the time
evolution is usually followed in the phase-space represen-
tation and the study of positivity properties of the Weyl
transformed operators is still an open problem [27]. Therefore,
we have focused only on Gaussian states, where the spectrum
can be completely identified from the phase-space solutions
of the master equation.
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FIG. 9. (A − C)d2
0 as a function of ω0t . The parameters used here

are γ = 0.1ω0, � = 20ω0, and kBT = 0.397055h̄ω0. The initial con-
ditions are w = 1, [c1(0), c2(0), c3(0)] = [d2

0 /4, 0, 1/(4d2
0 )]. Solid

line: Non-Markovian case; dash-dotted line: Markovian case. The
horizontal line is drawn at zero. One can observe several positivity
violations for the Markovian case.

As a first step, in Sec. II, we have transformed the whole
problem into a phase-space representation where the evolution
is described by a linear differential equation system. Then, we
have identified algebraic relations between the evolving co-
efficients of this phase-space representation and the spectrum
of the evolving operator, which may not always be a density
operator. We have used numerical simulations to follow the
evolving spectrum. We have compared the non-Markovian
evolution to a Markovian one, which we have obtained by
taking the coefficients in the t → ∞ limit; see Eq. (16).
We have showed for coherent, squeezed, and thermal initial
conditions that the positivity violations in the non-Markovian
evolution occur when the stationary solution is also no longer
a physical state. Therefore, a positivity check on the stationary
solution is necessary, which puts important constraints on
the parameters of our theory. Therefore, we have carried out
an analysis on the stationary solution in Sec. III, where we
have also found results known by the community; see [19]
or [33]. However, it is worthwhile to mention that not all
published material handles this positivity issue very carefully;
see, for example, Fig. 10.7 in [9]. In contrast to the non-
Markovian evolution, we have found in Sec. IV, both for short
(occurring at t = 0+) and intermediate (occurring at finite
t > 0) time evolutions, positivity violations in the Markovian
case. Our numerical investigations suggest that the rapid
growth of the diffusion coefficient Dpp(t ) compared to the
growth of Dpx(t ) is the reason why the non-Markovian mas-
ter equation avoids positivity violations for short evolution
times.

We have only considered ohmic spectral density with a
Lorentz-Drude cutoff function, but one may ask what can
happen for other types of spectral densities. At least we know
from [14] that in cases of so-called supra- and subohmic
spectral densities, Dpp(t ) is growing faster than Dpx(t ) for
short times and, together with our results, we conjecture that
non-Markovian evolutions for these spectral densities also
cannot exhibit positivity violations for Gaussian initial states
and physical stationary states.
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FIG. 10. Positivity violations in the Markovian runs for different
squeezed initial conditions characterized by the complex ζ . White
region: No positivity violations; dark region: Positivity violations.
The parameters used here are γ = 0.755ω0, � = 20ω0, kBT = h̄ω0,
and w = 1. The time evolutions for points at |ζ | = 1, φ = ±π/4 will
be shown in Fig. 11.

If one considers the time evolution (1) starting from an
arbitrary, not necessarily Gaussian, initial density operator,
then one can state the following: For parameters belonging
to region I of Fig. 1 and starting from any initial condition,
there must be positivity violation both for non-Markovian
and Markovian master equations. This can be explained as
follows. For parameters in region I, the asymptotic state is
nonphysical. However, this state is unique and corresponds
to the asymptotic Gaussian state of any initially physical
state; e.g., see [22,33] discussed in their Sec. III. If this
state is nonphysical, then positivity violation must occur at
least asymptotically. For parameters in regions II and III, one
should not rule out the possibility of finding positivity viola-
tions for appropriately chosen general initial density operators

as in the case of Gaussian initial states and the Markovian
master equation.

Numerically, the non-Markovian evolution does not seem
to show any signs of positivity violations for physical sta-
tionary states. Unfortunately, this is not always the case for
the Markovian evolution. Therefore, we may say the non-
Markovian evolution is superior to the Markovian one, which
is, vaguely speaking, due to the rapid growth of Dpp(t ) com-
pared to that of Dpx(t ). We managed to prove in Appendix C
that there is no short time positivity violation for the arbitrary
Gaussian initial state and parameters of the model. This
remains true even when the stationary solution is unphysical.
This finding seems to be connected to the so-called initial
“jolt” found by Refs. [14,17].

A few generic comments on the purity of the evolving
solutions are in order. In our whole investigation, we have
focused on the ratio A/C which, in turn, is the squared inverse
of the purity. Thus, all figures implicitly describe the purity as
well, which is a measure of mixedness. Many figures show
that purities are nonmonotonic in time and therefore states
undergo a certain amount of purification or mixing during the
time evolution. An easy way to understand this effect is to
consider an initial pure state and a different pure stationary
state. As the dynamic is clearly not unitary, the stationary
state will be reached throughout not necessarily pure states,
and thus purity in this example cannot be monotonic; see our
Fig. 8.

Several questions concerning this subject remain open
problems, even though applications of these master equations
are very frequent. Here, we have thoroughly investigated
a Markovian and a non-Markovian master equation of the
Caldeira-Leggett model for initial Gaussian density operators
and identified the boundaries of the physically interpretable
solutions of the time evolutions. Therefore, our results provide
a key step in establishing the range of applicability of these
master equations.
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FIG. 11. A(t )/C(t ) for selected squeezed initial states. Left panel: Markovian time evolutions; right panel: Non-Markovian time
evolutions. The parameters used here are γ = 0.755ω0, � = 20ω0, and kBT = h̄ω0. The initial conditions are w = 1, ζ = 1, φ = ±π/4,
[c1(0), c2(0), c3(0)] = (0.299405 d2

0 , ±1.282289, 1.581693/d2
0 ). Positivity violation is in the interval 0 < ω0t < 1.85 for the Markovian case,

with φ = −π/4. No violation is on the right panel.
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FIG. 12. Behavior of mint�0 A(t )/C(t ) for thermal initial states
(30) of temperature T ′ for the Markovian time evolution. Various
values of γ are used and we set � = 20ω0 and kBT = h̄ω0.
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APPENDIX A: EXPRESSIONS FOR THE COEFFICIENTS
Dpp(t ) AND Dpx(t )

Expanding the coth function in Eq. (4) as

coth πx =
∞∑

n=−∞

x

π (x2 + n2)
= 1

πx
+ 2x

π

∞∑
n=1

1

(x2 + n2)

and integrating term by term, one gets, for s > 0,

D1(s) = 4mγ kBT �2

h̄

[
e−�s

�
+ 2

∞∑
n=1

�e−�s − νne−νns

�2 − ν2
n

]
,

(A1)

where νn’s are the bosonic Matsubara frequencies:

νn = 2πnkBT/h̄. (A2)

The first part in the square brackets of (A1) can be trans-
formed using the identity

e−�s

[
1

�
+ 2

∞∑
n=1

�

�2 − ν2
n

]
= π

ν1
cot

(
�π

ν1

)
e−�s,

where ν1 = 2πkBT/h̄ is the first bosonic Matsubara fre-
quency. The other part in the square brackets of (A1) can be
expressed as

∞∑
n=1

νne−νns

�2 − ν2
n

= −e−ν1s

2ν1

[
G

(
e−ν1s, 1, 1 − �

ν1

)

+ G

(
e−ν1s, 1, 1 + �

ν1

)]
, (A3)

where G(z, a, b) denotes the so-called Lerch transcendent or
HurwitzLerchPhi[z, a, b] in MATHEMATICA [35].

A similar but different sum also appear later,
∞∑

n=1

νne−νns

ω2
0 + ν2

n

= e−iω0sF
(
e−ν1s, ν1−iω0

ν1
,−1

) + eiω0sF
(
e−ν1s, ν1+iω0

ν1
,−1

)
2iω0

,

where F (z, a, b) is the so-called incomplete beta function
Beta[z, a, b] (we also use the terminology of Wolfram MATH-
EMATICA).

We also need two more sums over the Matsubara frequen-
cies; however, those can be calculated via the useful formulas

∞∑
n=1

ν2
n e−νns

�2 − ν2
n

= − ∂

∂s

( ∞∑
n=1

νne−νns

�2 − ν2
n

)
,

∞∑
n=1

ν2
n e−νns

ω2
0 + ν2

n

= − ∂

∂s

( ∞∑
n=1

νne−νns

ω2
0 + ν2

n

)
.

Inserting the series (A1) into Eq. (2), the integral over s is
trivial, but the final forms for the diffusion coefficients are
lengthy:

D(2)
px (t ) = kBT γ�2

h̄ω0
(
ω2

0 + �2
){

ω0

(
1

�
+ 2

∞∑
n=1

�

�2 − ν2
n

− 2
∞∑

n=1

[
νn

�2 − ν2
n

+ νn

ω2
0 + ν2

n

])

−ω0 cos (ω0t )

(
e−�t

�
+ 2

∞∑
n=1

�e−�t

�2 − ν2
n

− 2
∞∑

n=1

[
νne−νnt

�2 − ν2
n

+ νne−νnt

ω2
0 + ν2

n

])

− sin (ω0t )

(
e−�t + 2

∞∑
n=1

�2e−�t

�2 − ν2
n

− 2
∞∑

n=1

[
ν2

n e−νnt

�2 − ν2
n

+ ν2
n e−νnt

ω2
0 + ν2

n

])}
, (A4)

022206-11



HOMA, CSORDÁS, CSIRIK, AND BERNÁD PHYSICAL REVIEW A 102, 022206 (2020)

D(2)
pp (t ) = 2kBT mγ�2

h̄
(
ω2

0 + �2
)
{(

1 + 2
∞∑

n=1

�2

�2 − ν2
n

− 2
∞∑

n=1

[
ν2

n

�2 − ν2
n

+ ν2
n

ω2
0 + ν2

n

])

+ω0 sin (ω0t )

(
e−�t

�
+ 2

∞∑
n=1

�e−�t

�2 − ν2
n

− 2
∞∑

n=1

[
νne−νnt

�2 − ν2
n

+ νne−νnt

ω2
0 + ν2

n

])

− cos (ω0t )

(
e−�t + 2

∞∑
n=1

�2e−�t

�2 − ν2
n

− 2
∞∑

n=1

[
ν2

n e−νnt

�2 − ν2
n

+ ν2
n e−νnt

ω2
0 + ν2

n

])}
. (A5)

We used the above formulas in our numerical works. The
Markovian values for ω2

p and λ are

(
ω(M )

p

)2 = ω2
0 + 2γ� − 2γ�3

�2 + ω2
0

, λ(M ) = γ�2

�2 + ω2
0

.

(A6)
The asymptotic Markovian values for the diffusion coeffi-
cients can be read from the first lines of Eqs. (A4) and (A5).
Performing the Matsubara sums, they can be given as

D(M )
pp = mγω0

�2

ω2
0 + �2

coth

(
h̄ω0

2kBT

)
, (A7)

D(M )
px = γ�2

�2 + ω2
0

[
−kBT

h̄�
− 1

2π

{
2�

(
h̄�

2πkBT

)

−�

(
ih̄ω0

2πkBT

)
− �

( −ih̄ω0

2πkBT

)}]
, (A8)

where �(x) is the digamma function. The Markovian values
(A6)–(A8) fully determine the asymptotic matrix M(M ) and
the asymptotic vector v(M ).

APPENDIX B: BEHAVIOR OF Dpp(t ) AND Dpx(t )
FOR SMALL TIME t

At very small temperature, the hyperbolic cotangent factor
in Eq. (4) can be well approximated by one,

D1(s)|T =0 = 2γ m�2

π

∫ ∞

0

ω

�2 + ω2
cos(ωs)dω

= 2γ m�2

π
[sinh(�s)Shi (�s)

− cosh(�s)Chi (�s)], (B1)

where

Chi (z) = γEM + ln(z) +
∫ z

0

[cosh(t ) − 1]

t
dt (B2)

is the function CoshIntegral[x] and

Shi (z) =
∫ z

0

sinh(t )

t
dt (B3)

is the function SinhIntegral[x] in MATHEMATICA. For short
times s, the dominant behavior in D1(s) is the logarithm
function. By Eqs. (2), (B2), and (B3), the coefficients Dpp(t )
and Dpx(t ) behave as

Dpp(t ) = 2γ m�2

π
(1 − γEM − ln �t )t + O(t3), (B4)

Dpx(t ) = γ�2

4π
(1 − 2γEM − 2 ln �t )t2 + O(t4), (B5)

for small t and T = 0.
At finite temperature, one can make the decomposition

D1(s) = D1(s)|T =0

+ 2γ m�2

π

∫ ∞

0

ω

�2 + ω2

[
coth

(
h̄ω

2kBT

)
− 1

]
dω,

where the first term on the right-hand side is discussed above
and behaves as ∼ln(�s), while the second is finite even
for s = 0. By Eq. (2), at finite temperature, the short time
dominant behavior of Dpx(t ) and Dpp(t ) is still

Dpp(t ) � −2γ m�2

π
t ln(�t ), (B6)

Dpx(t ) � −γ�2

2π
t2 ln(�t ). (B7)

APPENDIX C: ANALYSIS OF SMALL-TIME BEHAVIOR

In this Appendix, we show how a differential equation
for the quotient A(t )/C(t ) can be used to prove small-time
positivity violation or nonviolation. We begin with the non-
Markovian case. Using the notations of Sec. III, we set Q(t ) =
A(t )/C(t ) = 16c1(t )c3(t ) − 4c2

2(t ), and via the system (13),
we arrive at

Q̇ + 4λ(t )Q = 16
Dpp(t )

h̄
c1(t ) − 16Dpx(t )c2(t ),

the general solution of which is given by the variation of
constants formula,

Q(t ) = Q(0)

�(t )

+ 16

�(t )

∫ t

0
�(s)

[
Dpp(s)

h̄
c1(s) − Dpx(s)c2(s)

]
ds,

where we have let �(t ) = exp (4
∫ t

0 λ) for convenience. Using
this, the condition Q(t ) � 1 is clearly equivalent to F (t ) � 0,
where

F (t ) =
∫ t

0
�(s)

[
Dpp(s)

h̄
(s)c1(s) − Dpx(s)c2(s)

]
ds

− �(t ) − Q(0)

16
.

Note that F (0) = Q(0)−1
16 � 0. Therefore, a sufficient condi-

tion for F (t ) � 0 for small t to hold is simply that F ′(t ) � 0,

022206-12



RANGE OF APPLICABILITY OF THE HU-PAZ-ZHANG … PHYSICAL REVIEW A 102, 022206 (2020)

i.e.,

Dpp(t )

h̄
c1(t ) − Dpx(t )c2(t ) � λ(t )

4
. (C1)

We note in passing that for pure initial states, F (0) = 0, so
F ′(t ) � 0 is actually equivalent to Q(t ) � 1 for sufficiently
small t . Using the expressions (B6) and (B7) and the short-
time dominant behavior λ(t ) � 1

2γ�2t2, we find

−2m

π h̄
ln(�t )c1(t ) + 1

2π
t ln(�t )c2(t ) � t

8
,

which is obviously true for any trajectory (c1, c2, c3) for
sufficiently small t . In fact, c1 is always positive, and on
the left-hand side, the first term is bigger in modulus than the
second term. In the first term, the logarithm ensures that the
inequality is true for small t and for any positive c1. This

shows that the non-Markovian time evolution never violates
positivity at t = 0+.

In the Markovian case, a completely analogous condition
to (C1) can be derived with Dpp(t ), Dpx(t ), and λ(t ) replaced
by their Markovian counterparts D(M )

pp , D(M )
px , and λ(M ), viz.,

D(M )
pp

h̄
c1(t ) − D(M )

px c2(t ) � λ(M )

4
. (C2)

Now consider squeezed initial states csq(0), for which, clearly,
Q(0) = 1. Evaluating the preceding inequality at t = 0, we
obtain a set of initial states csq(0) that is surely violating at
t = 0+. This constitutes a subset of the gray set in Fig. 10.
Hence, we have shown that in the Markovian case, it is always
possible to find a pure state that violates positivity at t = 0+.
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