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Capturing nonexponential dynamics in the presence of two decay channels
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The most unstable quantum states and elementary particles possess more than a single decay channel. At
the same time, it is well known that typically the decay law is not simply exponential. Therefore, it is natural
to ask how to spot the nonexponential decay when (at least) two decay channels are opened. In this work, we
study the tunneling phenomenon of an initially localized particle in two spatially opposite directions through
two different barriers, mimicking two decay channels. In this framework, through specific quantum mechanical
examples which can be accurately solved, we study the general properties of a two-channel decay that apply for
various unstable quantum states (including unstable particles). Apart from small deviations at early times, the
survival probability and the partial tunneling probability along the chosen direction are very well described by the
exponential-decay model. In contrast, the ratios of the decay probabilities and probability currents are evidently
not a simple constant (as they would be in the exponential limit), but display time-persisting oscillations. Hence,
these ratios are optimal witnesses of deviations from the exponential-decay law.
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I. INTRODUCTION

The fact that the decay law in quantum mechanics (QM) is
not described by an exponential function is well established
[1–13]. In particular, decaying systems very often exhibit the
Zeno period at short initial times, in which the nondecay
probability, i.e., the probability p(t ) that the unstable particle
prepared at the initial time t = 0 has not decayed yet at a later
time t > 0, is quadratic in time, p(t ) − 1 ∝ −t2. On the other
hand, for very long times (typically several orders of mag-
nitude larger than the lifetime [2]), the nondecay probability
is typically governed by a power law. From the experimental
point of view, the deviations from the exponential decay have
been verified at short times in the study of tunneling of sodium
atoms in an optical potential [14] and, more recently, in the
study of decays of unstable molecules via the emission of
photons [15]. Even if ubiquitous from a theoretical point of
view, in physical systems the deviations from the exponential
case are typically very small, making them very difficult to be
measured.

Quite remarkably, the nonexponential decay also allows
one to influence the decay rate by changing the way the
measurement is performed. As examples, the famous Quan-
tum Zeno Effect (QZE) and the Inverse Zeno Effect (IZE)
are direct consequences of the peculiarity of the decay law
[16–27] . Indeed, experimental confirmation of both the QZE
and the IZE was achieved in experiments in which elec-
trons undergo a Rabi transition between atomic energy levels
[28–30]. In these cases, the nondecay probability oscillates
in time as ∼cos2(�t ) and is evidently nonexponential. Even
if this is not a real unstable system, the slowdown of the
quantum transition by frequent measurements could be seen
in these experiments. Even more interestingly, these effects

were also confirmed in the tunneling of sodium atoms, which
represent a genuine irreversible quantum decay [31]. Finally,
the QZE and IZE are also related to the quantum computation
and quantum control, which are important elements in this
flourishing research field [32,33].

Deviations from the exponential-decay law are indeed
expected also in quantum field theory (QFT), which is the
ultimate correct framework to study the creation and annihi-
lation of particles, and hence the decay of unstable particles
[10,34,35]. Namely, even if a perturbative treatment is not
capable to capture such deviations [36], the spectral function
in QFT is not a Breit-Wigner [37–39] and, in some cases, it
can be very different from it [40]. As a consequence, the decay
law is also not a simple exponential. Unfortunately, a direct
experimental proof of the nonexponential decay of unstable
elementary particles is still missing. Nonetheless, the Zeno
effect confirmed recently in cavity QED [41] suggests that
different dynamical features of the simplest QM systems may
also have their counterparts in different purely QFT situations.

An interesting case is realized when an unstable quantum
state (or particle) can decay in (at least) two channels. Indeed,
this situation takes place very often in Nature. For instance, in
the realm of particle physics, most unstable particles possess
multiple decay channels [42]. Similarly, electrons in excited
atoms can decay in more than a single energy level [43].

As expected, in the exponential limit, the ratio of the decay
probabilities into the first and the second channel is a constant.
A detailed study of the nonexponential decay when two (or
more) decay channels are present is described in [10]. In
QM, this ratio is not a constant, but shows some peculiar
and irregular oscillations, which in [10] were discussed in
the framework of the so-called Lee model [44,45] (also called
the Friedrichs model or the Jaynes-Cummings model [43,46]),
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which captures the most salient features of QFT (for details,
see [10,47–50]). Moreover, qualitatively similar results for the
ratio of the partial decay probability currents were obtained
in [10], also in a quantum field theoretical model. Yet, the
topic of nonexponential decay in the presence of more decay
channels needs novel and different studies that will allow
us to understand, in more detail, its features and make an
experimental verification (or falsification) possible.

In this work, we explore the two-channel decay problem
in a quantum mechanical context. To this aim, we introduce
a simple model of a single particle initially confined in a
box potential whose walls are suddenly partially released,
allowing the particle to tunnel to the open space. In this
way, we slightly generalize the celebrated Winter’s model [3],
where only a single box wall is released. The Winter model
is recognized as one of the most important workhorses in the
theory of nonexponential decays (see, for example, [4–9] and
[51] for a general treatment). In our work, we want to mimic
two different channels of a decay and therefore we focus on
situations of essentially different barriers. In contrast to the
symmetric situation of identical barriers [52–54], in this case
the exact analytical solution is known only for the scattering
problem of external wave packets [55–59] and it does not
provide a straightforward solution for the decay scenario
studied here [60]. Specifically, using (in numerical means)
the corresponding time-dependent Schrödinger equation, we
check how to capture deviations from the exponential-decay
law. In agreement with Ref. [10], but with a different method,
we find that the ratio of the decay probability currents shows
time-persisting deviations from the exponential-decay law
predictions. The main advantage of the approach presented
here is its complete transparency of all successive steps and its
feasibility in physical experiments in which the tunneling in
different directions can be obtained by asymmetric potentials.
Moreover, as discussed in the summary, the qualitative fea-
tures of the obtained results are expected to be quite general
and can be used not only to describe the generic tunneling
processes of particles to the open space, but also to understand
decays of unstable relativistic particles in the QFT language.

II. THE MODEL

In this paper, we consider a single particle moving in a
one-dimensional space subjected to two separated δ potential
barriers. The system is described by the following Hamilto-
nian:

H = − h̄2

2m

d2

dx2
+ VLδ(x + R) + VRδ(x − R), (1)

where R is the half distance between the two barriers and their
height is controlled by the independent parameters VL and VR.
Our aim is to find the decay properties of a particle that is
initially located between the barriers. To this aim, at the initial
moment (t = 0), the wave function is taken as

�(x, t = 0) = �0(x) =
{

1√
R

cos
(

πx
2R

)
, |x| � R

0, |x| > R,
(2)

which corresponds to the ground state in the limit of barriers
of infinite heights. This choice is quite natural, but of course

one could use other initial wave functions without changing
the qualitative results that we are going to present.

The properties of the studied system are controlled by
only two independent dimensionless parameters. It is clearly
visible that all quantities can be expressed in units fixed by
the half distance R. Namely, if all distances are measured in
units of R, energies in units of h̄2/(mR2), and time intervals
in units of mR2/h̄, then the properly rescaled (dimensionless)
Hamiltonian takes the form

H = −1

2

d2

dx2
+ V0[δ(x + 1) + κδ(x − 1)], (3)

where V0 = mR
h̄2 VL and κ = VR/VL are two independent di-

mensionless parameters controlling the heights of the left
barrier and the ratio between the right and the left heights,
respectively. In these units, we solve the time-dependent
Schrödinger equation,

(i∂t − H)�(x, t ) = 0, (4)

with the initial wave function (2). Notice that in the chosen
units, the initial energy of the system (in the limit V0 → ∞,

and κ > 0) is E0 = π2/8, which is of the order of 1. Clearly,
due to the mirror symmetry of the problem, without losing
generality, one can restrict to 0 < κ � 1.

To quantify the dynamics of the system, we focus our
attention on the nondecay probability defined as

P0(t ) =
∫ +1

−1
dx |�(x, t )|2, (5)

i.e., the probability that the particle is remaining in the region
x ∈ (−1, 1) at the time t . Note that this quantity is inter-
changeably also called the survival probability, but then some
attention is needed [61]. Moreover, we also consider the left
and the right decay probabilities defined as

PL(t ) =
∫ −1

−∞
dx |�(x, t )|2, (6a)

PR(t ) =
∫ +∞

+1
dx |�(x, t )|2, (6b)

where PL(t ) (PR(t )) is the probability that at the time t , the
particle can be found to the left (right) of the well, i.e., it is the
probability that the tunneling to the left (right) has occurred
in the time interval between 0 and t . Obviously, at any instant
t , these probabilities are not independent and must obey the
normalization condition

P0(t ) + PL(t ) + PR(t ) = 1. (7)

It is also extremely useful to consider the probability currents
(the time derivatives of the probabilities) describing the speed
of their temporal change,

p0(t ) = −dP0(t )

dt
, pL(t ) = dPL(t )

dt
, pR(t ) = dPR(t )

dt
. (8)

Notice that the definition of p0(t ) takes into account that the
nondecay probability decreases with time. Temporal changes
of p0(t ) are often measured in experiments since it corre-
sponds to the number of decay products per unit of time (for
instance, the lifetime measurement of the neutron by the beam
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method [62] or the decay of H-like ions via electron capture
and neutrino emission [63]). Note that a simple interpretation
holds: pL(R)(t )dt is the probability that the decay occurs to the
right (left) between t and t + dt . Clearly, from the relation (7),
one finds that

p0(t ) = pL(t ) + pR(t ). (9)

The central quantities that we focus on in the following are
the right-to-left ratio of probabilities,

�(t ) = PR(t )

PL(t )
, (10)

and its counterpart, the right-to-left ratio of probability cur-
rents,

π(t ) = pR(t )

pL(t )
. (11)

It will turn out that the time dependence of both ratios plays
a crucial role in capturing the nonexponential-decay behavior
of the system.
Finally, let us recall the explicit forms of all these functions
when the exponential Breit-Wigner (BW) limit [64–66] holds.
In this limit, the nondecay probability reads

P0(t )
BW−−→ e−�t , (12)

where � is the decay rate. As argued in [2], the exponential de-
pendence of the nondecay probability is a direct consequence
of the Breit-Wigner energy distribution of the unstable state.
The decay rate � can also be decomposed to partial decay
rates to the “left” �L and to the “right” �R associated with
these two distinguished decay channels, � = �L + �R. Then,
the partial decay probabilities have the form

PL(t )
BW−−→ �L

�
(1 − e−�t ), (13a)

PR(t )
BW−−→ �R

�
(1 − e−�t ). (13b)

Obviously, the partial decay probability currents read

pL(t )
BW−−→ �Le−�t , pR(t )

BW−−→ �Re−�t . (14)

For future convenience, we introduce the ratio of the partial
decay widths,

β = �R/�L, (15)

which, in the BW limit, remains constant and directly con-
nects the right-to-left ratios (10) and (11),

�(t ) = PR(t )

PL(t )
BW−−→ β

BW←−− pR(t )

pL(t )
= π(t ). (16)

To show that the exponential-decay law is violated, it is
sufficient to expose deviations from the constant value of
β = �R/�L. This is why the right-to-left ratios (10) and (11)
are of special interest.

III. RESULTS

We solve the Schrödinger equation (4) by expressing the
time-dependent wave function in terms of eigenstates of the
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FIG. 1. Upper panels: The nondecay probability P0(t ) as a func-
tion of time for some chosen values of κ and V0. The insets highlight
the behavior at short times. Bottom panels: The corresponding results
for the decay rate �(t ) = −lnP0(t )/t .

dimensionless Hamiltonian (3). In practice, due to a lack of
convenient exact analytical solutions, we diagonalize it on
a finite spatial interval with closed boundaries at x = ±L
with L/R 	 1 (for more technical details, see the Appendix).
We then calculate the nondecay probability P0(t ), the partial
decay probabilities PL(t ) and PR(t ), and, finally, the two ratios
�(t ) and π(t ).

In the upper panel of Fig. 1, we show the nondecay
probability P0(t ) as a function of time for some chosen values
of V0 and κ (the insets highlight the changes for small t). It
is clearly seen that after a short initial period, P0(t ) exhibits
an exponential decay. It is even more evident when the decay
rate �(t ) = −lnP0(t )/t is plotted (bottom panel in Fig. 1)—
after some small initial wiggles, it reaches a constant value,
indicating a quite fast transition to the BW regime. These
results suggest that in the regime of exponential decay, the
approximation (12) should be applied. It turns out that in
this regime, the nondecay probability almost ideally fits the
relation

P0(t ) ≈ e−�(t−t0 ), (17)

manifesting the correctness of the BW limit predictions. Note
that in general the additional “time shift” t0 is nonzero and
its inverse is directly related to the initial period of nonex-
ponential decay. In fact, the sign of t0 indicates if, for small
times, the dynamics is sub- or supexponential (see [22] and
[46] for detailed discussions of this point). In the cases studied
here, this parameter is very close to 0 and, due to numerical
uncertainty, we are not able to determine its sign. To gain
a deeper insight into the validity of the BW approximation,
we additionally check how the ratio of partial decay rates
β depends on κ and V0 (see Fig. 2). It turns out that the
ratio β becomes insensitive to changes in V0 when V0 is large
enough. In fact, for a considered range of κ , the changes in
V0 do not affect the value of β when V0 exceeds a value
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FIG. 2. The ratio of partial decay rates β calculated in the BW
limit as a function of the asymmetry parameter κ for different values
of V0. The green solid line indicates a phenomenological relation β =
κ−2 justified in the limit of large V0.

of about 15. Moreover, in this regime, the ratio β, when
treated as a function of κ , almost perfectly follow the simple
relation β(κ ) ≈ κ−2 (green line in Fig. 2). This relation has
a direct intuitive phenomenological explanation. For large V0,
tunnelings in opposite directions become almost independent
and therefore the ratio of tunneling amplitudes is simply given
by the ratio of the barrier heights, κ−1. It means that the ratio
of probabilities is controlled solely by κ−2.

The discussion above means that the exponential formula
provides a very good approximation for large enough (but
not too large) times. Clear deviations are visible only for
initial moments (for the cases studied, t � 5). Of course, the
deviations become larger for smaller V0. However, we focus
on the cases in which P0(t ) is almost exponential since this is
the typically realized scenario in Nature.

The situation is very similar when partial decay probabili-
ties (6) are considered. In this case, after fitting to appropriate
exponential functions of the form

PL/R(t ) ≈ �L/R

�
[1 − e−�(t−t0 )], (18)

we see full agreement of the BW limit predictions with
accurate numerical results (see Fig. 3 for comparison).

All three results presented for probabilities P0(t ), PR(t ),
and PL(t ) suggest that any discrepancies from the exponential
behavior are poorly captured by these quantities. We checked
that this is also the case when the probability currents (8), i.e.,
the temporal derivatives of the probabilities, are considered.
However, the situation changes dramatically when, instead of
pure probabilities (probability currents), the properties of their
temporal ratios �(t ) and π(t ) are investigated. In Fig. 4, we
present accurate numerical results for these ratios as a function
of time for the same set of parameters as in Fig. 1. One can
see that the ratios �(t ) and π(t ) have rather complex be-
havior, especially for the initial period. More importantly, the
deviations from the constant value obtained in the exponential
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FIG. 3. Partial decay probabilities PR(t ) and PL (t ) as a function
of time. Note that accurate numerical results (continuous black lines)
coincidence with predictions of the BW limit (13) (red dashed lines).
See the main text for details.

BW limit are clearly visible. Both functions eventually reach
the expected constant value of β in the limit of large times.
Note, however, that here we do not consider very large times
in which the decay is again nonexponential due to the onset
of a power law. In our studies, when referring to intermediate
and large times, we mean periods in which the decay is almost
ideally exponential.

In fact, our results allow us to conclude that partial prob-
abilities PL(t ) and PR(t ) are generally linearly independent
functions since, if �(t ) and π(t ) are not identically equal,
then the Wronskian W (t ) = PL(t )pR(t ) − PR(t )pL(t ) is not
singular. [Note that for κ = 1, symmetric tunneling to the
left and to the right occurs: �(t ) = π(t ) = 1]. Only for a
very large time, when both ratios reach an almost constant
value β, one finds that �(t ) − π(t ) ≈ 0, which means that
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FIG. 4. Temporal ratio of partial probabilities �(t ) (continuous
lines) and partial probability currents π(t ) (dashed lines) as functions
of time for the same set of parameters as in Fig. 1. The insets high-
light the short-time behavior. Both quantities oscillate at intermediate
times but the ratio π(t ) shows evident deviations from the BW limit
predictions even for very long times.
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partial probabilities PR(t ) and PL(t ) behave as nearly linear-
dependent functions.

In particular, the right-to-left probability currents ratio π(t )
shows evident oscillations persisting for a very long time. It
means that it is an appropriate quantity to exhibit deviations
from the exponential BW limit predictions, even in moments
when the standard nondecay probability P0(t ), the partial
decay probabilities PR(t ) and PL(t ), or even their ratio �(t )
are not able to capture this behavior. Let us also recall that the
ratio π(t ) has a straightforward physical meaning. For the time
intervals in which π(t ) > β [π(t ) < β], the particle decay to
the right is more [less] probable than naively expected from
the exponential law. Then, the value of β has only an appro-
priate interpretation as an average ratio. Closer inspection of
Fig. 4 shows additional interesting insights for the function
π(t ). Namely, the amplitude of oscillations does not decrease
in the limit of large V0 as long as κ is sufficiently different
from unity. Namely, when it approaches 1, the ratio π(t )
rapidly flattens around the expected value 1. Consequently,
in these cases, the deviations from the expected constant limit
become very small.

The above analysis shows that the ratios �(t ) and π(t ) can
be regarded as appropriate quantities capturing nonexponen-
tial decay in the presence of two decay channels. However,
as we argued, the ratio of the time derivatives π(t ) is much
more sensitive to nonexponential features of the system than
the direct ratio of probabilities �(t ). Therefore, from the
experimental point of view, if one aims to validate exponential
decay, the largest effort should be put toward accurate deter-
mination of the quantity π(t ) rather than �(t ).

It is interesting to note that for a given asymmetry of the
barriers κ , the amplitude of the oscillations is not strongly
dependent on V0. For example, as presented in Fig. 4, the
amplitudes for V0 = 5 and V0 = 10 are not much different
when the same value of κ = 2/5. In contrast, the frequency
of the oscillations is essentially affected by the choice of V0

and it is larger for stronger V0. The latter observation implies
that for very large V0, experimental detection of oscillations
will be very challenging due to the finite resolution of time
probes. Simply, to have any realistic chance to detect the
effect, a period of the oscillation should not be smaller than
the experimental time resolution.

Importantly, it should be pointed out here that in our work,
we do not consider deviations from the exponential decay
occurring always for very large times, i.e., when the decay
is characterized by the power law rather than the exponen-
tial one [1,3,15]. In fact, this regime is not well captured
in our analysis due to the numerical simplification of the
model described in the Appendix. Although going beyond
this approximation is straightforward, it highly increases the
numerical complexity without changing the results in the time
ranges that we are interested in. Therefore, the discussion of
properties of the ratios �(t ) and π(t ) for very long times is
beyond the scope of this work.

One can expect that the qualitative features of the results
obtained do not significantly depend on the details of the
employed decay model. This conviction is justified since
the origin of the different behavior of π(t ) and �(t ) is
ingrained in the fundamental properties of the two-channel
decay, rather than a particular physical realization. Note that

both quantities are described by the same decay width β

only in the BW limit independently in the underlying model.
It means that any deviation from this prediction is a direct
manifestation of the nonexponential decay. In other words, as
long as the probabilities for the two partial decay channels
are not equal, the corresponding functions PL(t ) and PR(t )
approach the respective exponential limits in a slightly differ-
ent way. Consequently, ratios �(t ) and π(t ) are characterized
by slightly different and time-dependent parameters. This is
the intuitive reason why the ratios enhance the differences
quite independently of the details of a model. This is also
one of the reasons why very similar results were obtained in
a completely different context in [10] in the framework of
the Lee model [44] containing essential simplification when
compared to the generalized Winter’s model considered here.
In contrast to the case studied, in the Lee model it is assumed
that there exists the unique unstable state |ψ0〉 decaying to
two different subspaces (channels L and R) spanned by states
|k, L〉 and |k, R〉 having the same dispersion relation ω(k). In
such a case, the Hamiltonian of the system can be written
explicitly in the basis of these states as

HLee = E0|ψ0〉〈ψ0| +
∑

σ∈{L,R}

∫ ∞

0
dk ω(k)|k, σ 〉〈k, σ |

+
∑

σ∈{L,R}

∫ ∞

0
dk [ fσ (k)|k, σ 〉〈ψ0| + f ∗

σ (k)|ψ0〉〈k, σ |],

(19)

where fσ (k) = 〈k, σ |H |ψ0〉 are transition amplitudes control-
ling tunneling through the barriers. The nonexponential decay
observed in these two, essentially different models suggests
once more that our findings on properties of ratios π(t ) and
�(t ) persist model independently.

IV. CONCLUSIONS

In this work, we analyzed the general problem of capturing
nonexponential properties in the presence of the two-channel
decay process. Taking as a working horse a very simple dy-
namical problem of a single particle flowing out from a leaky
box, we examined direct relations between the probabilities of
tunneling to the right and the left as functions of the control
parameters. In this way, we studied relations between partial
decays into two distinct channels in a relatively simple system,
which allows for a very accurate numerical treatment. Since
the multiple channel decay of an unstable quantum state is
a very frequent problem in QM and QFT, the results can be
important for our understanding of a broad range of physical
phenomena.

The results obtained confirm that in the presence of two
decay channels, the system exhibits a remarkable nonexpo-
nential behavior on long timescales. Even in cases where
the simplest quantities do not reveal any nonexponential
signatures, the interchannel ratio of probability currents π(t )
directly exposes these features. Importantly, this quantity,
although not the simplest property of the system, is almost
directly measurable in experiments [67–69]. Therefore, it can
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be viewed as a possible smoking gun of nonexponential-decay
behavior.

It is worthwhile to point out that the model discussed in
this work, although seemingly oversimplified, to some extent
can be realized experimentally and gives prospects for direct
verification of our predictions. State-of-the-art experiments
[70–73] with ultracold atoms confined in optical traps al-
low one to prepare quasi-one-dimensional uniform box traps
where particles are confined. Moreover, the outside walls
of these traps can be controlled independently and released
almost on-demand, opening direct routes to realize our model.
Another interesting direction of experimental realization is to
analyze different nuclei with nonsymmetric few-channel de-
cays, for instance, the decay of α particle in large nonspherical
nuclei.

From a theoretical point of view, one can easily extend the
present work to more complicated (and more realistic) forms
of asymmetric potentials. While any qualitative differences
from the results obtained are not expected, such studies would
help to establish a closer relevance to upcoming experimental
schemes. From the conceptual side, extensions of the re-
sults to higher dimensions are also straightforward. Another
promising route for further explorations is to study analogous
systems containing several interacting particles [74–85] and
pin down the role of the quantum statistics. Furthermore, the
topic should also be reinvestigated in the realm of QFT to shed
some fresh light on the problem of multichannel decays of
elementary particles and composite hadrons.
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APPENDIX: NUMERICAL APPROACH

Numerical calculations are performed in the basis of the
eigenstates of the Hamiltonian (3) diagonalized numerically
on a finite spatial interval with closed boundary conditions at
x = ±L. Everywhere besides the points x = ±1, the Hamil-
tonian is equivalent to the Hamiltonian of a free particle.
Therefore, any of its eigenstates can be expressed as follows:

ψ (x) =
⎧⎨
⎩

A sin[p(L + x)] if x < −1
B sin[p(L − x)] if x > 1
C sin(px) + D cos(px) if |x| � 1,

(A1)

where parameters A, B, C, and D are established in such a
way that the wave function fulfills continuity conditions at
positions of the left and the right barrier. These four conditions
read

lim
ε→0

[ψ (−1 + ε) − ψ (−1 − ε)] = 0, (A2a)

lim
ε→0

[
d

dx
ψ (x)

∣∣∣∣
−1+ε

− d

dx
ψ (x)

∣∣∣∣
−1−ε

]
= 2VLψ (−1), (A2b)

lim
ε→0

[ψ (1 + ε) − ψ (1 − ε)] = 0, (A2c)

lim
ε→0

[
d

dx
ψ (x)

∣∣∣∣
1+ε

− d

dx
ψ (x)

∣∣∣∣
1−ε

]
= 2VRψ (1), (A2d)

and they lead to the homogenous system of linear equations
of the form M · �v = 0, where �v = (A, B,C, D)T and

M =

⎛
⎜⎜⎜⎜⎝

1
2 p cos[(L − 1)p] 0 − 1

2 p cos(p) − VL sin(p) VL cos(p) − 1
2 p sin(p)

0 − 1
2 p cos[(L − 1)p] 1

2 p cos(p) + VR sin(p) VR cos(p) − 1
2 p sin(p)

sin[(L − 1)p] 0 sin(p) − cos(p)

0 − sin[(L − 1)p] − sin(p) − cos(p)

⎞
⎟⎟⎟⎟⎠.

In this way, the allowed momenta pi and the corresponding
coefficients �vi are determined. Then, the the time-dependent
wave function is simply given as

�(x, t ) =
∑

i

αi exp
(−it p2

i /2
)
ψi(x), (A3)

where the expansion coefficients αi are determined by the
initial wave function (2). The accuracy of the final results

is easily controlled (and, if needed, may be straightforwardly
improved) by changing the number of terms in the expansion
(A3). Typically, in our calculations, we use 3000 terms and
L = 400–600, which is sufficient to achieve well-converged
results avoiding reflections at the walls at x = ±L for large t .
The method used assures a full control on the accuracy of the
final results.
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