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Testing macroscopic local realism using local nonlinear dynamics and time settings
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We show how one may test macroscopic local realism where, differently from conventional Bell tests,
all relevant measurements that lead to a violation of a Bell inequality need only distinguish between two
macroscopically distinct states of the system being measured. Here, measurements give macroscopically
distinct outcomes for some property of the system and do not resolve microscopically (of order h̄). To obtain
a quantifiable test, we define N-scopic local realism where the outcomes are separated by an amount ∼N . We
show for N up to 20 that violations of N-scopic local realism are predicted for entangled systems of N bosons
at each of two sites. We further demonstrate for arbitrarily large α the violation of α-scopic local realism, for
entangled superpositions of coherent states with amplitudes ∼α, infinitely separated in phase space, as α → ∞.
To achieve the Bell violations, the two separated subsystems evolve dynamically according to a local nonlinear
unitary interaction. The tests may be understood in two ways. First, they are macroscopic Bell tests involving
spacelike separated measurement events, where the choice of measurement setting at each site corresponds to
a choice between two different times of local interaction. The interaction may be seen as the unitary stage of a
local measurement process. Second, the proposal is a strong version of a Leggett-Garg test of “macrorealism”
that uses two trajectories, where the usual assumption of noninvasive measurability as applied to measurements
at one site is replaced by that of macroscopic locality. For N = 1, tests are feasible and give a way to demonstrate
“no classical trajectories” without the assumption of noninvasive measurability, using instead that of locality.
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I. INTRODUCTION

Motivated by Schrödinger’s cat paradox [1], much effort
has been devoted to testing quantum mechanics at a macro-
scopic level. Quantum superpositions of macroscopically dis-
tinguishable states, so-called cat states, have been created
in a number of different physical scenarios [2–6]. However,
Leggett and Garg pointed out that a very strong test of macro-
scopic quantum mechanics would give a method to falsify
all possible theories satisfying the notion of macroscopic
realism [7].

To address this problem, Leggett and Garg formulated in-
equalities [7], which if violated falsify a type of macroscopic
realism called macrorealism. Leggett and Garg’s macroreal-
ism combines two classical premises. The first premise is
macroscopic realism (MR), which asserts that a system which
has two macroscopically distinguishable states available to it
must at any time be in one or the other of these states. The
two states are identified in the context of a “distinguishing
measurement” M̂ which has just two macroscopically dis-
tinguishable outcomes, these outcomes corresponding to the
two macroscopic states of the system [8]. In Schrödinger’s
paradox, the assumption of macroscopic realism implies that
the cat is always dead or alive, prior to measurement.

The second Leggett-Garg premise is “macroscopic non-
invasive measurability.” This premise postulates the exis-
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tence of a measurement that can distinguish which of the
macroscopically distinguishable states the system is in, with
a negligible effect on the subsequent macroscopic dynam-
ics. There has been significant interest in testing Leggett-
Garg inequalities, even for small systems, and experiments
have been performed with superconducting qubits, photons
and single atoms [9–19]. However, an obvious complication
(which Leggett and Garg referred to as “vexing” [7]) is the
justification of the second noninvasive-measurability premise
for any practical measurement [7,9,12,18,19].

In this paper, we show how macroscopic reality may be
tested using Bell inequalities [20]. This represents an advance
because here the second Leggett-Garg premise is replaced
by the premise of macroscopic locality (ML), which leads
to a stronger test of macrorealism. Measurements made at
different times are at distinct locations, so that locality can
be invoked to justify noninvasiveness. Where macroscopic
realism is assumed for a system at one location, ML asserts
that a measurement made at another location cannot change
the predetermined value (determined by which macroscopic
state the system is in) for the measurement M̂ on the first sys-
tem. This is provided the two measurement events are space-
like separated. In Schrödinger’s paradox, the consequence of
macroscopic locality is that a measurement on a second sep-
arated system could not (instantly) change the cat from dead
to alive, or vice versa [21]. The combined premises of MR
and ML constitute the premise of macroscopic local realism
(MLR) [22].
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Specifically, we explain how the predictions of quantum
mechanics are incompatible with those of MLR for sys-
tems prepared in certain macroscopic entangled superposition
states. To obtain a quantifiable test, we define N-scopic local
realism to apply where the outcomes of the distinguishing
measurement M̂ are separated by an amount of order N . The
important feature of the Bell tests presented in this paper is
that the outcomes of all relevant measurements involved in the
Bell inequality correspond (as N → ∞) to macroscopically
distinct states of the system being measured; i.e., measure-
ments only need to distinguish between the two extreme
states of a macroscopic superposition state (a “cat state”). The
measurements thus do not resolve at the level of h̄.

The violations are possible, because we allow nonlinear
dynamics at each of the two separated sites where the mea-
surements take place. The traditional Bell choice between two
spin settings is replaced by a choice between two different
times of evolution, at each of two sites. The nonlinear dy-
namics arises from a local unitary evolution brought about
by a nonlinear medium, and can be thought of as modeling
the unitary stage of a measurement process, which involves
interaction with a local measurement device. The choice of
different local time settings is equivalent to a choice between
two nonlinearities, and may be interpreted as corresponding
to measurements of different system observables.

We consider two cases. In the first, measurements detect
either all N bosons in one field mode, or all N bosons in a sec-
ond mode. In the second case, the measurements distinguish
between coherent states of large amplitude (∼α) and well sep-
arated in phase space, by an amount of order α. We determine
violation of N-scopic local realism for up to N ∼ 20 bosons,
and of α-scopic local realism for all α including α → ∞,
which corresponds to both infinite amplitudes and an infinite
separation between the two relevant states in phase space. The
Bell tests of this paper thus differ from previous Bell tests for
macroscopic systems [23], including those for superpositions
of macroscopically distinct states [6,24], which almost invari-
ably require at least one measurement that distinguishes mi-
croscopically different outcomes, or else involve a continuous
range of outcomes [22,25]. In this paper, as in the Leggett-
Garg proposal, one considers only measurements distinguish-
ing the two macroscopically distinct states that form an ex-
treme macroscopic superposition state, so that the separation
of outcomes well exceeds the level associated with the stan-
dard quantum limit (h̄). The results show that Bell violations
can be predicted in this macroscopic regime. To the best of our
knowledge, such tests have not been performed for N > 1.

The Bell inequalities considered in this paper are similar
yet different to the Leggett-Garg inequalities, which are
often called “temporal Bell inequalities” [11], or “Bell
inequalities in time” [3], because they involve measurements
made at successive times on a dynamically evolving system
[7]. The Leggett-Garg tests, however, involve only a single
system. The violation of a Leggett-Garg inequality for
a single propagating particle can be used to negate the
concept of a classical trajectory, and hence the violation of a
Leggett-Garg inequality has been considered important, even
at a microscopic level [12,14]. In this paper, we consider two
dynamical systems, spatially separated, and thus consider two
trajectories. We also examine the microscopic case of N = 1,

by considering two particles prepared initially in a Bell state.
The dynamics may be realized using a sequence of (polar-
izing) beam splitters. The negation of classical trajectories
for the propagating particles is then possible, based on the
violation of the Bell inequality where correlations are inferred
with only one detection at each site. This gives a strong test
of the classical trajectories, since the noninvasiveness of the
measurement is justified by the assumption of locality.

Layout of paper. The layout of this paper is as follows.
In Sec. II, we consider idealized Bell states involving macro-
scopic qubit states where all N bosons are in one or the
other of two modes. We explain how measurements might
be made using a hypothetical nonlinear beam splitter, which
either transmits or reflects all N bosons incident on the beam
splitter. The transmission coefficient is determined by the time
of evolution through the beam splitter. For certain choices of
transmission, one violates a Bell inequality, where outcomes
for measurements are distinct by N . In Sec. III, we show
how such N-scopic Bell violations can be realized, for sys-
tems prepared conditionally from two NOON states, and for
nonlinear beam splitters realized using a nonlinear Josephson
interaction, with a careful choice of parameters.

In Sec. IV, we predict violations of macroscopic local real-
ism for a system based on a two-mode entangled superposition
of coherent states. The modes are separated, and each system
evolves locally by interacting with a nonlinear Kerr medium.
The “spin” outcome is measured as the sign of the outcome X
of a quadrature phase amplitude measurement made on the
mode at each site. The outcomes become macroscopically
distinct as the separations between the coherent states (of
order α) in phase space become large. We confirm Bell
violations for arbitrary α > 2. In Secs. III D and IV D, we
also explain how one may violate the standard Leggett-Garg
inequality [7,9], using separated sites.

Finally, in Secs. V and VI, we give a discussion of re-
sults and of the feasibility of an experiment. For N = 1, a
strong negation of classical trajectories (replacing the non-
invasive measurability premise with the locality assumption)
is feasible, using traditional sources of entanglement along
with polarizing beam splitters. We also point out that, as
with the conventional Bell inequalities, the macroscopic Bell
inequality can be derived in two ways [21]. The second
method assumes a generalized form of macroscopic reality,
allowing for changes stochastically brought about by the local
interaction of the system with the measurement apparatus, in
this case the nonlinear medium or beam splitter. The violation
of the Bell inequality is then seen to be a much stronger result,
and suggests that the dynamics is important in the realization
of the macroscopic Bell violations.

II. BELL INEQUALITY FOR MACROSCOPIC
LOCAL REALISM

For spatially separated sites A and B, we consider the two-
qubit Bell states for N bosons

|ψ±,+〉AB = 1√
2

(|1〉A| ± 1〉B + | − 1〉A| ∓ 1〉B),

|ψ±,−〉AB = 1√
2

(|1〉A| ± 1〉B − | − 1〉A| ∓ 1〉B), (1)
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where

|1〉A = |N〉a|0〉a2 , | − 1〉A = |0〉a|N〉a2 ,

|1〉B = ||N〉b|0〉b2 , | − 1〉B = |0〉b|N〉b2 .

Here we consider two pairs of modes a and a2, and b and b2, at
locations A and B, respectively. |n〉a and |n〉b are the associated
number states. We refer to the states |1〉A and | − 1〉A as
generating the “up” and “down” outcomes for a measurement
of “spin” SA at site A, in analogy with the spin-1/2 qubit
system. Similarly, a spin SB with outcome ±1 is detected for
| ± 1〉B at site B.

We next define the action of a hypothetical nonlinear beam
splitter (NBS) at site A. The NBS takes an input of N bosons
in the ingoing mode, and places all N bosons either in a “re-
flected” mode or in a “transmitted” mode, at the output. The
probability of transmission is determined by the interaction
time through the NBS. For an initial state |N〉a|0〉a2 , the state
after the hypothetical NBS interaction is

|ψ (ta)〉 = ÛA|N〉a|0〉a2

= eiϕ(ta )(cos ta|N〉a|0〉a2 − i sin ta|0〉a|N〉a2 ), (2)

where we have introduced a unitary operator ÛA and ta is the
time of interaction in scaled units. Here, ϕ(ta) is a phase factor.
A similar NBS interaction is assumed to take place at site B:

|ψ (tb)〉 = ÛB|N〉b|0〉b2

= eiϕ(tb)(cos tb|N〉b|0〉b2 − i sin tb|0〉b|N〉b2 ). (3)

Assuming the incoming state on the two nonlinear beam
splitters to be |ψ+,±〉AB, the final state is

ÛAÛB|ψAB〉 = eiϕ (cos t±|ψ+,±〉 − i sin t±|ψ−,±〉), (4)

where t± = ta ± tb and ϕ is a phase factor. Defining the “spin”
at each site as +1 or −1 if the system is detected with the
“up” or “down” outcome after the NBS interaction (which
constitutes part of the measurement, analogous to an analyzer
or polarizer), the expectation value for the product of the spins
at each site is

E (ta, tb) = cos 2(t±), (5)

where t± = ta ± tb. Assuming the incoming state to be
|ψ−,±〉AB, we obtain in a similar fashion E (ta, tb) =
− cos 2(t±).

Where N is large, the assumption of macroscopic local
realism (MLR) will imply the Clauser-Horne-Shimony-Holt
(CHSH) Bell inequality B � 2 [26], where

B = E (ta, tb) − E (ta, t ′
b) + E (t ′

a, t ′
b) + E (t ′

a, tb). (6)

Here we note there are two choices of interaction times at each
location: ta, t ′

a at A, and tb, t ′
b at B. This inequality is derived

assuming (MLR): that the system is in one or the other of two
states which give a definite outcome of spin +1 or −1, at each
site (MR); and that there is no nonlocal effect changing the
state due to the measurement at the other location (ML). This
is justified for sufficiently large separations of the sites, where
one may assume spacelike separated measurement events. We
note the inequality can also be derived using a more general
definition of MLR [8] (refer to discussion in Sec. V B). For
N large, the NBS interactions will lead to macroscopically
distinct outcomes for all choices of ta and tb, and the violation
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FIG. 1. Realization of a nonlinear beam splitter. Solutions are
shown for the Hamiltonian H (A)

NL after a time t with initial state
|N〉a|0〉a2 . PN (black solid line) is the probability for all N bosons
to be in mode a; P0 (blue dashed line) is the probability for all N
bosons to be in mode a2. The parameters identify regimes optimal,
or near-optimal, for the nonlinear beam splitter interaction Eq. (2),
where PN + P0 ∼ 1 and PN ∼ cos2 ωNt/2. The solutions for N = 1
(all κ, g); N = 2, κ = 1, g = 30; N = 5, κ = 20, g = 333.333; and
N = 7, κ = 18.23, g = 47.85 are identical to the left plot.

of the Bell inequality will falsify MLR. It is known that
the given solution for E (ta, tb) will violate the inequality for
suitable choices of ta and tb [26]. We choose

ta = 0, t ′
a = π/8, tb = π/4, t ′

b = 3π/8. (7)

III. N-SCOPIC BELL TESTS FOR N BOSONS

A. Nonlinear beam splitter for N bosons

The above is a straightforward extension of Bell’s work,
except that it now needs to be shown that the hypothetical
NBS interaction can be predicted by quantum mechanics,
to a sufficient degree that allows the violation of the Bell
inequality. To do this, we consider at A two incoming fields (a
and a2), which interact according to the nonlinear Josephson
Hamiltonian [27,28]

H (A)
NL = κ (â†â2 + ââ†

2) + gâ†2â2 + gâ†2
2 â2

2. (8)

Here, â, â2 are the boson operators for the corresponding fields
a, a2, modeled as single modes. A similar interaction H (B)

NL
is assumed for the fields b and b2 at B. Such an interaction
can be achieved with Bose-Einstein condensates (BECs) or
superconducting circuits [17,18,27–34]. For certain choices
of g and κ , we find that the interaction (8) indeed acts as
a nonlinear beam splitter, where the input |N〉a|0〉a2 after a
time t gives, to a good approximation, the output of Eq. (2)
(Fig. 1). We introduce a scaled time ta = ωNt where ωN =
2g N

h̄(N−1)! ( κ
g )N [29]. Here ÛA is the unitary time evolution

governed by H (A)
NL .

B. State preparation using NOON states

It now remains to determine whether the realization of the
NBS (which is never exact) can actually allow a violation
of the Bell inequality. We first examine a specific method
of preparation of (1) and realization of (4) using NOON
states [4].

We consider that the two separated modes a and b are
prepared at time t = 0 in the NOON state

|ψ〉ab = 1√
2

(|N〉a|0〉b + eiϑ |0〉a|N〉b) (9)
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FIG. 2. The macroscopic entangled state (1) can be generated
conditionally by interfering two NOON states. The ta and tb are time
settings selected for the nonlinear beam splitter (NBS) at each site,
A and B. For certain choices of parameters κ, g, N of the nonlinear
beam splitters, we find that when N bosons are incident at each site
A and B, then at each site either all N bosons are detected “up”
(modes a and b) or all N bosons are detected “down” (modes a2 and
b2).

and that the modes a2 and b2 are prepared similarly in the
NOON state

|ψ+〉a2b2 = 1√
2

(|N〉a2 |0〉b2 + eiϑ |0〉a2 |N〉b2 ) (10)

as depicted in Fig. 2. Alternatively, we might prepare modes
a2 and b2 in the reversed NOON state,

|ψ−〉a2b2 = 1√
2

(|0〉a2 |N〉b2 + eiϑ |N〉a2 |0〉b2 ), (11)

and choose ϑ = −π/2. Such states may be prepared using
the ideal nonlinear beam splitter with a 50/50 mixing and the
number state inputs |N〉a|0〉a2 |0〉b|N〉b2 . If each mode a and
b is then coupled via the NBS interaction to the respective
modes a2 and b2 with interaction times ta and tb, respectively,
at each location, then, assuming the optimal NBS parameters,
the final state is |ψ f ±〉 = ÛAÛB|ψ〉ab|ψ±〉a2b2 . We find

|ψ f ±〉 = eiφ±
√

2
[cos(t±)|ψ−,±〉∓i sin(t±)|ψ+,±〉]

+ 1√
2
|ϕ±〉2N , (12)

where t± = ta ± tb and φ± is a phase factor. We note |ϕ±〉2N

are states with either all 2N bosons at site A, or all 2N bosons
at site B. We will see below that these states become irrelevant
to the experiment. The total number of bosons at each site
can be measured simultaneously with the number of bosons
at each mode a and b, since the number operators commute.
The state conditioned on there being N bosons at site A and
N bosons at site B is given by the first line of Eq. (12). This
is a superposition of the Bell states, given by Eq. (1). At time
ta = tb = 0, the conditioned state is the Bell state |ψ−,±〉. The
solution (12) thus gives us the required result [similar to (4)].

For N = 1, the latter proposal described above that uses
the beam splitters to generate the initial NOON states gives
a configuration equivalent to that of Ou and Mandel [35,36].
The current proposal is therefore similar to the Ou-Mandel
version of a Bell experiment [35] as proposed in Ref. [36],
but extended to N quanta. Here, path-entangled cat states
are generated conditionally, as suggested in [37]. Contrary to
some initial interpretations, in the framework of the Clauser-
Horne inequalities [26], this configuration is able to provide a
rigorous test of local realism [39] (see discussions in [36,38]).

We also note that optical and atomic NOON states may be
generated for N = 2 using the Hong-Ou-Mandel effect [40].

C. Violation of N-scopic Bell inequalities

To test N-scopic local realism, the mode numbers at the
final outputs a(ta), a2(ta), b(tb), and b2(tb) are measured
(Fig. 2), for a given setting of the times ta and tb at each site.
(This may instead be a choice between two different nonlinear
interaction values g.) The measurement events at A and B are
spacelike separated if the distance between them is sufficiently
great, taking into account the times ta and tb required for the
NBS interactions.

At A, we denote by +1 (“up”) the outcome of detecting
N bosons at location a, and 0 bosons at a2. A similar “up”
outcome +1 is defined for B. We note that for the calculation,
the state |ϕ−〉2N in Eq. (12) thus becomes irrelevant. We define
the joint probability P++ for the outcome +1 at both sites A
and B. We also specify PA

+ as the marginal probability for the
outcome +1 at A, and PB

+ as the marginal probability for the
outcome + at B. At each site A and B, observers independently
select a time of evolution ta and tb for the NBS interaction.

It is evident from the expression (12) that the outcomes of a
measurement of mode number at each detector are always one
of 0, N , or 2N , which are macroscopically distinguishable as
N → ∞. This is shown in Fig. 3, which plots the probabil-
ities for an optimal choice of nonlinear beam splitter (NBS)
parameters. The assumption of N-scopic LR (which becomes
MLR as N → ∞) thus implies the validity of a local hidden
variable theory, where the system at each site is predetermined
to be in one of the states with mode number 0, N , or 2N .
As for the CHSH inequality Eq. (6), the Clauser-Horne (CH)
Bell inequality S � 1 [26] is predicted to hold for such a local
hidden variable theory, where [39]

S = P++(ta, tb) − P++(ta, t ′
b) + P++(t ′

a, t b) + P++(t ′
a, t ′

b)

PA+(t ′
a) + PB+(tb)

.

(13)

Assuming ideal nonlinear beam splitters, the state |ψ f ±〉 gives
P++ = 1

4 sin2(ta ± tb) and PA
+ = PB

+ = 1
4 . For ta = 0, t ′

a = 2ϕ,
tb = ϕ, and t ′

b = 3ϕ, the quantum state |ψ f −〉 of (12) predicts

S = 3 sin2(ϕ) − sin2(3ϕ)

2
. (14)

S maximizes at S = 1.207 for ϕ = π/16 (1.96), giving a
violation of the CH-Bell inequality.

For |ψ f +〉, we introduce parameters θ and φ, such that ta =
θ , tb = 2π − φ, where 0 < φ < 2π . Choosing angles θ = θ0,
φ = θ0 + ϕ, θ ′ = θ0 + 2ϕ, and φ′ = θ0 + 3ϕ, for which |θ −
φ| = |θ ′ − φ| = |θ ′ − φ′| = 1

3 |θ − φ′| = ϕ, the prediction for
S becomes that of |ψ f −〉. Thus, the quantum predictions
for both states |ψ±〉 violate the CH-Bell inequality given
by (13).

In practice, the ideal regime giving the precise solution (2)
for the nonlinear beam splitters is unattainable, for N > 1,
since probabilities for other than 0 or N bosons in each mode
are not precisely zero. In Figs. 3 and 4, we present actual
predictions for S, using the Hamiltonian HNL. For large gN/κ ,
where care is taken to optimize for the NBS regime given
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FIG. 3. The outcomes for all the relevant Bell measurements are
distinct by N . Top: Probability distribution PN for the joint detection
of a total of NA and NB bosons at the respective sites A and B (refer
to Fig. 2). Here N = 7, κ = 18.23, g = 47.85, and ta, tb, t ′

a, t ′
b are

specified in the text. The distribution is unchanged for settings (t ′
a, tb),

(t ′
a, t ′

b), and (ta, t ′
b). Center and Lower: The probability P(n, m) of

detecting n bosons in mode a and m bosons in mode b and N bosons
in total at site A. The figures for settings (t ′

a, tb), (t ′
a, t ′

b) are identical to
that of (ta, tb). Similar plots are obtained for all parameters of Fig. 1.
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FIG. 4. Violation of N-scopic local realism. Violation of the CH-
Bell inequality (13) is obtained when S > 1. Where all outcomes are
distinct by N , this corresponds to violation of N-scopic local realism.
The left graph is for N = 10, g = 49.433, κ = 10. Identical plots
are obtained for N = 1 (all κ and g); N = 2, κ = 1, g = 30; N = 5,
κ = 20, g = 333.333; and N = 7, κ = 18.23, g = 47.85 which give
ideal two-state oscillatory behavior (Fig. 1). Where the values are not
quite optimal for the nonlinear beam splitter interaction (2), rapid
oscillations of small amplitude appear. This is shown in the right
graph for N = 20, κ = 165, and g = 101.

by (2), the Bell violations are predicted, as shown in Fig. 4.
To test N-scopic LR, one is required to establish that the
outcomes of mode number are distinct by N , for each of the
joint probabilities P(ta, tb) comprising S. Figure 3 highlights
the validity of this feature in the optimal parameter space.
The probabilities for results other than 0 and N (and 2N) are
negligible (and can rigorously be shown to have no effect on
the violation, using the methods of [7,41]). The results given
in Fig. 4 are for outcomes verified to be distinct by N bosons,
and thus indicate violation of N-scopic local realism.

D. Leggett-Garg version of the macroscopic Bell test

1. For N bosons

In the Bell test, one measures the joint probability for
specific outcomes at the two sites A and B, with time settings ta
and tb, respectively. These measurements are assumed nearly
simultaneous in that the two measurement events are spacelike
separated. The assumption is made that the measurement
(made over the time tb) at B has no effect on the measurement
(made over the time ta) at A. This is the assumption of locality.

The test may also be carried out in a different way that
is more similar to the proposal of Leggett and Garg [7]. We
consider that the two separated systems at site A and at site B
are prepared in one of the Bell states [Eq. (1)], and that each
system then interacts locally from time t = 0 with a local non-
linear beam splitter (NBS), as in Fig. 2. The systems evolve
continuously and can be measured at the times ti at the loca-
tion A, and at the times t j at the location B. The measurement
at time ti gives a value for the spin SA(ti) = ±1, depending
on whether the N bosons at the site A are detected at a (spin
“up”) or at a2 (spin “down”). The spin at site B is defined
similarly, as SB(t j ).

Assuming N-scopic realism, each of the two systems A and
B is at all times in a state with a definite spin outcome, ±1, for
the spins SA(ti ) and SB(t j ). The definite predetermined value
for the spins can be denoted by the hidden variables λA(ti ) and
λB(t j ). Letting λ1 = λB(t1), λ2 = λA(t2), λ3 = λB(t3), we see
that λ1λ2 + λ2λ3 − λ1λ3 � 1. Supposing one may construct a
noninvasive measurement that can be made at time t in such
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a way that does not change the state of either system at the
future (or past) time t ′, we arrive at an inequality similar to the
three-time Leggett-Garg inequality [7] originally derived by
Jordan et al. [9]:

〈SB(t1)SA(t2)〉 + 〈SA(t2)SB(t3)〉 − 〈SB(t1)SB(t3)〉 � 1. (15)

Here the 〈SA(ti )SB(t j )〉 are two-time correlation functions, the
values of which are given in terms of the hidden variables,
e.g., 〈SA(ti )SB(t j )〉 = 〈λA(ti )λB(t j )〉, according to the assump-
tions of N-scopic realism and noninvasive measurability.

The inequality (15) differs from the Leggett-Garg inequal-
ity [9], in that the latter involves three measurements at one
site only. Taking t1 < t2 < t3, the use of one site makes it
challenging to justify that the measurement at time t2 did not
influence the hidden variable λ3 describing the system prior to
the final measurement, made at time t3.

Looking at the inequality (15), however, which involves
two sites, we see that the noninvasive measurability assump-
tion can be justified by locality, as part of the assumption of
N-scopic local realism. We assume locality, that the measure-
ments at A do not change the values of the hidden variables for
the system at B, and vice versa. This justifies that whether or
not the measurement of SA(t2) takes place at time t2 does not
change the predetermined value λ3 and hence has no effect on
the value of 〈SA(t2)SB(t3)〉, and similarly for 〈SB(t1)SA(t2)〉.
The measurements of 〈SB(t1)SA(t2)〉 and 〈SA(t2)SB(t3)〉 are
made by measurements performed at the two locations. The
measurement of 〈SB(t1)SB(t3)〉 is more difficult since it must
be justified that the first measurement at time t1 has no effect
on the outcome at the later time t3, for the same system. Here,
we use the knowledge of preparation of the system. We use
the fact that for the initial state there is a perfect correlation
or anticorrelation between the spin outcomes at A and the spin
outcomes at B. We assume that initially, at t1 = 0, the system
is prepared in one of the correlated Bell states of Eq. (1).
Assuming N-scopic local realism, the predetermined spin at B
at time t1 can then be inferred from the value of the outcome of
the measurement at A at time t1. For the case of |ψ+,−〉 where
the spins are correlated, this allows us to put

〈SB(t1)SB(t3)〉 = 〈SA(t1)SB(t3)〉. (16)

Now we consider the specific example of a system prepared
in the Bell state |ψ+,−〉 and then undergoing local interactions
at each site according to the nonlinear beam splitter (NBS)
model. Assuming an ideal NBS at each location (similar to
Fig. 2), the two-time correlation is [refer Eq. (5)]

〈SB(t j )SA(ti )〉 = E (ti, t j ) = cos 2(t−) = cos 2(ti − t j ). (17)

Violations of the inequality (15) are predicted, as can be
seen by putting t1 = 0, t2 = π/6, t3 = π/3, in which case
〈SB(t1)SA(t2)〉 = 1

2 , 〈SA(t2)SB(t3)〉 = 1
2 , and 〈SA(t1)SB(t3)〉 =

− 1
2 . This implies a violation of the Leggett-Garg-type in-

equality (15), with a value of 1.5 for the left side of the
inequality. Taking t3 = 5π/12 also gives a violation.

The proposal using NOON states as given in Fig. 2 gen-
erates the Bell states conditionally. At time ta = tb = 0, the
conditioned state is the Bell state |ψ−,±〉. This means that for
the reduced ensemble where a total of N bosons are detected
at both sites A and B, the observation of spin ±1 at A implies

spin ∓1 at B, and vice versa. Moreover, as we show above
in Eq. (12), the conditioned evolution will give the two-time
correlations of type (5), thus leading to a violation of the
inequality. Here, however, possible loopholes are introduced
from the postselection of the subensemble, and an additional
no-enhancement assumption is needed [26]. The use of the
Clauser-Horne inequality for the Bell example in the last
section avoids the loophole in that case.

Finally, we note that the Leggett-Garg experiment can be
performed using the CHSH form of the inequality, proposed
in the original paper by Leggett and Garg [7]. Here, one con-
siders four times t1 < t2 < t3 < t4, and evaluates the CHSH
Bell inequality

〈SA(t1)SB(t2)〉 + 〈SA(t3)SB(t2)〉
+〈SA(t3)SB(t4)〉 − 〈SA(t1)SB(t4)〉 � 2. (18)

The inequality is the same as the Bell inequality (6) and is
violated for the subensemble conditioned on postselection of
N bosons at A and N bosons at B, for the state |ψ−,−〉 for
the choice of times t1 = 0, t2 = π/8, t3 = π/4, t4 = 3π/8.
We note that in the Leggett-Garg version of the experiment,
one would keep the strict time order. The derivation of this
inequality is as given for (6) and is a simple extension of
the three-time inequality (15) above. It is assumed that the
measurement made at a certain time has no effect on the
dynamics at later times, if that measurement is made in a way
that ensures spacelike-separated measurement events. Here,
all two-time correlations involve separated sites, and so the
argument justifying the relation (16) is not necessary.

2. Leggett-Garg test for N = 1: No classical trajectories

It is interesting to consider an experiment for N = 1. Here,
one may prepare a Bell state using standard methods, as, for
example, the photonic polarization entangled state

|ψ〉 = 1√
2
{|1〉a+|0〉a−|1〉b+|0〉b− + |0〉a+|1〉a−|0〉b+|1〉b−}.

(19)

The a± and b± are modes for orthogonal polarization direc-
tions, at the sites A and B, respectively. We consider the three-
time Leggett-Garg inequality (15). In Fig. 2, the nonlinear
beam splitter (NBS) is replaced by a simple polarization beam
splitter (PBS) at each site, and the modes a, a2 and b, b2

at the sites A and B are now symbolized by a± and b±.
The choice of time settings ta, t ′

a and tb, t ′
b now becomes

the choice of polarization angles θ , θ ′ at A, and φ, φ′ at B,
as in the usual Bell inequality. At each beam splitter, the
transformation is given by a unitary evolution. Suppose a
measurement is made of the polarization along the direction
θA of the photon incident at site A, and of the polarization
along direction φB of the photon incident at site B. After the
beam splitter interaction, the photon is detected at either the
spin “up” or the spin “down” position, at each location. It
is well known that for the entangled state, 〈SA(θA)SB(φB)〉 =
cos 2(θA − φB).

Now we consider the following modification of the stan-
dard Bell experiment. We suppose that at each site, the
incident photon propagates through a series of polarization
beam splitters. At time t0, the photons are prepared in the
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correlated Bell state. The photons at each site then propagate
through a PBS set at angle θ . A measurement M̂A(t1) and
M̂B(t1) consisting of detection at the arms of the PBS at A
and B (respectively) could then be made, at time t1, to give
the spin outcomes SA(t1) and SB(t1). The result would be that
the spins are correlated, in accordance with the preparation
Eq. (19), since the polarization beam splitters at each site
were set similarly at angle θ . Supposing that the measurement
M̂A(t1) or M̂B(t1) (or both) is not made, the photon at A or B
then travels though a second PBS orientated at φ. After the
photon has traveled through the second PBS, a measurement
M̂A(t2) or M̂B(t2) could be made at the PBS at the location A or
B, to give the result for the spin SA(t2) or SB(t2) at the time t2,
respectively. If measurements M̂B(t1) and M̂A(t2) were made,
this would give probabilities such that

〈SB(t1)SA(t2)〉 = cos 2(φ − θ ). (20)

Supposing the measurement M̂A(t2) or M̂B(t2) does not take
place at the given site, the photon at A or B then travels through
a third PBS, with angle θ ′. After passage through the third
PBS, at time t3, the polarization of the photon can be measured
using the detection M̂A(t3) or M̂B(t3), to give a result for the
spin outcome SA(t3) or SB(t3) at time t3, respectively.

The Leggett-Garg inequality is satisfied if classi-
cal trajectories are valid at each location, and assum-
ing the validity of locality. One considers the three-
time Leggett-Garg inequality (15) and the two-time spin
correlations: 〈SB(t1)SA(t2)〉 = cos 2(φ − θ ), 〈SA(t2)SB(t3)〉 =
cos 2(θ ′ − φ), and 〈SA(t1)SB(t3)〉 = cos 2(θ ′ − θ ). Using that
the prepared state has correlated spin, one can use Eq. (16).
Choosing θ = 0, φ = π/6, θ ′ = π/3, we find there is vio-
lation of the Leggett-Garg inequality. One may also take
θ = 0, φ = π/6, θ ′ = 5π/12. It is also possible to use the
four-time Leggett-Garg inequality given by (18). Here it is
necessary to include a fourth PBS set at angle φ′ and to
consider final measurements at a time t4.

IV. MACROSCOPIC BELL TESTS USING CAT STATES

A. State preparation

To illustrate violations of a Bell inequality in a macro-
scopic regime, we consider a second example, that of a Bell
cat state involving coherent states:

|ψ0〉 = N (|+〉a|+〉b − |−〉a|−〉b). (21)

Here, we take

|+〉a = −eiπ/6

√
2

(|eiπ/3α〉a + |e−iπ/3α〉a),

|−〉a = | − α〉a,

|+〉b = −i|β〉b,

|−〉b = i
e−iπ/6

√
2

(| − eiπ/3β〉b + | − e−iπ/3β〉b),

where |α〉, |β〉 are coherent states for two modes labeled a
and b. We will assume α and β to be real. The normalization
constant is N . As α and β become large, the states |+〉a and
|−〉a, and similarly |+〉b and |−〉b, are well separated in phase
space, with a separation of order α and β, respectively. In
this limit, the states are said to be macroscopically distinct

[42]. Since we consider α, β large, the states |±〉a become
orthogonal, and similarly |±〉b, and we find that N → 1√

2
.

One can perform quadrature phase amplitude measure-
ments X̂A = 1√

2
(â + â†) and X̂B = 1√

2
(b̂ + b̂†) on each field

mode. The “spin” result ŝ is taken to be +1 (“up”) if the result
for such a measurement is >0, and −1 (“down”) otherwise.
A state with outcome ±1 is denoted |±〉. We see then that the
state (21) corresponds to |ψ+,−〉AB of (1), where we substitute
|±〉A/B with |±〉a/b.

B. Nonlinear dynamics via Kerr interactions

Similarly to the situation depicted in Fig. 2, we suppose
that the two modes are spatially separated into respective
regions labeled A and B, and that at each site there is the
choice to interact the system with a nonlinear medium for
a certain time. The nonlinear interaction is analogous to the
nonlinear beam splitters (NBS) described in the previous
sections, except here we consider only one mode at each site.
The choice corresponds to a choice between two times ta or t ′

a
at A, and an independent choice between two times tb or t ′

b at
B. As in the last section, we note this may actually be a choice
to switch between two different nonlinear interaction values
(two different media) and to interact for the same amount
of time. The interaction at site i is represented as a unitary
transformation Ûi(t ).

Here, we propose that nonlinear Kerr interactions H (A)
NL =


(â†â)2 and H (B)
NL = 
(b̂†b̂)2 act locally, for a time tA and tB,

respectively, on the separated field modes a and b, which are
prepared in the cat state (21). For a single mode prepared in
a coherent state |α〉, it is known that the Kerr interaction after
certain times leads to the formation of macroscopic superpo-
sition states [42–45]. In particular, at time t ′

a = π/(3
), if the
initial state is |α〉, the state at A is [19,42]

|ψ (t ′
a)〉 = −i

√
1

3
|−〉a +

√
2

3
|+〉a. (22)

For an initial state |β〉, the state at time t ′
b = 2π/(3
) is

|ψ (t ′
b)〉 =

√
1

3
|+〉b − i

√
2

3
|−〉b. (23)

Now we consider the states that are created by the local
nonlinear evolutions H (A)

NL and H (B)
NL on the systems prepared

in the initial state Eq. (21). We specifically select ta = 0 and
t ′
a = π/(3
), and tb = 0 and t ′

b = 2π/(3
). The full details
of the calculation are given in the Appendix, in the limit of
large α, β. In particular, we find the final state |ψ f 〉 for the
four combinations of time settings at each location. Solving
in the limit of large α, β where orthogonality of the states
can be assumed, and limiting to the chosen time settings
(tA = ta or t ′

a and tB = tb or t ′
b ) so that we can implement the

transformations (A3) and (A6) derived in the Appendix, we
find

|ψ f 〉 = ÛA(tA)ÛB(tB)|ψ0〉

= 1√
2
{(ab + āb̄)(|+〉a′ |+〉b′ − |−〉a′ |−〉b′ )

+i(āb − ab̄)(|+〉a′ |−〉b′ − |−〉a′ |+〉b′ )}. (24)

022202-7



M. THENABADU et al. PHYSICAL REVIEW A 102, 022202 (2020)

FIG. 5. Macroscopically distinct outcomes in phase space. Contour plots are given for the joint probability distributions P(XA, XB )
corresponding to the quadrature phase amplitude measurements X̂A and X̂B at each site, for each of the time settings relevant to the Bell
test. The outcomes for “spin” correspond to the sign of the quadrature phase amplitudes XA/B and hence are directly associated with the
quadrant in phase space. For each of the 4 combinations of the time settings given, we see that the outcomes are macroscopically distinct as
α = β → ∞. Here we give results for α = β = 3.

Here the a, b when written as part of an equation as above are
the coefficients associated with a unitary transformation and
we denote ā =

√
(1 − a2) and b̄ =

√
(1 − b2). In particular,

a = 1 if tA = ta = 0 and a =
√

2
3 if tA = t ′

a = π/(3
); b = 1

if tB = tb = 0 and b =
√

1
3 if tB = t ′

b = 2π/(3
). The details
of the states |±〉a′ and |±〉b′ are given in the Appendix. We
do not need to specify those here, except to note that the
precise form of |±〉a′ and |±〉b′ depends on the choice of tA
and tB, respectively, but is fixed for each of those choices.
What is important for the remaining calculation is that |+〉a′

and |−〉a′ are states giving outcomes +1 and −1 for the sign
ŝ (“spin”) associated with the measurement X̂A. Similarly, the
states |±〉b′ give outcomes ±1 for the sign associated with the
measurement X̂B.

C. Macroscopic Bell violations

Thus, recalling again that the states |+〉 and |−〉 as defined
for each mode are orthogonal for large α and β, and corre-
spond to states with a ± spin outcome, we see that for the
final state |ψ f 〉, the expectation value for the product of spin
outcomes at each site is

E (tA, tB) = |ab + āb̄|2 − |āb − ab̄|2. (25)

Using the values for a and b corresponding to each time
setting, we evaluate the CHSH-Bell inequality B = E (ta, tb) −
E (ta, t ′

b) + E (t ′
a, t ′

b) + E (t ′
a, tb) � 2 referred to in Sec. II.

The spin correlations are E (ta, tb) = 1; E (ta, t ′
b) = −1/3;

E (t ′
a, tb) = 1/3; E (t ′

a, t ′
b) = 7/9. This implies violation of the

Bell inequality (6) with B = 2.44.
For finite amplitudes, the separated coherent states such

as |α〉 and | − α〉 are not completely orthogonal. One may
calculate the actual joint distributions P(XA, XB) for the results
(XA and XB) of the quadrature phase amplitude measurements
X̂A and X̂B, and confirm the probabilities for the sign of
the quadrature phase amplitudes by integration. Hence the
spin product E (tA, tB) can be evaluated for finite α and β.
Figures 5 and 6 give the complete predictions for arbitrary
α, β, accounting for the full effect of nonorthogonality of
the coherent states. The outcomes of measurements of ŝ (the
sign of X̂ ) are macroscopically distinct, corresponding to
macroscopically distinguishable states in phase space, for all

of the choices of time settings, as α, β become large. This is
seen in Figs. 5 and 6 for α = β = 5 and α = β = 3.

One can thus determine the effect of the nonorthogonality
on the Bell violation. Where the peaks are well separated (i.e.,
α, β > 2), we see from Fig. 6 that there is little effect on the
violation of the Bell inequality. Violations of α-scopic local
realism are thus predicted for all α = β > 2, and a violation
of macroscopic local realism is obtained as α, β → ∞. We
note the Gaussian peaks in the distribution for P(XA, XB)
are well separated for α = β = 2, and the strong violation
predicted for α = β = 2 is promising that an experiment can
be performed.

D. Leggett-Garg version of the macroscopic Bell test

Now it remains to show how to obtain a violation of the
Leggett-Garg inequality, given by Eq. (15). With the proposed
method of generation using the cat state, the initial state is
perfectly correlated in spin with respect to the two modes,
and the argument given in Sec. III D 1 for the justification of
the measurement of the two-time correlation 〈SB(t1)SB(t3)〉 is
valid.

Violations of the inequality are predicted, as can be seen
by evaluating the two-time correlations, as 〈SB(ti )SA(t j )〉 =
E (t j, ti ). We put t1 = ta = tb = 0, t2 = t ′

a = π/(3
), t3 =

FIG. 6. Violation of macroscopic local realism, for macroscopi-
cally distinct states, as α → ∞. Here we allow for finite amplitudes,
α and β. Left: A contour plot of the joint probability distribution for
the outcomes of the quadrature phase amplitudes X̂A and X̂B at times
ta = π/(3
) and tb = 0. The four outcomes depicted are macroscop-
ically distinct for α, β large. The outcomes for the remaining three
time settings are similarly distinct, as in Fig. 5. Here α = β = 5.
Right: A violation of the CHSH-Bell inequality Eq. (6) for α-scopic
local realism is possible when B > 2. Violations are obtained for
arbitrarily large α = β.
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t ′
b = 2π/(3
), in which case

〈SB(t1)SA(t2)〉 = E (tb, t ′
a) = 1

3
,

〈SA(t2)SB(t3)〉 = E (t ′
a, t ′

b) = 7

9
,

〈SA(t1)SB(t3)〉 = E (ta, t ′
b) = −1

3
.

This implies a violation of the Leggett-Garg inequality, with
a value of 13/9 for the left side of the inequality. With the
proposed method of generation using the cat state, there is no
loophole created through postselection.

V. DISCUSSION

We have argued that the violations of the Bell inequalities
presented in this paper falsify macroscopic local realism
(where N or α are large) because the outcomes measured at
location A (B) are distinct by a macroscopic amount. Small
changes to the outcomes cannot change the classification of
the “spin” outcome ±1, at A (B). It is concluded that the
violation is due to a failure of macroscopic locality, or else
of macroscopic realism (or both).

A. A critic’s counterargument

It is interesting to consider counterarguments to the con-
clusion that macroscopic local realism has been falsified. A
new feature of the Bell violations studied here is that of the
local dynamics, which occurs over a time frame. A critic
C might claim that the violation of the Bell inequality is
not due to a macroscopic nonlocal quantum effect, but is
a consequence of the known failure of local realism at the
microscopic level. A critic thinking this way might argue that
there is a microscopic nonlocal quantum effect at some time t ,
which is then translated by the local dynamics (which occurs
over a time ta or tb) into a macroscopic effect, which is then
registered by the detectors.

This interpretation could be further explored. The
predictions for the Bell-inequality violation depend on
the values ta, tb of the local evolution times at each site, and
hence the actual times used at locations A and B can be shifted
against a shared clock. The distance between sites A and B
is assumed large enough to justify no causal effects between
A and B. The observer at each site makes the decision to
cease the unitary evolution (e.g., the nonlinear beam splitter
interaction) at their location at some time, but the evolution
is fully reversible, or can be later continued, up until the time
of the final number or quadrature phase amplitude detection,
which constitutes the irreversible stage of the measurement
process. The times can therefore be adjusted so that the
final irreversible detections at each site A and B are made
simultaneously. Then the critic would reconsider and likely
argue that either there is a sudden large nonlocal effect due
to the irreversible detections, or else that nonlocal effects
due to the irreversible detections at B (A) act back in time,
if these effects are to be considered microscopic (and then
amplified by the unitary dynamics). By increasing the time
delay between turning off the nonlinear (NBS) evolution and
making the final irreversible detection at each site, the test
could be made stricter. Alternatively, the critic might argue

that it is the reversible actions associated with the unitary
dynamics that induce (small) nonlocal effects [which then
leads to a larger change at A (B) prior to detection].

A second response to the critic is to recognize that in this
paper, macroscopic local realism has been defined in the con-
text of spacelike separated measurement events. Macroscopic
locality is defined to exclude only a macroscopic change to
the separated system over the relevant local time interval. In
thinking of an analogy to Schrödinger’s cat paradox [1], the
implication that is seen to be ridiculous in the cat paradox
is that the cat can be “simultaneously” both dead and alive.
This refers to failure of macroscopic realism, macroscopic
realism being the assumption that at a given time t , the
result of the distinguishing measurement M̂ (as defined in
the Introduction) is predetermined [7]. In this paper, we have
not shown this type of failure, which relates to a definite
time, but rather a paradox over the time span associated with
the local dynamics. This motivates a careful analysis of the
assumptions behind the Bell derivation as applied to our case,
to be given in the next section.

B. Macroscopic realism: Two definitions and two
derivations of the Bell inequality

The macroscopic Bell inequalities have been derived from
the assumption of macroscopic local realism (MLR), as de-
fined consistently with the assumption of macroscopic real-
ism: the system prior to measurement is in a state with a defi-
nite predetermined value for the outcome of the distinguishing
measurement M̂. We might also refer to this as macroscopic
deterministic realism. This is in line with the original deriva-
tion of Bell [20], which assumed hidden variables that have
definite values of either +1 or −1, for the measurement of
Pauli spin: The spin is “up” or “down,” prior to measurement.

As with the traditional Bell inequality, we may also derive
the macroscopic Bell inequality in a different way, which we
refer to as macroscopic local causality (MLC). Here, one
assumes local hidden variable states, thus allowing for the
possibility that the interaction between the system and the
local measurement apparatus may stochastically affect the
spin outcome [26]. In such a derivation, it is assumed that
there exists a probability Pθ (±|λ) for a spin outcome of ±1
at a particular site, given the hidden variable parameters λ and
the local choice θ of the measurement setting. Locality is also
assumed, meaning that the probability is independent of φ, the
setting at the remote location. The results of this paper indi-
cate failure of this assumption (referred to as local causality
[26]) at the macroscopic level, where the spin outcomes are
macroscopically distinct. In this case, the macroscopic local
realism premise is generalized: Macroscopic realism (MR)
may be generalized to the assumption that the system is in a
state which leads (after the interaction with the measurement
apparatus) to one or other of the macroscopically distinct
outcomes, with a certain probability. Macroscopic locality
(ML) then asserts that the measurement at the distant location
cannot change the predetermined probabilities of the macro-
scopic outcomes.

In fact, the results of this paper show that both sets of
assumptions (MLR and MLC) are not valid. This helps clarify
an argument that may be put forward as to why the first set
of assumptions (MLR) does not hold. A common view (given

022202-9



M. THENABADU et al. PHYSICAL REVIEW A 102, 022202 (2020)

by a critic D) might be that the assumption of definite values
cannot be applied simultaneously to both the measurements
that occur at a given site, i.e., that prior to the choice of
time settings ta and t ′

a (given in this discussion by θ and
θ ′), the system cannot be regarded as having simultaneous
definite values for the outcomes associated with both choices
of measurement (ta and t ′

a). This supposed failure of simulta-
neous macroscopic deterministic realism is consistent with the
known contextuality of quantum mechanics [46]. The critic
D may argue that the measurement choices correspond to
different unitary interactions which change the system as it
evolves, but in such a way as to give definite macroscop-
ically distinct outcomes after the interaction. In this view,
macroscopic deterministic reality holds immediately before
the final irreversible stage of the measurement, but not before
the reversible stage modeled by the unitary evolution. In such
a view, the Bell inequalities fail because of a failure of the
assumption of a strong macroscopic reality, but a weaker more
general form of macroscopic reality holds.

However, such an analysis is not sufficient in itself to
explain the violation of the second set of assumptions (MLC).
The second set of assumptions allows for an interaction of the
localized subsystem with a local measurement apparatus. The
local theories account for descriptions where an individual
system is in one of two states giving macroscopically distinct
outcomes after the unitary evolution, at a definite time t , and
just prior to the irreversible final part of the measurement.
Yet, the violation of the Bell inequality shows that such a
description is not valid, if one assumes that the Pθ (±|λ) is
independent of φ [and similarly that Pφ (±|λ) is independent
of θ ]. Thus, the viewpoint (from the perspective where the
weaker more general form of macroscopic realism is pre-
served) would be that the Bell inequalities fail because of
a breakdown of the locality assumption. This might occur
over the time interval of the unitary dynamics, consistent with
arguments put forward by critic C. In summary, one cannot
claim that the violations of the macroscopic Bell inequalities
arise solely from the failure of the strong form of macroscopic
realism (macroscopic deterministic realism) [47].

VI. CONCLUSION

To summarize, we have shown how to violate local re-
alism where measurements are macroscopic, meaning that
they do not resolve microscopic details of the system. The
measurements thus distinguish between two macroscopically
distinct states of the system. We have studied two examples,
the first being based on NOON states where there are N
bosons at a given site before detection. In the second example,
we considered entangled cat states, which are superpositions
of coherent states well separated (by of order α) in phase
space. To obtain the macroscopic Bell violations, we consider
at each of two sites the choice between two measurement
settings corresponding to different times of evolution through
a nonlinear medium. This could also be implemented by a
switch between two devices with a different nonlinearity,
allowing the same measurement time. The tests we describe
also give a way to falsify Leggett and Garg’s macrorealism,
except that here the assumption of noninvasive measurability
is replaced by that of locality. A discussion is given in Sec. V.

It is interesting to examine the feasibility of an experiment.
First, preparing entangled macroscopic superposition states
where subsystems are spatially separated is a challenge. This
can be addressed if each of the initial NOON states of Fig. 2
has separated modes. For N = 2, this might be possible using
the Hong-Ou-Mandel effect, which produces a NOON state in
the output modes of a beam splitter. In principle, those output
modes can be separated [40]. We point out that the observation
of the violations for N = 2 would be of interest. However, one
also needs to achieve the nonlinear beam splitter part of the
experiment, which is also challenging. For a Rb BEC, where
the number of bosons N is large, the timescales required for
the nonlinear beam splitter become inaccessibly long, based
on current experiments [18,29,30]. Such a nonlinear beam
splitter is however likely achievable using superconducting
circuits to obtain high nonlinearities [5,31].

The proposal using cat states may be promising for an
experiment. A two-mode cat state similar to (21) has been
generated in a microwave setup [6], although without spatial
separation of the modes. The dynamics of (22) and (23),
which generates multicomponent cat states from coherent
states, has been realized for both microwave fields and BECs
[44,45]. We note that since macroscopic realism (MR) is
suggestive of the validity macroscopic locality (ML) [21],
an experimental test, even if without spatial separation, for
α � 2, would be of interest.

Finally, we comment that the tests we propose are fea-
sible for N = 1. This is discussed in Sec. III D 2. While
not macroscopic, such tests are significant for their poten-
tial to negate classical trajectories, as with the Leggett-Garg
experiments that have been performed with single photons
or atoms [10,12,14]. The advantage of the current proposal
is a stronger justification of the noninvasive measurability
premise. Here, noninvasive measurability is justified by the
assumption of locality, for spacelike separations, because we
have two particle trajectories (as opposed to one in former
tests). The state for N = 1 can be prepared by standard meth-
ods, as a polarization entangled Bell state. The nonlinear beam
splitters are not needed, since the local measurements can
be achieved using (polarizing) beam splitters. The proposed
test differs from the usual Bell experiment, being constructed
similarly to the Leggett-Garg experiment for photons [12],
with successive polarizer beam splitters in place, to create two
particle trajectories.
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APPENDIX

Continuing from Eq. (23), we note that if initially the
system a is in state |+〉a, then after a time t ′

a = π/(3
), the
state at A is

ÛA(t ′
a)|+〉a =

√
2

3
|+〉a′ − i

√
1

3
|−〉a′ , (A1)
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where

|+〉a′ = −|α〉,
|−〉a′ = 1√

2
exp(−iπ/6){| − eiπ/3α〉 + | − e−iπ/3α〉}.

If initially the system a is in state |−〉a, then after a time t ′
a =

π/3
, the state is

ÛA(t ′
a)|−〉a =

√
2

3
|−〉a′ − i

√
1

3
|+〉a′ . (A2)

The states |+〉a′ and |−〉a′ are orthogonal for large α. In this
case, the transformation due to ÛA(t ′

a) can be written as (for
large α)

ÛA(t ′
a)|+〉a = a|+〉a′ − i

√
1 − a2|−〉a′ ,

ÛA(t ′
a)|−〉a = a|−〉a′ − i

√
1 − a2|+〉a′ , (A3)

where a =
√

2
3 . We note that |±〉a′ are states with the outcome

± for the sign of the quadrature measurement X̂A.
Similarly, for site B, we select times tb = 0 and t ′

b =
2π/(3
). For initial state |−〉b, after evolving locally for a
time t ′

B, the system is given by

ÛB(t ′
b)|−〉b =

√
1

3
|−〉b′ − i

√
2

3
|+〉b′ , (A4)

where

|+〉b′ = −|β〉b,

|−〉b′ = eiπ/6(| − eiπ/3β〉b + | − e−iπ/3β〉b)/
√

2.

Now if initially in state |+〉b, then after an interaction time
t ′
a = π/3
, the system is in the state

ÛB(t ′
b)|+〉b =

√
1

3
|+〉b′ − i

√
2

3
|−〉b′ . (A5)

The states |+〉b′ and |−〉b′ are orthogonal for large β.
Hence the transformation due to ÛB(t ′

b) can be expressed in
the form

ÛB(t ′
b)|+〉b = b|+〉b′ − i

√
1 − b2|−〉b′ ,

ÛB(t ′
b)|−〉b = b|−〉b′ − i

√
1 − b2|+〉b′ , (A6)

where b =
√

1
3 . We note that |±〉b′ represent states with the

outcome ± for the sign of the quadrature measurement X̂B.
We also see that for the choice of times ta = 0 and tb = 0,

the transformations ÛA(ta) and ÛB(tb) have a similar form to
(A3) and (A6), since we can use a = 1 and define |+〉a′ as
|+〉a in the case of tA = 0, and use b = 1, defining |+〉b′ as
|+〉b, in the case of tB = 0.
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