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Lateral interatomic dispersion forces
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Van der Waals forces between atoms and molecules are universally assumed to act along the line separating
them. Inspired by recent works on effects which can propel atoms parallel to a macroscopic surface via the
Casimir-Polder force, we predict a lateral van der Waals force between two atoms, one of which is in an excited
state with nonzero angular momentum and the other is isotropic and in its ground state. The resulting force acts
in the same way as a planetary gear, in contrast to the rack-and-pinion motion predicted in works on the lateral
Casimir-Polder force in the analogous case, for which the force predicted here is the microscopic origin. We
illustrate the effect by predicting the trajectories of an excited caesium in the vicinity of ground-state rubidium,
finding behavior qualitatively different to that if lateral forces are ignored.
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Descriptions of macroscopic phenomena are often in-
formed and improved by understanding the underlying micro-
scopic processes. Examples are found throughout condensed-
matter physics, for instance, the BCS theory of superconduc-
tivity [1] or the Lifshitz theory of Casimir forces [2]. The
latter explains Casimir’s original result [3] for the attraction
between two perfectly conducting parallel plates in terms of
correlations between the fluctuating charge distributions of
their elementary atomic constituents. This is part of a broad
class of phenomena known as dispersion interactions (cf.
Ref. [4]), the most familiar being the van der Waals force
between two neutral atoms. Closely related to this is the
Casimir-Polder force that a neutral atom feels in proximity
to a material body.

In recent years, lateral Casimir (surface-surface) and
Casimir-Polder (atom-surface) [5] forces have received at-
tention because of their potential to realize contactless force
transmission [6,7] and use in novel types of sensors and clocks
[8]. All of these works rely on corrugated surfaces [9–14],
gratings [15–18], or gyrotopic response [19]. A number of
more recent works have discussed the intriguing possibility of
engineering modes propagating along a flat, featureless planar
interface [20–26] or nanofiber [27] in such a way that an atom
or second object placed nearby will feel a force dragging
it along the surface. In this Rapid Communication, we will
reveal the microscopic origins of this latter force.

The resonant Casimir-Polder force on an atom can be
expressed in terms of the dyadic Green’s tensor G(r, r′, ω)
describing propagation of electromagnetic waves of frequency
ω from point r′ to r subject to boundary conditions imposed
by material geometry. For a two-level atom at position rA with
time-dependent excited-state occupancy p(t ), it is given by
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[28,29]

Fres(rA, t ) = 2μ0 p(t )ω2
ARe

[∇dA
10 · G(r, rA, ωA) · dA

01

]
r=rA

,

(1)

where ωA is the transition frequency, dA
01 = dA∗

10 is the (com-
plex) transition dipole moment from the upper to lower levels,
and μ0 is the permeability of free space. There is also a non-
resonant force originating in the contribution from photons
with frequencies different than the atomic transition, but as
shown in the Supplemental Material [30] the contribution of
this for the parameters we will choose is negligible compared
to the resonant terms. Most derivations of Casimir-Polder
forces proceed by finding the position-dependent energy shift
of the atomic levels, then taking a spatial derivative to find
the force. If the atom has a complex polarizability (and cor-
responding complex dipole moment) then the Casimir-Polder
force is not conservative, meaning that it cannot be derived
as the gradient of an energy shift. We seek a microscopic
version of the nonconservative force given by Eq. (1), which
was derived from the Lorentz force law.

From a microscopic point of view, a macroscopic medium
is a collection of a large number of atoms—the imposition
of macroscopic boundary conditions is simply a neat and
powerful way of summarizing their collective behavior. We
thus begin by replacing the material body found in accounts
of the lateral Casimir-Polder force with a collection of neutral
atoms. This is done by taking the dilute-gas limit (in which
the polarizability volume of each atom is much smaller than
the cube of the mean interatomic spacing) in a manner similar
to that done by Lifshitz [2] via a Born expansion of the dyadic
Green’s tensor (see, for example, Refs. [31–33])

G(r, r′, ω)

= G(r, r′, ω) + μ0ω
2
∫

d3r′′ρ(r′′)G(r, r′′, ω) · αB(ω)

· G(r′′, r′, ω) + · · · , (2)
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where ρ(r) is the number density of a collection of arbi-
trarily placed atoms with identical polarizibilities αB(ω), and
G(r, r′, ω) is the known Green’s tensor of the background en-
vironment which could, for example, be unbounded vacuum,
but need not be.

Using the Born-expanded Green’s tensor (2) with a δ-
distributed number density in the expression (1) for the
resonant force, one finds that Fres(rA, t ) = F̄res(rA, t ) +∫

d3r′ρ(r′)Fres(rA, r′, t ), where F̄res(rA, t ) is the force felt
between atom A and the background bodies alone, and

Fres(rA, r′, t ) = 2μ2
0 p(t )ω4

ARe
[∇dA

10 · G(r, r′, ωA)

· αB(ωA) · G(r′, rA, ωA) · dA
01

]
r=rA

. (3)

This is an atom-atom (van der Waals) force felt by atom A
due to the presence of a (nonidentical) atom B at r′ = rB with
dynamic polarizability tensor αB(ω), valid as long the atoms
are far enough apart that there is no appreciable wave-function
overlap. Equation (3) is made up of both the interaction of
atom A with its own field as reflected by atom B, and the
interaction with the quantized electromagnetic vacuum field.
For most naturally arising situations, the atomic dipoles can be
considered to be randomly oriented, leaving an average force
which pulls the particles linearly together (or, in some rare
cases, pushes them apart).

The situation changes drastically if one of the atoms
has a complex dipole moment, corresponding to an atomic
transition with different magnetic quantum numbers—loosely
thought of as a continuous rotation. As we will show, the
resulting force causes atom A to orbit atom B. Extending
the analogy of the lateral Casimir-Polder force with a rack
and pinion to our situation, the interaction considered here
could be considered as an atom-scale, contactless version of
planetary gearing as illustrated in Fig. 1.

We will illustrate this by taking atom A to be caesium
undergoing a D2 transition from the highest hyperfine state
|6 2P3/2, F = 5, MF = 5〉 ≡ |1〉 to the hyperfine ground state
|6 2S1/2, F = 4, MF = 4〉 ≡ |0〉, and atom B to be rubidium in
its ground state (5 2S1/2, polarizability αB = αBdiag(1, 1, 1),
where αB = 4πε0 × 293 Å3 at the caesium D2 wavelength
of 852 nm [34,35]). The magnitude of the transition dipole
moment between these two caesium levels is dA ≡ |dA

10| =
2.68 × 10−29Cm [28,35], while its components in the lab-
oratory frame depend on the character of the light which
excites the transition. Assuming a right-circularly polarized
laser beam propagates along the y direction of a Cartesian co-
ordinate system, the transition dipole moment can be written
as

dA
10 = dA√

2
(i, 0, 1) . (4)

We assume that the atoms are in free space, with atom B at the
origin and atom A in the xz plane at position z = rA cos θA,
x = rA sin θA. The two lateral components of the resonant
force are in the θ and y directions, and are found by inserting
the free-space Green’s tensor G(0) into (3). As shown in, e.g.,
Ref. [4], this is given explicitly by

G(0)(r, r′, ω) =
(

I + c2

ω2
∇∇

)
eiω|r−r′ |/c

4π |r − r′| , (5)

FIG. 1. Mechanical analogies to the lateral Casimir-Polder force
studied in previous works, and the lateral interatomic force discussed
here. Dashed (green) arrows represent forces, while solid arrows
(black, white) represent motion. In all cases, the entity on the right
(blue) is considered as being fixed in space.

where c is the speed of light. Using cylindrical coordi-
nates r = (r sin θ, y, r cos θ ), ∇ f = ∂ f

∂r r̂ + 1
r

∂ f
∂θ

θ̂ + ∂ f
∂y ŷ, we

find that the y component of the force F res
y = Fres · ŷ vanishes,

F res
y (rA, t ) = 0, (6)

and the θ component F res
θ = Fres · θ̂ is

F res
θ (rA, t ) = − p(t )

40π2ε2
0c5r2

A

d2
AαB(ωA)ω5

Ag
(ωArA

c

)
, (7)

where ε0 is the permittivity of free space and we have defined

g(η) ≡ 5

2η5
[6η(η2 − 3) cos(2η)

+ (9 − 15η2 + η4) sin(2η)]. (8)

The lateral force shown in Eq. (7) is our main result, but as
a point of comparison we also report the normal force F res

r =
Fres · r̂:

F res
r (rA, t ) = − 15p(t )

16π2ε2
0r7

A

d2
AαB(ωA)h

(ωArA

c

)
, (9)

where

h(η) = 1
15 [3(5 − 8η2 + η4) cos(2η)

+ η(30 − 10η2 + η4) sin(2η)]. (10)

Similar normal forces between (nonrotating) excited- and
ground-state atoms are well studied, having been consid-
ered by the authors of Refs. [36–42], with particular em-
phasis on the oscillating distance dependence, but the lat-
eral force (7) predicted here has not previously been dis-
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cussed. The van der Waals interaction in the near-field (non-
retarded) limit ωArA/c � 1 is given by Eqs. (7) and (9),
where limη→0 g(η) = 1, limη→0 h(η) = 1, while the far-field
(retarded) limit is found from Eqs. (7) and (9) by taking
ωArA/c 	 1. It is interesting to note that the forces are
independent of θA which also results from symmetry consider-
ations. Formulas (7) and (9) account for retardation effects via
the functions g and h in the limit ωArA/c 	 1, which arises
because of the finite velocity of light. In the retarded regime,
the time taken for the photon to reach the second atom and
reflect back to the first atom becomes comparable with the
timescale of the dipole fluctuations themselves. In this case,
the orientation of the dipole at the time of emission may differ
from its orientation at the time of absorption of the reflected
photon, reducing the attractive force as compared to the ideal
case of parallel alignment.

Our next step is to recognize that the excited-state inter-
atomic force can be understood as a recoil force originating
from the exchange of excitations with the environment, for
which we present an alternative derivation of Eq. (3) [and
thereby Eqs. (6), (7) and (9)], based on emission spectra
instead of forces [43]. To do this, we begin by calculating the
spontaneous decay rate for atom A in the excited state |1〉 in
the presence of a second atom B. As shown explicitly in the
Supplemental Material, in free space this is given by

�(rA, rB) = 2μ2
0

h̄
ω4

AIm
[
dA

10 · G(0)(rA, rB, ωA)

· αB(ωA) · G(0)(rB, rA, ωA) · dA
01

]
. (11)

where h̄ is the reduced Planck constant.
We can define a momentum-space emission rate density γ

as

�(rA, rB) =
∫

d3kγ (k; rA, rB), (12)

which is the rate at which light with wave vector k is emitted,
if the atom A is in the excited state. Since the free-space
Green’s tensor can be Fourier transformed G(0)(r, r′, ω) =
(2π )−3

∫
d3keik·(r−r′ )G(0)(k, ω) the rate density reads

γ (k; rA, rB) = 2μ2
0

(2π )3h̄
ω4

AIm
[
eik·(rA−rB )dA

10 · G(0)(k, ωA)

· αB(ωA) · G(0)(rB, rA, ωA) · dA
01

]
. (13)

Explicit evaluation of the rate density in our particular setup
(see the Supplemental Material) reveals that γ (−k; rA, rB) 
=
γ (k; rA, rB), showing that the net recoil force is, as expected,
not zero. This can be explained by noting that the momentum-
space recoil force density is given by −γ h̄k (the minus signs
accounting for the fact that we are considering recoils), so that
the total resonant force on atom A is given by

Fres(rA, rB, t ) = −p(t )
∫

d3kh̄kγ (k; rA, rB). (14)

Since ∇eik·r = ikeik·r, we immediately find the recoil force
Eq. (3), which leads to the lateral forces (6), (7) and (9).

We are now left with a remarkable conclusion. The asym-
metry that atom B represents in the environment of atom A
causes the latter to preferentially release its excitation in a

FIG. 2. Lateral [solid, Eq. (7)] and normal [dashed, Eq. (9)]
resonant forces on a caesium atom (D2 transition) due to the presence
of a rubidium atom at the origin. The numbered dots are those used
later for trajectory simulations. Each chosen distance is comfortably
larger than the atomic radii (≈10Å), consistent with our assumption
of independent polarizibilities.

direction perpendicular to the line joining them, propelling
A around B like a planetary gear. When combined with the
oscillatory nature of the resonant force that atom B exerts on
atom A, we also find that the sign of this torque can be varied
by changing the distance between the atoms, as shown in
Fig. 2, where we also plot the corresponding normal resonant
force (9).

Having seen that a lateral interatomic dispersion force is
possible, we now turn our attention to its magnitude and
prospects for experimental observation. In the absence of ex-
ternal driving, the atomic population (and therefore the recoil
force) decays on average like e−�t , meaning that the torque
quickly becomes unobservably small. In order to combat this,
we introduce a coherent driving, for which it is useful to
go into the vacuum picture where the interaction of an atom
with a coherent field can be considered as being made up of
a classical driving field plus the vacuum field [44–46]. We
consider atom A to be continuously driven by a circularly
polarized classical laser field propagating in the positive y
direction:

EL(t ) = E0eRe−iωLt/2 + c.c., (15)

where E0 is the field’s amplitude, ωL is its frequency, and eR =
(−i, 0, 1)/

√
2. The effect of the driving laser is accounted

for by the real Rabi frequency h̄ = dA
10 · eRE0 = dAE0. Solv-

ing the optical Bloch equations for the interaction of the laser
field with atom A in the absence of atom B in the long time
limit (t 	 �−1), the expectation value of the dipole moment
operator of atom A is then given by

〈dA(t )〉 =
√

2�

2�2 + 2
dA[sin (ωLt ), 0,− cos (ωLt )], (16)

where � = ωL − ωA is the detuning of the laser field from
the atomic resonance, and we have also assumed � � |�|.
In the absence of atom B, atom A simply rotates in the x-z
plane with the same frequency as the laser, which is not
surprising. The presence of atom B breaks the symmetry of
the electromagnetic environment experienced by atom A. To
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FIG. 3. Simulated trajectories for a caesium atom starting at rest
for the four points shown in Fig. 2. Shown in the background is the
potential energy function found by integrating the normal resonant
force in the radial direction.

quantify this effect, we use Eq. (3) with an excited state
population given by (see, for example, [47])

p(t ) = 2

4�2 + 22
. (17)

In the strong interaction limit  	 |�|, the effect of the resul-
tant force is shown in Fig. 3, where we place atoms initially
at rest on the x axis at the positions indicated by the dots in
Fig. 2 and compute their trajectories. The illuminating light
should be set up in such a way that it has a constant amplitude
over the trajectory of atom A, while affecting atom B as little
as possible. This could be achieved, for example, by tailoring
atom B’s level structure or through the use of structured light.
It is seen that under such continuous laser driving the lateral
force causes atom A to be ejected after slightly more than half
an orbit of the fixed, isotropic atom B. In Fig. 4, we plot the
velocity gained as a function of time, finding 12–15 μm/s for
the parameters chosen here. To reach these velocities takes a
relatively long time (on the order of a second) since the force
is so weak. However, there are several routes to combat this
by enhancement of the interaction. One might expect that use
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FIG. 4. Velocities gained along the four trajectories simulated in
Fig. 3.

of Rydberg atoms with their large dipole moments (quadratic
in the principle quantum number n); however, the energy
difference of adjacent states is scaled as n−3, meaning that the
force derived here is strongly suppressed for such systems.
Finally, we note that the interaction could be enhanced by
placing the pair of atoms in a cavity, in much the same was
as the spontaneous decay rate of a quantum emitter can be
enhanced through the Purcell factor [48].

To conclude, we have demonstrated the existence of a
lateral van der Waals force on an excited, circularly polarized
atom due to the placement of an isotropic, ground-state atom
nearby. We have outlined how the effect might be experimen-
tally accessed by selectively pumping the atom to a Zeeman
sublevel. Control of the lateral force direction and magnitude
can be experimentally implemented by changing the handed-
ness of the illuminating light and the distance between the
two atoms. Our work is the first demonstration of the most
elementary lateral force that can act on a circularly polarized
emitter, without the influence of a surface. Nevertheless, our
expression of the force in terms of the dyadic Green’s tensor
means that additional macroscopic objects can be introduced
without fundamental changes to the method, opening up the
effect detailed here to Purcell-type enhancement. In the longer
term, the force could find applications in optomechanics as an
actuation method, as well as in any of the numerous fields in
which van der Waals forces play a pivotal role.
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