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We derive a master equation for a superradiant medium which includes multilevel interference between the
individual scatterers. The derivation relies on the Born-Markov approximation and implements the coarse-
graining formalism. The master equation fulfills the Lindblad form and contains terms describing multilevel
interference between parallel transitions of a single atom, multiatom interference between identical transitions,
and multiatom interference between different electronic transitions with parallel dipoles. This formalism is then
applied to determine the excitation spectrum of two emitters using the parameters of the hydrogen transitions
2S1/2 → 4P1/2 and 2S1/2 → 4P3/2, where the gap between the parallel dipoles is of the order of GHz. The
distortion of the signal due to the interplay of multilevel and multiemitter interference is analyzed as a function
of their distance. These results suggest that interference between parallel dipolar transition can significantly
affect the spectroscopic properties of optically dense media.
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I. INTRODUCTION

Superradiance generally denotes a phenomenon which
enhances radiation. In quantum optics, it originates from
quantum interference in the light emission by an ensemble of
atoms, molecules, or other types of resonant emitters which
form an optically dense medium [1–3]. In free space, this
requires that the average interparticle distance is smaller than
the wavelength of the scattered radiation. Then, the coupling
of the individual atomic transitions with the modes of the
electromagnetic field can be effectively described in terms of
collective dipoles and the radiative properties depend on the
collective spin quantum numbers [1]. Superradiant (and sub-
radiant) scattering plays a relevant role in the spectroscopy of
dense atomic gases [4–10], it could enhance transport of light
in organic semiconductors [11], and it is the key mechanism
of recent realizations of ultranarrow lasers [12,13].

Superradiant light scattering is often described by means
of a perturbative expansion in the atom-photon interactions
and using the Born-Markov approximation [2,3,14–21]. Most
theoretical treatments focus on two-level dipolar transitions
[2,3,14–19,22,23]; some also including the possible degener-
acy of the ground or excited state of the transition [17,22,23].
These treatments successfully predict experimental measure-
ments at sufficiently low optical densities. Qualitative dis-
crepancies have been found when comparing the predictions
of these models with recent experiments with dense atomic
media [4,9,10]. This requires one to assess the effects of terms
which are typically discarded or only partially considered.

In this work, we derive a master equation for an optically
dense medium and set our focus on vacuum-induced inter-
ference [24–27]. Vacuum-induced interference refers to inter-
ference phenomena between electronic transitions coupled to
common modes of the electromagnetic field. If the transitions
are dipolar, they are denoted by parallel dipoles. Interference
also occurs when the electromagnetic field modes are in
the vacuum, and is qualitatively different from laser-induced

interference [28]. In closed level structures, these effects can
be tested by means of quantum beat spectroscopy and are
expected to give rise to “steady-state quantum beats” [25,26].
They are also expected to play an important role in high-
precision spectroscopy [29–32]. In this work, we determine
the Born-Markov master equation of multilevel scatterers in
an optically dense medium and which includes interference
terms between parallel dipoles. For this purpose, we derive the
master equation by applying the coarse-graining formalism of
Refs. [33,34]. The master equation that we obtain preserves
the Lindblad form and, in the limit of one single emitter, it
reduces to the coarse-grained master equation of Ref. [29].
We then apply it to determine the excitation spectrum and
the light shift of two identical emitters, each composed of
two parallel dipoles sharing the same ground state. In this
simplified model, we show that collective scattering results
from the coherent sum of three processes, which we illustrate
in Fig. 1: (a) the interference between parallel dipoles of
the individual atoms, (b) the interference between resonant
transitions of different atoms, and (c) the interference between
parallel dipoles of different atoms. Here, we argue that in
an optically dense medium, they can give rise to measurable
shifts of the spectroscopic lines.

This work is organized as follows. In Sec. II, we present
the derivation of the master equation by eliminating the
degrees of freedom of the electromagnetic field within
the Born-Markov approximation and by implementing the
coarse-graining method developed in Ref. [33]. By these
means, we obtain a superoperator that fulfills the Lindblad
form. This superoperator consistently describes interference
processes between parallel dipoles of the individual atoms and
interference processes of different atoms. In Sec. III, we then
consider the specific example of two emitters, composed of
two parallel dipoles sharing the same ground state, and de-
termine their excitation spectrum using the parameters of the
transitions 2S1/2 → 4P1/2 and 2S1/2 → 4P3/2 of a hydrogen
atom. By means of a simple fitting function, we argue that
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FIG. 1. Interfering processes leading to photon scattering by
resonant emitters. The emitter’s relevant states are the ground state
|g〉 and the excited states |e〉, |e′〉; the transitions |g〉 → |e〉 and |g〉 →
|e′〉 have parallel dipole moments. The horizontal lines sketch the
scattering processes, the wavy lines the photon, and the level schemes
give the corresponding occupation of the emitters’ internal levels
(dot and circles). The emitters are initially in the ground state (solid
line). Photon absorption (first wiggle line) can excite a coherent
superposition of (a) the excited states of a single emitter, (b) the
resonant states of the two emitters, and (c) different excited states of
the two emitters but with parallel dipoles. Photon emission (second
wiggle line) projects the emitters in the same final state. In this work,
we analyze the spectroscopic features due to the interference of these
three processes.

the interference effects give rise to measurable shifts of the
resonance lines. Finally, in Sec. IV, we draw the conclusions
and discuss outlooks of this work. The appendices contain
details of the calculations in Secs. II and III.

II. DERIVATION OF THE SUPERRADIANT
MASTER EQUATION

In this section, we report the derivation of the Born-Markov
master equation for an optically dense atomic or molecular

medium. Our derivation follows the lines of textbook deriva-
tions [3,18,21,24] and we extend it by implementing the
coarse-grained method developed in Ref. [33]. This allows us
to systematically take into account the interference of parallel
dipoles and, at the same time, to preserve the Lindblad form
of the master equation. In the single-atom limit, our master
equation reproduces the one derived in Ref. [29], which
includes the interference processes between parallel dipoles
in a single atom.

For convenience, in the following we assume an ensemble
of emitters with identical electronic transitions. This for-
malism, nevertheless, can be straightforwardly extended to
ensembles of different particles (which could also be a mix-
ture of atoms and molecules) with quasiresonant transitions.
The relevant assumption is that the emitters are pinned at
given positions and are distinguishable particles. Our starting
point is the von Neumann equation governing the coherent
dynamics. Below we provide the salient steps leading to the
corresponding coarse-grained master equation for the emit-
ters’ internal degrees of freedom.

A. Multilevel emitters interacting with the
quantum electromagnetic field

We consider N emitters interacting with the modes of the
electromagnetic field (EMF) in the volume V . We assume
that the particles are pinned at the positions �Rα , with α =
1, . . . , N . We denote by H the Hilbert space of the emitters’
internal degrees of freedom and of the EMF’s degrees of
freedom, H = HA ⊗ HR. The time evolution of the density
matrix χ̂ (t ), describing the state of photons and emitters, is
governed by the von Neumann equation

∂t χ̂ = [Ĥ, χ̂ ]/ih̄, (1)

where Ĥ is the Hamiltonian determining the dynamics, which
we decompose into the sum of the Hamiltonian ĤA for the
emitters’ (internal) degrees of freedom, the Hamiltonian ĤR

for the free EMF, and the emitter-photon interactions V̂ ,

Ĥ = ĤA + ĤR + V̂ . (2)

We remark here that ĤR ≡ 1̂A ⊗ ĤR and ĤA ≡ ĤA ⊗ 1̂R,
where 1̂R and 1̂A are the identity operators in the Hilbert
spaces HR and HA, respectively. Thus, we use the same no-
tation for the operator Ĥj=A,R defined in the extended Hilbert
space H and in the reduced Hilbert space H j .

The emitters’ Hamiltonian. The emitters Hamiltonian de-
scribes the dynamics of the internal degrees of freedom of N
emitters,

ĤA =
N∑

α=1

ĤAα
,

where ĤAα
is the Hamiltonian of emitter α = 1, . . . , N at

position �Rα and we assume that the size of the center-of-mass
wave packet is much smaller than the interparticle distance
[in Eq. (3), we omit to explicitly write that ĤAα

is the identity
operator in the Hilbert space of the emitters with β �= α]. We
consider here only the lowest electronic bound states assum-
ing that the system is at room temperature. The spectrum of
each emitter is discrete and the Hamiltonian in diagonal form
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reads

ĤAα
=

∑
n

En|n〉α〈n|, (3)

with En the eigenvalue and |n〉α the corresponding eigenvector
for the emitter at the position �Rα . In a more general treatment,
where the emitters might not be identical and/or in the pres-
ence of spatial inhomogeneity, the energy also depends on the
label α.

The quantum electromagnetic field. We treat the EMF
in second quantization and choose the Coulomb gauge. We
denote the quantization volume by V and assume periodic
boundary conditions. The energy of the field relative to the
vacuum energy reads

ĤR =
∑

λ

h̄ωλâ†
λâλ, (4)

where λ denotes the sum over the EMF modes and the sum
has an upper cutoff given by the energy h̄ωcutoff ∼ mc2, with
m the electron mass. The modes here are traveling waves
and are fully characterized by the wave vector �kλ and by
the transverse polarization �eλ, with the frequency ωλ = c|�kλ|
and c the speed of light in vacuum. Operators âλ and â†

λ

annihilate and create, respectively, a photon of mode λ, and
fulfill the bosonic commutation relations [âλ, â†

λ′ ] = δλ,λ′ and
[âλ, âλ′ ] = 0.

The initial state of the EMF field is assumed to be given by
the thermal distribution

R̂ = exp (−ĤR/kBT )/Z, (5)

where kB is Boltzmann’s constant, T is the temperature,
and Z = Tr{exp (−ĤR/kBT )} is the partition function. Within
the validity of the Born approximation, R̂ gives the state of
the EMF at all times. Here we assume room temperatures,
T ∼ 300 K.

Emitter-photon interactions. Here, emitter-photon interac-
tions are treated in the electric-dipole approximation. Oper-
ator V̂ is the sum of the interactions of the fields with each
emitter, V̂ = ∑N

α=1 V̂α , with

V̂α = h̄
∑

n

	̂α
n σ̂ α

n , (6)

where the sum is over all pairs of electronic levels n = (n1, n2)
coupled by an electric-dipole transition. Here, operator σ̂ α

n
describes the transition between |n1〉α and |n2〉α:

σ̂ α
n ≡ |n1〉α〈n2|.

The corresponding coupling strength is determined by the
coupling operator 	̂α

n , which acts over the degrees of freedom
of the electromagnetic field and reads

	̂α
n =

∑
λ

(
gαλ

n âλei�kλ �Rα + ḡαλ
n â†

λe−i�kλ �Rα

)
. (7)

The coupling strengths gαλ
n have the dimensions of a frequency

and are given below in gauss units and in the length gauge,

gαλ
n = −i

√
2πωλ

h̄V
�dα
n · �eλ, (8)

ḡαλ
n = i

√
2πωλ

h̄V
�dα
n · (�eλ)∗, (9)

with �dα
n the dipole moment of the transition, which is the

matrix element of the dipole operator �̂dα and reads �dα
n =

α〈n1| �̂dα|n2〉α . We remark that this description applies the long-
wave approximation, and thus it is valid when the size of the
electronic wave packet is smaller than the optical wavelength.
Moreover, in our model, we did not include the self-energy
which appears in the length gauge (see Refs. [35,36] for an
insightful discussion).

For later convenience, we introduce the frequency ωn,

ωn = (En1 − En2 )/h̄. (10)

By definition, it can also take negative values.

B. Master equation for an ensemble of multilevel emitters

We now proceed to derive the Born-Markov master equa-
tion using the coarse-grained formalism. The procedure re-
peats, in the essential steps, the one of Ref. [29], with
some notable differences due to the many-body nature of the
problem.

We first introduce the density matrix ρ̂(t ) describing the
state of the emitters at time t . Operator ρ̂(t ) is defined in the
Hilbert space HA and is related to the density matrix χ̂ (t ) by
the equation ρ̂(t ) = TrR{χ̂ (t )}, where TrR denotes the partial
trace over the degrees of freedom of the EMF.

We now consider the von Neumann equation, given by
Eq. (1), and move to the interaction picture with respect to
Hamiltonian Ĥ0 = ĤA + ĤR. We denote the system’s density
matrix in the interaction picture by

χ̃ (t ) = Û0(t )†χ̂ (t )Û0(t ), (11)

where we have introduced the unitary operator Û0(t ) =
exp[Ĥ0t/(ih̄)]. In this representation, the reduced density ma-
trix of the system is related to the reduced density matrix in
the Schrödinger picture by the relation

ρ̃(t ) = TrR{χ̃ (t )} = e−ĤAt/(ih̄)ρ̂(t )eĤAt/(ih̄).

In the interaction picture, the unitary operator determining
the time evolution reads

Ũ (t, t ′) = T exp

[
− i

h̄

∫ t ′

t
dt1Ṽ (t1)

]
, (12)

where Ṽ (t ) = Û0(t )†V̂ Û0(t ) and T denotes the time ordering,
such that

T Ṽ (t1)Ṽ (t2) = Ṽ (t1)Ṽ (t2)θ (t1 − t2) + Ṽ (t2)Ṽ (t1)θ (t2 − t1),

with θ (t ) the Heaviside function. Using this formalism, at t ′ >

t the state ˆ̃χ (t ) evolves into state

χ̃ (t ′) = Ũ (t, t ′)χ̃ (t )Ũ (t, t ′)†. (13)

1. Dyson equation and Born-Markov approximation

Let now �t = t ′ − t > 0 denote a finite and sufficiently
small time step, which we quantify later. We write the Dyson
series of the right-hand side of Eq. (13) until the second order
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in the interaction, but keep the exact form. After tracing out
the EMF degrees of freedom, we obtain the expression

ρ̃(t + �t )

= ρ̃(t ) + �t
∑

α

�α
1 ρ̃(t )

+�t
∑
α,β

1

�t

∫ t+�t

t−�t
dT

∫ �t

−�t
dτθ (τ )�α,β

2 (T, τ )ρ̃(T −τ ).

(14)

The terms �α
1 , �α

2 on the right-hand side are linear maps, and
the subscript indicates the order in the Dyson expansion. In
deriving Eq. (14), we have made the Born approximation at
the initial time t , namely, we have assumed that there are no
quantum correlations at time t between the EMF and emitter.
This corresponds to writing χ̃ (t ) = R̂ ⊗ ρ̃(t ), where R̂ is the
thermal state of the EMF, given by Eq. (5).

The map �α
1 acts over the Hilbert space of the emitter α

and is given by

�α
1 ρ̃(t ) = 1

ih̄�t

∫ t+�t

t
dt1TrR

{[
Ṽα (t1), χ̃ (t )

]}
= 1

ih̄

[〈Ṽα (t )〉R, ρ̃(t )
]
, (15)

where, between the first and the second line, we have applied
the Born approximation and introduced the time-averaged
operator (here in the interaction picture):

〈Ṽα (t )〉R = 1

�t

∫ t+�t

t
TrR

{
Ṽα (t1)R̂

}
. (16)

Note that operator V̂α , given by Eq. (6), vanishes over the
thermal state of the EMF, given by Eq. (5). The second
integrand of Eq. (14) contains the Heaviside function θ (τ )
and also includes the coupling between different emitters. Its
detailed form is reported in Appendix A.

Equation (14) is generally valid for sufficiently short time
intervals �t , over which one can assume that the Born ap-
proximation holds. After some time, in fact, the interactions
establish quantum correlations between system and reservoir.
These correlations can be neglected when the interactions can
be treated perturbatively.

The master equation becomes local in time when the
Markov approximation holds. The Markov approximation
consists in approximating ρ̃(T − τ ) ≈ ρ̃(t ) in Eq. (A1). It
is equivalent to the Wigner-Weisskopf approximation for
the propagator [35] and is justified when the characteristic
timescale τR of the correlation function Cαβ (τ ), given by
Eq. (A3), is orders of magnitude smaller than the system’s
relaxation time. In a thermal bath, the correlation function
is composed of a term which decays exponentially with the
correlation time, τR = h̄/kBT , and by power-law tails that can
be discarded for typical evolution times [35,37]. At room tem-
peratures, T ∼ 300 K, this time is of the order of τR ∼ 10−13

sec. This time shall be compared with the relaxation time of
the system. For optical transitions, the natural linewidth of a
single atom, γ ∼ 2π × 106–108 Hz, fulfills γ τR 
 1. In this
limit, we can choose the timescale �t such that τR 
 �t 

1/γ and ignore memory effects in the integral.

In the presence of dipole-dipole interactions, there are
some issues to be considered: in the first place, superradiance
gives rise to an N-fold enhancement of the single-atom decay
rate, and thus when Nγ becomes comparable with 1/τR, the
approximation becomes invalid. This is the regime where one
can observe the Dicke phase transition in an ensemble of
two-level systems [38], and where the assumptions at the basis
of this treatment break down. At the same time, subradiant
states can be characterized by extremely small linewidths.
Observing their decay requires one to analyze the system’s
dynamics over long timescales over which the power-law
tails of the correlation function can become important. These
considerations suggest that the formalism shall be revisited for
media with very high optical, dense media.

2. Coarse-grained master equation

In what follows, we assume an optically dense medium for
which the Born-Markov approximation is valid. Then, from
Eq. (14), we derive the Born-Markov master equation (now
back in the Schrödinger picture),

∂t ρ̂ = 1

ih̄
[ĤA + ĤS, ρ̂(t )] + LDρ̂(t ), (17)

where Hamiltonian ĤS and superoperator (dissipator) LD

contain both the single-atom as well as the interatomic in-
terference terms between parallel dipoles. The details of the
derivation are standard and are reported in Appendix A. The
master equation is valid for any time t > 0 within a grid whose
resolution is determined by the coarse-grained timescale �t .
As a consequence, the coefficients multiplying the terms of
the operator ĤS and the superoperator LD are scaled by the
function

�
(�t )
i j = sin[(ωi + ω j )�t/2]

(ωi + ω j )�t/2
. (18)

This term selects transitions which are resonant within the
resolution set by the coarse-graining time �t . For optical
transitions, this factor selects a pair of frequencies ωi and
ω j with opposite signs. Correspondingly, it selects terms in
the Hamiltonian and dissipator where the pairs of operators
σ̂ α

i σ̂
β
j describe an excitation and a deexcitation along two

(quasi)resonant transitions. For convenience, we introduce
the operator ζ̂

α†
i ≡ σ̂ α

i , which describes a transition i2 → i1
with ω̄i = ωi > 0 and dipole moment �Dα∗

i = �dα
i . Then, the

operators appearing in the master equation are of the form
ζ̂

α†
i ζ̂

β
j or ζ̂ α

i ζ̂
β†
j , and the factor (19) now reads

�
(�t )
i j = sin[(ω̄i ± ω̄ j )�t/2]

(ω̄i ± ω̄ j )�t/2
. (19)

In what follows, we discard the processes where two transi-
tions are simultaneously excited or deexcited, corresponding
to the + sign in the argument of Eq. (19).

Hamilton operator. The Hamiltonian term due to the inter-
action with the EMF is given by the expression

ĤS =
∑

α

〈V̂α〉R + 1

2

∑
α,β

ĤS
αβ,

where 〈V̂α〉R is given in Eq. (16) and is now reported in
the Schrödinger picture. This latter term vanishes since we
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assume that the EMF is in the thermal state. The Hamilton
operator ĤS

αβ contains the frequency shifts and couplings
due to the multilevel interference, and is derived from the
expression (here given in the interaction picture)

H̃S
αβ = − i

2h̄�t

∫ t+�t

t
dt1

∫ t+�t

t
dt2

×θ (t1 − t2)TrR
{
[Ṽα (t1), Ṽβ (t2)]R(t )

} + H.c. (20)

For α = β, it is the Hamilton operator for a single atom and
it coincides with the operator derived in Ref. [29]. For α �= β,
it describes the Hamiltonian terms due to the dipole-dipole
interactions, including the interference between all parallel
transitions of different atoms. We report it in the form which
includes both cases,

ĤS
αβ = −h̄

∑
i, j

[(
�

αβ−
i j + �

αβ(T )
i j

)
ζ̂

α†
i ζ̂

β
j

+
(
�

αβ+
i j − �

αβ(T )
i j

)∗
ζ̂ α

i ζ̂
β†
j

]
+ H.c., (21)

where �
αβ(T )
i j = �

αβ−
i j (T ) − �

αβ+
i j (T ) and the individual co-

efficients read (below in gauss units)

�
αβ±
i j = �

(�t )
i j

�Dα∗
i · �D β

j

(2π )2h̄c3
P

∫ ωcut

0

dω ω3

ω ± ωi j
F i j

αβ ( �Rαβ ), (22)

�
αβ±
i j (T ) = �

(�t )
i j

�Dα∗
i · �D β

j

(2π )2h̄c3
P

∫ ωcut

0

dω ω3n(ω, T )

ω ± ωi j
F i j

αβ ( �Rαβ ).

(23)

Here, P denotes the Cauchy principal value and ωcut is the
cutoff frequency. The frequency

ωi j = ω̄i + ω̄ j

2

is the average between the two transition frequencies, and the
coefficient F i j

αβ ( �Rαβ ) depends also on the distance �Rαβ = �Rα −
�Rβ between the atoms and on the wave number k = ω/c. It
takes the form

F i j
αβ ( �Rαβ ) = 4π

{
j0(kRαβ )

[
1 − ( �Dα

i · �Rαβ )∗( �D β
j · �Rαβ )

Dα
i Dβ

j R2
αβ

]

− j1(kRαβ )

kRαβ

[
1 − 3( �Dα

i · �Rαβ )∗( �D β
j · �Rαβ )

Dα
i Dβ

j R2
αβ

]}
,

(24)

where we used the notation Dα
i = | �Dα

i | and Rαβ = |Rαβ |.
Here, j0(x) and j1(x) are spherical Bessel functions of the
first type [39]. The dependence on the vector joining the two
atoms breaks the spherical symmetry and is at the origin of
the anisotropic light emission of superradiance [3]. For the
case of one atom, N = 1, one has F i j

αα (0) = 8π/3 [18], and
the Hamiltonian of Eq. (21) takes the form of the single-atom
Hamiltonian of Ref. [29].

Dissipator. The Lindblad term LD describes the incoherent
processes. It can be decomposed into the sum

LDρ̂(t ) =
∑
α,β

Lαβ
D ρ̂(t ), (25)

where the terms with α = β describe the dissipation of N
noninteracting atoms, while the terms with α �= β originate
from multiple scattering of resonant photons and vanish when
the distance between the atoms exceeds several wavelengths.
The individual terms are obtained from the expression in the
interaction picture,

L̃αβ
D ρ̃(t ) = 1

2h̄2�t

∫ t+�t

t
dt1

∫ t+�t

t
dt2TrR{A(t1, t2)},

where

A(t1, t2) = 2Ṽβ (t1)[ρ̃(t ) ⊗ R̃(t )]Ṽα (t2)

−[Ṽα (t1)Ṽβ (t2), ρ̃(t ) ⊗ R̃(t )]+

and [, ]+ denotes the anticommutator. After performing the
integration and going back to the Schrödinger picture, the
individual terms take the form

Lαβ
D ρ̂(t ) =

∑
i, j

[1 + n(ωi j, T )]

×
{

	
i j
αβ

2

[
ζ̂

β
j ρ̂(t ), ζ̂ α†

i

]
+ 	

i j
αβ

2

[
ζ̂

β
j , ρ̂(t )ζ̂ α†

i

]}

+
∑
i, j

n(ωi j, T )

×
{

	
i j∗
αβ

2

[
ζ̂

β†
j ρ̂(t ), ζ̂ α

i

]
+ 	

i j∗
αβ

2

[
ζ̂

β†
j , ρ̂(t )ζ̂ α

i

]}
,

(26)

with the damping coefficients

	
i j
αβ = �

(�t )
i j

�Dα∗
i · �D β

j

2π h̄c3
ω3

i jF
i j
αβ (ki j ), (27)

and ki j = ωi j

c . We note that for i �= j, the damping coefficients

are different from zero if the scalar product �Dα∗
i · �D β

j �= 0.
Master equation (17) fulfills the Lindblad form and take into
account the multilevel structure of the quantum emitters.

3. Discussion

We first review the dynamics that the master equation (17)
predicts for a very dilute ensemble of emitters (Rαβ → ∞),
when it is well approximated by N independent experiments
with a single atom. In this case, the damping coefficients 	ii

αα

are the Einstein coefficients of spontaneous emission. For i �=
j, instead, the coefficients 	

i j
αα describe processes where two

different transitions with parallel dipoles are simultaneously
deexcited. These transitions shall be resonant within the fre-
quency resolution of the coarse graining 1/�t . This process,
even though incoherent, is a quantum interference between
spectral lines [26,27,29,30]. The corresponding terms have
been denoted by cross-damping terms in the literature [31,32].
These dynamics have a corresponding Hermitian component
in the Hamiltonian term Ĥαα

S . The coefficients include an
energy shift of the electronic states due to the vacuum fluctu-
ations, which for the ground state is the nonrelativistic Lamb
shift, as well as a shift due to thermal fluctuations of the EMF.
Vacuum and thermal fluctuations also give rise to an effective
coupling between electronic levels with parallel dipoles and
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quasiresonant frequencies; the coupling coefficients are given
by Eqs. (22) and (23) after setting α = β. They can be
estimated by using the approximate relation [29]

�αα±
i j ≈ 1

2
( �Dα∗

i · �D α
j )�(�t )

i j

(
1

| �Dα
i |2 �αα±

ii + 1

| �Dα
j |2

�αα±
j j

)
.

(28)
When the interparticle distances are comparable with the

wavelength, namely, for α �= β, Eq. (17) is the master equa-
tion for optically dense media which now includes quantum
interference between transitions with parallel dipoles. Keep-
ing only the terms with i = j, one obtains the master equation
discussed in the literature [2,3,17,22], where the dissipator
gives rise to phenomena such as superradiance and subradi-
ance, while the coherent part describes coherent dipole-dipole
interaction, including frequency shifts such as the so-called
collective Lamb shift [2,8,40,41]. Our derivation highlights, in
addition, the existence of interference terms between quasires-
onant transitions of different atoms with parallel dipoles both
in the incoherent as well as in the coherent parts of the master
equation.

We finally remark that by taking the limit �t → 0, then for
an infinitesimally small coarse-grained timescale, the function
(19) becomes a Dirac delta function. Then, the coarse-grained
master equation reduces to the Born-Markov master equation,
discussed, for instance, in Refs. [18,35,42]. In this limit,
however, one discards effects due to the finite timescale of
the reservoir dynamics, and thus interference phenomena be-
tween parallel transitions which are close in frequency but not
exactly resonant. The coarse-graining master equation allows
one to include these dynamics in a systematic way. We refer
the interested reader to Refs. [21,29,33,43] for discussions on
the coarse-grained master equation and to the next section for
a discussion about the choice of �t .

III. EXCITATION SPECTRUM OF TWO EMITTERS

We now determine the excitation spectrum of two emit-
ters, which are pinned at the positions �R1 = 0 and �R2 = �R
and are uniformly driven by a linearly polarized laser. Their
electronic configuration is composed of three electronic levels
of hydrogen, which consist of the ground state |1〉 and the
two excited states |2〉 and |3〉. The transitions |1〉 → |2〉 and
|1〉 → |3〉 are parallel optical dipoles with moments �Dα

12 and
�Dα

13, respectively, and the transition frequencies are denoted
by ω12 and ω13 (from now on, ω̄1e = ω1e > 0 with e = 2, 3).
The reduced level structure allows us to highlight the effects of
multilevel interference. Despite the fact that we consider the
parameters of two transitions of the hydrogen atoms, however,
the choice we perform breaks the rotational symmetry of
the atoms. This shall be kept in mind when discussing the
single-emitter properties.

The dynamics induced by the laser is described by a
Hamiltonian term, which is added to the Hamilton operator
of Eq. (17). This procedure corresponds to assuming that the
laser field is described by a coherent state and to moving to the
reference frame where the quantum state of the laser field is
in the vacuum [44]. We denote by ωL the laser frequency, and
assume that the laser polarization is linear and that the spatial

dependence of the laser field wave vector �kL is orthogonal
to the vector �R joining the two emitters. The laser-atom
Hamiltonian has the form

ĤL = −h̄
∑

α=1,2

∑
e=2,3

gα
1ee−iωLt ζ̂

α†
1e + H.c., (29)

where we have introduced the Rabi frequency gα
1e = −�dα

1e ·
�EL/2h̄, which depends on the electric-field amplitude �EL. The
master equation takes the form

∂t ρ̂ = 1

ih̄
[ĤA + ĤS, ρ̂(t )] + LDρ̂(t ) + 1

ih̄
[ĤL, ρ̂], (30)

where now the sums over the atoms run to N = 2 and the sums
over the internal transitions include just the two transitions
with parallel dipolar moments. For simplicity, thus, we can
now replace the sum over the transitions i = i1, i2 with the
sum over the excited state e = 2, 3. Using the simplified level
structure, we simplify the Hamiltonian term ĤS

12, given by
Eq. (21), as follows:

ĤS
12 = −

3∑
e,e′=2

Fc(ω1e + ω1e′ )�F
e e′ ( �R)ζ̂ 1†

1e ζ̂ 2
1e′ + H.c., (31)

where Fc(ω1e + ω1e′ ) is obtained by means of a smoothen-
ing of the fast-oscillating function �

(�t )
i j (see Ref. [29] and

Sec. III C), and

�F
e e′ ( �R) = �D1e · �D1e′

(ωe e′

c

)3
[

y0(kR) − y1(kR)

kR

]
. (32)

Here we used that the atomic dipole moments are real vectors
and introduced the notation ωe e′ = (ω1e + ω1e′ )/2. Moreover,
we have used that the dipole moments are orthogonal to
the vector connecting the two atoms. When the interference
between different transitions is discarded, Fc(ω1e + ω1e′ ) =
δe,e′ and this term takes the form of the collective Lamb shift
of Ref. [17] for the corresponding laser excitation.

In the dissipator’s coefficient, we also use the smoothening
procedure by replacing �

(�t )
i j with Fc(ωi + ω j ). Moreover,

we discard the temperature-dependent terms since they give
negligibly small contribution at T = 300 K and optical fre-
quencies.

A. Photon-count signal

In order to study the effect of multilevel interference, we
determine the excitation spectrum S(δL ) over the whole solid
angle and as a function of the laser detuning δL = ωL − ω12.
The excitation spectrum (or photon-count signal) is defined as

S(δL ) =
∑
α,β

∑
e,e′

	e e′ F
αβ Tr[ζ̂ β

1e′ ρ̂st ζ̂
α †
1e ], (33)

and it is calculated for the steady-state density matrix ρ̂st,
which is the solution of Eq. (17) at eigenvalue zero, ∂t ρ̂st =
0. In our simulations, we take the parameters of the transi-
tion 2S → 4P of hydrogen. Specifically, the ground state is
|1〉 = |2s 1

2
, F = 0, MF = 0〉, and the excited states are |2〉 =

|4p 1
2
, F = 1, MF = 0〉 and |3〉 = |4p 3

2
, F = 1, MF = 0〉, as

illustrated in Fig. 2. Further details of the parameters are
given in Appendix B. The coefficients are calculated taking
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FIG. 2. The structure of electronic states 2S and 4P of the
hydrogen atom (left panel) and the transitions we consider in the
numerical simulations of this work (right panel): The three states
which we consider in this work are marked with the black color, and
the scattering transitions are indicated by the red (gray) arrows.

a coarse-grained timescale �t = 10−11 sec (see Sec. III C for
the analysis of the dependence of the results on the choice of
the coarse-graining timescale). For further details, we refer the
reader to the discussion at the end of this section. We note that
for the level scheme which breaks rotational symmetry, the
excitation spectrum of a single emitter exhibits nonvanishing
shifts even after integration over the whole solid angle [29].

Figure 3 displays the photon-count signal (cyan line) for a
given value of the laser intensity and as a function of the laser
detuning δL for two interatomic distances: (a) R = 0.01 μm
and (b) R = 0.1 μm. These shall be compared with the wave-
length λ12 = 2πc/ω12 = 0.468 μm such that (a) corresponds
to kR � 0.13 and (b) to kR � 1.3. The orange line gives
the signal obtained when one artificially sets the multilevel
interference effects to zero [corresponding to setting �

(�t )
i j →

δ(ω̄i − ω̄ j ), namely, �t → 0]. The mismatch between the
cyan and the orange superradiant peaks is caused by the
cross-interference terms.

We start with discussing the case R = 0.1 μm, when the
interatomic distance is of the order of the wavelength. In this
case, the photon-count signal is dominated by the photon-
count signal of the individual atoms, the peak maxima are at
the frequency of the atomic levels, and there are no evident
features which could be attributed to superradiance and/or
subradiance. Here, the inclusion of cross-interference terms
gives rise to a slightly visible discrepancy between the two
curves in the frequency interval between the two peaks.
When decreasing the interatomic distance to R = 0.01 μm,
the spectroscopic lines are split into the sub- and superradiant
components. The frequency gap between the peaks of the sub-
and superradiant components is given by the corresponding
diagonal frequency shifts of Eq. (20). In the next section,
we determine the line shifts one extracts by analyzing these
spectra.

B. Line shifts due to cross interference

In order to quantify the effect of the cross-interference
terms, we determine the line shifts δω j due to the multilevel
interference. We focus on the lines of the superradiant states

FIG. 3. Photon-count signal, given by Eq. (33), for two emitters
as a function of the laser detuning δL and at interatomic distance
(a) R = 0.01 μm and (b) R = 0.1 μm. The cyan (light-gray) curve
is calculated with the full master equation (17). The blue (dark-
gray) curve is calculated by setting all cross-interference terms to
zero in Eq. (17). The Rabi frequency for the |1〉 → |3〉 transition
is g13 = 20 γ3, where γ3 is the decay rate from the state 4PF=1

3/2 to
the state 2SF=0

1/2 . The coarse-graining time is taken to be �t = 10−11

sec. The vertical dashed lines indicate the frequency ω12 and ω13

of the individual atomic resonances. The parameters of the atomic
transitions are reported in the text and in Appendix B.

and extract the shift

δω j = 1

2π

(
x′

j − x j
)
, (34)

where the quantity x′
j (with j = 2, 3 for |1〉 → | j〉) is ex-

tracted from the photon-count signal calculated using the
master equation (17). The frequency x j , instead, is obtained
by artificially setting all multilevel interference terms to zero,
namely, by setting �

(�t )
i j → δ(ω̄i − ω̄ j ) in the coefficients of

Eq. (17). Thus, the frequency x j also includes the collective
Lamb shift. The line shifts we report are determined from the
photon-count signal as a function of the interatomic distance
by taking the limit of vanishing Rabi frequencies, and are ex-
tracted by fitting the photon-count signal using the following
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FIG. 4. Line shifts vs the interatomic distance for two emitters
transversally driven by linearly polarized light. The cyan (light-gray)
curve corresponds to the line of transition |1〉 → |2〉 and the blue
(dark-gray) ones to the transition (|1〉 → |3〉). The solid lines are
extracted from the photon-count signal using the fit of Eq. (35);
the dashed lines are the curves in the absence of multilevel interfer-
ence, where ideally δω j = 0. The deviation from zero is here due
to the fact that we have discarded the presence of the subradiant
peaks in applying the fitting function (35). The horizontal dotted lines
indicate the shift due to multilevel interference in a single three-level
emitter (“atom”).

function, which is the sum of two Lorentzian curves:

SLL(x) = a2

π

b2/2

(x − x2)2 + (b2/2)2

+ a3

π

b3/2

(x − ω0 − x3)2 + (b3/2)2
, (35)

and ω0 = 2πν0 is the frequency gap between states |2〉 and
|3〉 and is given in Appendix B. It discards the presence of
the subradiant peaks, whose magnitude becomes very small
at low Rabi frequencies (for instance, for Rabi frequencies
that are 1% of the natural linewidth, the magnitude is ap-
proximately 10−3, 10−4 smaller than the superradiant ones).
Nevertheless, these signals are generally different from zero
and give rise to a systematic error in determining the line shift
of the superradiant resonance. We remark that the choice of
the fitting function is not optimal: In fact, Eq. (35) corresponds
to the spectroscopic signal due to the sum of two independent
decay processes, and does not properly catch the features
due to interference. Indeed, the data in Fig. 3 show that the
curves are more similar to Fano-like profiles. Previous studies
showed that the excitation spectra of optically dense (homo-
geneously broadened) media differ from Lorentz resonances
[17,22,45]. Our choice is thus not going to be a reliable
estimate of the shifts induced by multilevel interference. We
expect, nevertheless, that it allows us to gain insight into their
order of magnitude.

Figure 4 shows the line shifts as a function of the in-
teratomic distance: at sufficiently short distances, the shifts
are significantly larger than the ones predicted for a single
emitter and above the systematic error, due to discarding the
subradiant peaks and illustrated by the dashed lines. The line

shifts tend to increase the frequency gap between the two
excited states as R → 0, while for R → ∞ they converge to
the values indicated by the dashed lines, which are the shifts
that we calculate for the case of a single artificial emitter
composed of three levels.

We now argue that the observed shifts are due to quantum
interference between the processes illustrated in Fig. 1. For
this purpose, we analyze the shifts by considering two artifi-
cial cases: (i) The single-atom cross interference, in which we
only consider the scattering processes displayed in Figs. 1(a)
and 1(b). This corresponds to set �12

i j = 0 in (21) and 	
i j
12 = 0

in (26) for i �= j. (ii) The interatomic cross interference, in
which we discard scattering processes displayed in Fig. 1(a)
and we keep the others. In this case, we set �αα

i j = 0 and

	
i j
αα = 0 for i �= j. We further separately analyze the effect

of the cross-damping terms (namely, the terms of the master
equations where multilevel interference appears in the dissipa-
tor) and of the cross-shift terms [where multilevel interference
appears in the Hamiltonian (21)].

We first study the impact of the cross-damping terms versus
R and artificially set all terms �

αβ
i j = 0 with i �= j in Hamilto-

nian (20). Figure 5(a) represents the results when we include
the cross-damping terms (i) only in the single-atom dissipator
(intra-atomic, α = β), (ii) only in the interatomic dissipator
(interatomic, α �= β), and (iii) when we consider both intra-
atomic and interatomic cross-damping terms. In the case (i),
the shifts due to the single-atom cross-damping terms at large
distance oscillate around a magnitude of ∼100 Hz. In the case
(ii), the line shifts vanish for R → ∞. For vanishing distances,
the line shifts (i) and (ii) converge to a similar value. The
total contribution of the intra- and interatomic cross-damping
terms is not additive, as visible when comparing these curves
with the ones obtained including both kinds of cross-damping
terms. Figure 5(b) displays the impact of the cross-shift terms
on the line shifts after artificially setting all terms 	12

i j = 0
in the dissipator (25). Over the interval of distances, R =
[0.1, 1] μm. The total line shift has some oscillatory behavior
which tends to the single-atom result as R increases. At small
R, the cross-shift terms become dominant and tend to increase
the frequency gap between the spectroscopic lines.

The behavior at short distances is displayed in Fig. 6. Here
it is evident that the cross-shift terms are responsible for large
shifts of the lines. Below R = 48 nm (which corresponds to
R ∼ λ/10), the shift of the line |1〉 → |3〉 increase rapidly to
the magnitude of 0.6 MHz, which starts to be comparable with
the natural linewidth for optical transitions.

C. About the coarse-graining timescale

The use of the coarse-graining master equation allows one
to derive, ab initio, a master equation fulfilling the Lindblad
form and yet systematically including the cross-interference
terms. The drawback is the explicit dependence on the coarse-
graining time, which becomes visible in the functional form of
�

(�t )
i j , given by Eq. (19), and which multiplies all coefficients

for i �= j. We note that this function determines the frequency
window, for which the interference of two parallel dipolar
transitions gives rise to relevant contributions to the dynamics.
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FIG. 5. Line shifts vs the interatomic distance for two atoms
transversally driven by a linearly polarized laser due to (a) the
cross-damping terms [after setting all cross-shift terms �

αβ

i j = 0
for all i �= j in Hamiltonian (20)] and (b) the cross-shift terms
[after setting all cross-damping terms 	

αβ

i j = 0 for all i �= j in the
dissipator (25)]. The cyan (light-gray) curves correspond to the line
of transition |1〉 → |2〉 and the blue (dark-gray) ones to the transition
|1〉 → |3〉). The dashed curves correspond to case (i), the dotted lines
correspond to case (ii), and the solid lines include both intra-atomic
and interatomic (a) cross-damping and (b) cross-shift terms.

One striking property is that �
(�t )
i j gives rise to strong

oscillations of the coefficients with �t . The oscillations are
primarily due to the sharp time intervals over which the
dynamics has been divided and could be eliminated by in-
troducing a smoothening, for instance by taking a Gaussian
function of width �t and calculating the convolution [29],

�
(�t )
i j → Fc(ωi + ω j ) =

∫ ∞

0
dx�i j (x)

e−x2/�t2

√
π�t/2

. (36)

This smoothening procedure delivers the new damping coef-
ficients,

	
i j (F )
αβ = Fc(ωi + ω j )

�Dα∗
i · �D β

j

2π h̄c3
ω3

i jF
i j
αβ (ki j ), (37)

which preserve the Lindblad form of the density matrix.
Similarly, we obtain the cross-coupling Hermitian terms after
the smoothening.

FIG. 6. Same as Fig. 5(b), but for interatomic distances below
λ/5; the vertical dotted line indicates the value λ/10. (b) Zoom of
the behavior in the interval [λ/10, λ/5].

Even after this smoothening, the coefficients of the master
equation still depend on the choice of �t . For the master
equation to be valid, their value shall be independent of the
specific choice of �t over an interval of value. A rigorous
lower bound for �t can be found by imposing the positivity
of the Lindblad equation, as discussed in Ref. [43]. A heuristic
approach is based on identifying the coarse-grained time for
which the scattering properties are stable over several orders
of magnitude, such that τR 
 �t , and �t is smaller than the
smallest rate of the system dynamics. Figure 7 shows the line
shifts for different values of the coarse-graining time. The
results do not vary over the interval of values of �t , over
which we expect that the timescale separation ansatz holds.
They start to appreciably vary for �t > 10−10 sec, and thus
when �t becomes comparable with the natural lifetime of the
excited states, which is here of the order of 10−8 sec.

IV. CONCLUSIONS

In this work, we have presented the systematic derivation
of a master equation for an optically dense medium, which is
composed of multilevel emitters. The master equation fulfills
the Lindblad theorem [21] and includes the effect of inter-
ference between transitions which have parallel dipoles. This
interference is induced by vacuum effects and gives rise to
additional terms in the dissipator and Hamiltonian which can
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FIG. 7. Dependence of the relative line shifts on the coarse-
graining parameters. The relative line shifts are defined as |(x(�ti ) −
x(�ti+1))/x(�ti )|. Here, �ti = 10−i sec is the coarse-graining time
and the index i takes integer values from 8 to 12. Cyan (black)
triangles correspond to a relative shift of the first (second) line. The
interatomic distance (a) R = 0.1 μm and (b) R = 1 μm.

mutually interfere and whose strengths depend on the mean
interparticle distance.

We have provided a numerical example where we have
applied our master equation to two identical emitters, each
consisting of two parallel dipoles with a common ground
state. We have shown that even if the dipoles are not reso-
nant, vacuum-induced interference gives rise to measurable
effects in the excitation spectrum. We have verified that
the magnitude of the shifts depends on the ratio between
the frequency gap between the interfering dipoles and their
average linewidth and increases as this ratio decreases [26];
they become more evident when the interparticle distance
decreases and emerge from the interplay of the interference
between parallel dipoles of a single emitter and of the two
emitters. Moreover, for realistic configurations, the photode-
tection signal depends on the angle of emission and can be
larger for certain directions [29].

Future work shall focus on alkali-metal or alkaline-earth-
metal atoms, consider the full sublevel structure, and analyze
the spectrum at different detection angles. A more accurate
choice of the fitting functions shall provide a better estimate
of the line shift due to multilevel interference [45,46]. This
model, moreover, can be extended to Rydberg transitions
[47], where the multilevel interference is expected to be more
prominent [25], and to molecules [48].

The master equation derived here can be extended and
applied to studying propagation of quantum light in super-
radiant media and confined geometries [49–51]. By means
of the input-output formalism [18,52], one can extract from
our model the coherence properties of the scattered light and
analyze the effect of vacuum-induced interference on field-
and intensity-intensity correlation functions. Future studies
will analyze its prediction on light transport in a disordered
medium [22,53,54] and in an ordered array of emitters [55,56]
for level configurations where vacuum-induced interference is
expected to be relevant.
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APPENDIX A: DERIVATION OF THE BORN-MARKOV
MASTER EQUATION IN THE COARSE-GRAINING

FORMALISM

The second integrand on the right-hand side of Eq. (14) is
reported here after applying the Born approximation,

�
α,β

2 (T, τ )ρ̃(τ−) =
∑
i, j

C̄αβ
i j (τ )

{[
σ̃

β
j (τ−)ρ̃(τ−), σ̃ α

i (τ+)
]

+
[
σ̃ α

i (τ+), ρ̃(τ−)σ̃ β
j (τ−)

]}
+ H.c.,

(A1)

where τ± = T ± τ . Subscript i labels a pair of levels coupled
by a nonvanishing dipole moment: i ≡ i1, i2 with dipole mo-
ment �dα

i = α〈i1| �d|i2〉α . The function C̄αβ
i j (τ ) specifically reads

C̄αβ
i j (τ ) =

∑
λ

{
gλ

i ḡλ
j[n(ωλ, T ) + 1]e−iωλτ ei�kλ·( �Rα− �Rβ )

+ ḡλ
i gλ

jn(ωλ, T )eiωλτ e−i�kλ·( �Rα− �Rβ )
}
, (A2)

where n(ω, T ) = 1/[exp(h̄ω/kBT ) − 1] is the mean photon
number at frequency ω and temperature T , and the sum over
the modes is bounded by the cutoff frequency ωcut. In the
continuum limit, it is given by the expression

C̄αβ
i j (τ ) →

ωcut∫
0

dω

(2π )2h̄c3
ω3{[1 + n(ω, T )]e−iωτ

+ n(ω, T )eiωτ
}
F̄ i j (k, �Rαβ ). (A3)

Assuming the Born-Markov approximation, we can write
ρ̃(T − τ ) ≈ ρ̃(T ) in Eq. (A1) [21,33]. We also note that
consistently with the Markov approximation, ρ̃(T ) is essen-
tially constant over the interval of integration [t, t + �t] of
the variable T . We then set ρ̃(T ) = ρ̃(t̄ ), with t̄ = t + �t/2.
Using that σ̃

β
j (t1) = eiω j (t1−t̄ )σ̃

β
j (t̄ ), we first rewrite Eq. (A1)

as

�
α,β

2 (T, τ )ρ̃(τ−) ≈
∑
i, j

Cαβ
i j (T, τ )

{[
σ̃

β
j (t̄ )ρ̃(t̄ ), σ̃ α

i (t̄ )
]

+
[
σ̃ α

i (t̄ ), ρ̃(t̄ )σ̃ β
j (t̄ )

]}
+ H.c., (A4)

where

Cαβ
i j (T, τ ) = C̄αβ

i j (τ )ei(ωi+ω j )T ei(ωi−ω j )τ . (A5)
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FIG. 8. Line shift � j (g) of a single emitter as a function of
the Rabi frequency g13. The cyan (light-gray) curves correspond to
the line of transition |1〉 → |2〉 and the blue (dark-gray) ones to the
transition |1〉 → |3〉). The line shift is extracted from the photon-
count signal by using the fitting functions of Eq. (35). (a) The
line shifts without any cross-interference terms. (b) The line shifts
are obtained for the full master equation (17) for a single emitter.
The levels are illustrated in Fig. 2, and the parameters are detailed in
the text.

Using now that σ̃ α
j (t ) = exp(iω jt )σα

j in Eq. (A1), the time
integrals take the form

1

2�t

∫ �t

−�t
dTe±i(ωi−ω j )T/2

∫ �t

−�t
dτ θ (τ )Cαβ (τ )e±i(ωi+ω j )τ/2

= �
(�t )
i j

∫ �t

−�t
dτ θ (τ )Cαβ (τ )e±i(ωi−ω j )τ/2, (A6)

where

�
(�t )
i j = sin[(ωi + ω j )�t/2]

(ωi + ω j )�t/2
. (A7)

When the transition are in the optical range, this function
selects secular terms. For this reason, in the following we
restrict the sum to all pairs such that ωi > 0. The second
integral is evaluated after approximating the extrema of inte-
gration by [−�t,�t] → [−∞,∞], which is consistent with
the assumption that C(τ ) decays to zero over timescales much
shorter than �t .

APPENDIX B: PARAMETERS OF THE SIMULATION

The magnitude of the fine-structure splitting for the 4p state
is taken to be ν0 ≈1.367 GHz [31,57] and also includes the
hyperfine structure splitting and QED corrections. We neglect
thermal effects: we set n(ω1e) = 0, which is a good approxi-
mation at room temperature, T = 300 K. Moreover, we take

the following values for the radiative shifts: �S
22 = −2π ×

1401.52 kHz for the state 4p 1
2

and �S
33 = 2π × 1767.30 kHz

for the state 4p 3
2

[46]. We then construct the atomic cross-shift

term between the excited states using relation (28): �S
23=

�S
32 = 2π × 366.2 kHz using the relation between dipole mo-

ments of the corresponding transitions: d12 = (1/3)dR, d13 =
−(

√
2/3)dR, where dR is the radial integral dR = 〈2s|r|4p〉 =

1.28 [a.u.]. The values for the natural line width are γ2 =
	22 = 2π × 511 kHz for the state 4p 1

2
and γ3 ≡ 	33 = 2π ×

1022 kHz for the state 4p 3
2
. All the cross-interference terms

both for the dissipator and the Lamb shift were computed with
the coarse-graining time �t = 10−11 sec. The computational
checks showed that the solutions of the master equation for
the chosen system remain stable in this coarse-graining time
region; see Fig. 7 in Sec. III C.

APPENDIX C: DETERMINATION OF THE LINE SHIFTS

Line shifts due to cross-interference for a single emitter.
In this Appendix, we illustrate the procedure that we apply
in order to determine the line shifts due to the multilevel
quantum interference terms. We provide the example of a
single emitter, and we refer to it as a ”single atom.” How-
ever, due to the special structure, we assume the emitter is
not rotationally invariant, which changes the spectroscopic
properties and gives rise to a global line shift when integrating
the photon-count signal over the whole solid angle.

The line shifts for a single atom are defined as

� j (g) = 1

2π

(
xg

j − xeigen
j

)
, (C1)

where xeigen
j is the eigenfrequency of the jth transition ( j = 1

for |1〉 → |2〉 and j = 2 for |1〉 → |3〉) which we extract from
the master equation when we set all multilevel interference
terms to zero, and xg

j is the line position obtained by fitting
the photon-count signal using the fitting function (35). The
line shifts � j (g) depend on the laser intensity and thus on
the Rabi frequency g. The line shift we identify corresponds
to the limit

� j = lim
g→0

� j (g). (C2)

The limit is extracted from our numerical analysis: We
evaluate it for decreasing values of g. We report the behavior
in Fig. 8(a), when we set to zero the multilevel interference
terms, and in Fig. 8(b), for the full master equation. The
presence of the interference terms shifts both peaks to the
magnitudes ± 195 Hz for vanishing laser intensity.
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