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The emission properties of atoms lie at the foundations of both quantum theory and light-matter interactions.
In the context of macroscopic media, exact knowledge thereof is important both in current quantum technologies
and in fundamental studies. While for isotropic media, this is a very well-studied problem, there are still big
gaps in the theory of anisotropic media. In particular, to the best of our knowledge, an explicit expression for the
spontaneous emission rate in general anisotropic media has not been presented. In this work, we first derive the
quantized electromagnetic field operators to calculate the emission rate in uniaxial media. For the more general
case of biaxial media we propose an approximate expression based on interpolation between the limiting cases
of uniaxial media. We support our model with numerical simulations which are in strong agreement for typical
media configurations and, furthermore, show how local field effects can be taken into account in the model.
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I. INTRODUCTION

The interaction of light with matter has been extensively
studied in the past century, in both classical [1,2] and quan-
tum mechanical [3–5] frameworks. With the recent advance
of quantum technologies, the ability to exactly control and
predict the behavior of atoms, or artificial qubits, has be-
come of great importance [6–8]. Especially the effect of host
materials plays a crucial role in numerous solid-state setups
where one wishes to isolate and control specific impurity
atoms or molecules in a medium, examples of which include
nitrogen- or silicon-vacancy centers [9–11], dye molecules in
anthracene [12], and quantum dots [8]. A special case of such
host media which are commonly used is anisotropic crystals.
Anisotropic materials cannot be described by a scalar electric
permittivity, as they have different responses to the electric
field depending on its direction. Apart from crystals where
the anisotropy comes naturally from the crystal structure,
anisotropic effects also occur in the newly emerging field
of metamaterials [13–15], where novel macroscopic elec-
tromagnetic properties are obtained from a discrete set of
artificial elements mimicking the atoms of a medium, a setting
which has recently attracted some attention with regard to
the spontaneous emission properties [16]. Especially when the
effective medium properties are obtained by layering different
materials there can be a large anisotropy with respect to the
direction of the layers. It is with these kinds of media that we
are concerned in this paper, in particular, the modification of
the spontaneous dipole emission rate of atoms embedded in
anisotropic media.

The rate of spontaneous emission can readily be calculated
by Fermi’s golden rule [3,17]. It has been found that the
emission rate is not an intrinsic property of the atom alone,
but it also depends on the form of the electromagnetic (vac-
uum) field it interacts with, which can be modified by the
environment [18–20]. For an atom in isotropic bulk media,
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this modification is given by the refractive index of the
medium n, such that γ = nγvac, with γvac being the vacuum
decay rate [21]. In anisotropic media, however, the refractive
index varies with the electric field direction and therefore the
effect on the spontaneous emission rate is more complicated.
Not only is the mode density different in such media, but also
the propagation of waves themselves, as the wave velocity
now also depends on the polarization and propagation direc-
tion [22–26], from which phenomena such as birefringence
emerge. This in turn influences the local density of states of
the electromagnetic vacuum, and we expect a more complex
spontaneous emission rate. The special case of uniaxial media,
which have the same optical properties in two orthogonal
directions, has already received considerable attention in the
literature [27–31], as the wave equations are relatively easy
to solve due to the additional symmetry. However, an ex-
plicit form of the spontaneous emission rate in such me-
dia has not been reported yet.1 In biaxial media, although
considerable effort has gone into characterizing the wave
properties [22,32–35], the solutions are complicated enough
to make analytical calculations intractable, including an ex-
plicit expression for the spontaneous emission rate.

In this work, we quantize the electromagnetic field inside
the medium and use this to derive the spontaneous emission
rate for an atom in a dielectric medium with an arbitrary
real permittivity tensor. For uniaxial media we give a closed
form of the emission rate for arbitrary dipole alignment. We
furthermore propose a model that approximates the emission
rate in biaxial media by a linear interpolation between the
two limiting cases of uniaxial media (i.e., whether the special
anisotropy axis is the same as the dipole direction or orthogo-
nal to it).

1We note here that Ref. [31] reports a result for the radiative
lifetime of atoms in uniaxal media in its Appendix, however, a quick
check of the derivation reveals what seems to be an error in the final
result.
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Our paper is structured as follows: In Sec. II we derive
the wave equation in anisotropic dielectrics and quantize
the electromagnetic field in terms of solutions of this wave
equation. This is followed by Sec. III, in which we calculate
the spontaneous emission rate for the easier case of uniaxial
media. In Sec. IV we discuss an alternative approach using
Green’s functions. Additionally, in Sec. V we propose a model
for the rate in general biaxial media based on interpolation
between two possible uniaxial limits. We furthermore calcu-
late the rate numerically for certain media configurations and
compare the results with those from our model. Finally, in
Sec. VI we show how local field effects can be taken into
account in our results.

II. QUANTIZATION OF THE ELECTROMAGNETIC FIELD

A general anisotropic dielectric medium [23–26,36] can be
described by a permittivity matrix ε that relates the displace-

ment field D to the electric field E as

D = εE. (1)

As a consequence, the displacement field is no longer parallel
to the electric field. In the following, we consider a coordinate
system in which ε is diagonal and define

ε =
⎛⎝εx 0 0

0 εy 0
0 0 εz

⎞⎠, (2)

where we also should note that throughout this paper ε0

denotes the permittivity of free space. We aim to find solutions
to Maxwell’s equations

∇ · D = 0, (3)

∇ · B = 0, (4)

∇ × E = −∂B
∂t

, (5)

∇ × H = ∂D
∂t

(6)

in such a medium, where B is the magnetic flux density,
related to the magnetic field H = B/μ0, with μ0 being the
permeability of free space. The resulting wave equation for
the electric field [37] is

∇ × (∇ × E ) = −μ0D̈ = −μ0εË. (7)

In an anisotropic dielectric, the electric field E is no longer
divergence-free, so we cannot simply replace the left side of
Eq. (7) with a Laplacian to find the Helmholtz equation, as
is usually done for isotropic media. However, given that the
medium is spatially homogeneous, we can always introduce a
decomposition of the electric field into plane waves,

E(r, t ) =
∫

d3k Ekei(k·r−ωkt ), (8)

and write Eq. (7) as

k × (k × Ek) = − ω2
kμ0εEk (9)

⇔ 1

μ0
ε−1

(
k2Ek − k(k · Ek)

) = ω2
kEk.

This is an eigenvalue problem, where Ek and ω2
k are eigenvec-

tors and eigenvalues of the matrix

Mi j = 1

μ0εi

(
k2δi j − kik j

)
, (10)

where we should note that here the double occurrence of an
index does not imply the use of a summation convention.
From the structure of M we can already note a few properties

of its solutions:
(1) There are no more than two nontrivial solutions (with

eigenvalues �= 0).
(2) ωkλ = ω−k,λ, Ek,λ‖E−k,λ.
(3) k · (εEk,λ) = 0.

(4) Ek,λ · (εEk,λ′ ) = 0 for ωkλ �= ωk,λ′ .

(5) 1
μ0

(k×Ek,λ) · (k×Ek,λ′ ) =−ωkλωk,λ′Ek,λ · (εEk,λ′ ).

Detailed proofs of these statements can be found in
Appendix A.

We can interpret these observations in the following way:
Observation 1 is simply the fact that there are two polarisa-
tions; statement 2 follows from the reciprocity of the spatially
homogeneous medium; and property 3 tells us that it is D =
εE and not E that is orthogonal to the wave vector, which is
a consequence of Gauss’s law. Similarly, statement 4 means
that Ek,λ⊥Dk,λ′ for different polarizations. This is important
for calculating the energy stored in the electric field, which is
proportional to E · D. Finally, property 5 draws the connection
to the magnetic field, i.e., Hk,λ · Bk,λ′ = Ek,λ · Dk,λ′ . In partic-
ular, for different polarizations we have Hk,λ⊥Bk,λ′ , although
in this case we could as well write Bk,λ⊥Bk,λ′ or Hk,λ⊥Hk,λ′ ,
as here the magnetic flux density and field are related by the
scalar permeability of free space μ0.

With these solutions, let us write the electric and magnetic
fields as

E(r, t ) =
∫

d3k
∑

λ

ekλ

× (
Akλei(k·r−ωkλt ) + A∗

kλe−i(k·r−ωkλt )
)
, (11)

D(r, t ) =
∫

d3k
∑

λ

εekλ

× (
Akλei(k·r−ωkλt ) + A∗

kλe−i(k·r−ωkλt )
)
, (12)

B(r, t ) =
∫

d3k
∑

λ

− 1

ωkλ

k × ekλ

× (
Akλei(k·r−ωkλt ) + A∗

kλe−i(k·r−ωkλt )
)
, (13)

H (r, t ) =
∫

d3k
∑

λ

− 1

μ0ωkλ

k × ekλ

× (
Akλei(k·r−ωkλt ) + A∗

kλe−i(k·r−ωkλt )
)
, (14)

with ekλ = Ek,λ/|Ek,λ| being the normalized eigenvectors.
Using observations 2, 4, and 5 we can calculate the energy
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stored in the field [37]:

H = 1

2

∫
d3r [E(r, t ) · D(r, t ) + H (r, t ) · B(r, t )]

= (2π )3
∫

d3k
∑

λ

ekλ · εekλ

(
AkλA∗

kλ + A∗
kλAkλ

)
. (15)

We quantize the field by introducing the canonical ladder
operators âkλ and â†

kλ
with commutation relations[

âkλ, â†
k′λ′

] = δ(k − k′)δλλ′ (16)

and make the replacements

A(∗)
kλ

→
√

h̄ωkλ

2(2π )3ekλ · εekλ

â(†)
kλ

(17)

so that we can write the Hamiltonian in diagonal form,

Ĥ =
∫

d3k
∑

λ

h̄ωkλ

(
â†

kλ
âkλ + 1

2

)
. (18)

With this we can rewrite the electric field operator (and
analogously all other operators) as

Ê(r, t ) =
∫

d3k
∑

λ

ekλ

√
h̄ωkλ

2(2π )3ekλ · εekλ

× (
âkλei(k·r−ωkλt ) + â†

kλ
e−i(k·r−ωkλt )

)
. (19)

Note that the biggest difference compared to an isotropic
medium is the dependence of the frequency on the polariza-
tion and on the direction of k. Furthermore, the prefactor (and
therefore the commutator of the electric field operator) has
an additional dependence on the direction of the polarization
vectors with respect to the crystal axes, ekλ · εekλ.

III. UNIAXIAL MEDIA

A special but important class of anisotropic media is
formed by the uniaxial media, where two of the three per-
mittivities are the same. In this case we set εx = ε1 and εy =
ε2 = εz so that ε = diag(ε1, ε2, ε2) [22]. With this additional
symmetry it is easy to find solutions to the eigenvalue problem
of Eq. (9). The matrix M now has the (unnormalized) eigen-
vectors2

eko =
⎛⎝ 0

−k3

k2

⎞⎠, eke =
⎛⎝−ε2(k2

2 + k2
3 )

ε1k1k2

ε1k1k3

⎞⎠ (20)

with the corresponding angular frequencies

ωko = ck

no
= 1√

μ0ε2
k, (21)

ωke = ck

ne
=

√
κ · εκ

μ0ε1ε2
k, (22)

where κ = k/k, and no and ne are the ordinary and ex-
traordinary refractive indices, respectively. The first solution
corresponds to the ordinary wave. Its polarization vector eko

is still orthogonal to the wave vector and the frequency ωo

2We omit normalization of eigenvectors throughout this paper, as
the normalization factor cancels out in all relevant calculations.

does not depend on the orientation of k, just as we would
expect in an isotropic medium. It is only the extraordinary
wave, eke, that exhibits the unusual properties that originate
from the anisotropy [22].

Using the electric field representation of Eq. (19), we can
now [3] calculate from Fermi’s golden rule the spontaneous
emission rate of an atomic dipole with transition frequency
ωA and dipole moment d = (d1, d2 cos φ, d2 sin φ), which we
may assume to be a constant property of the atom, unaffected
by the surrounding medium,

γ = 2π

h̄2

∑
f

| 〈 f | d̂ · Ê |0〉 |2δ(ωkλ − ωA)

= 1

8h̄π2

∫
d3k

∑
λ

ωkλ|d · ekλ|2
ekλ · εekλ

δ(ωkλ − ωA). (23)

As there is nothing distinguishing the y axis and z axis, we
choose φ = 0 for the dipole orientation without loss of gen-
erality. Using the linear dispersion relations given in Eq. (22),
we can make the substitution k → ωkλ with dk = nλdωkλ/c
in spherical coordinates

k = k(cos θ, sin θ cos ϕ, sin θ sin ϕ)T. (24)

After application of the δ function, this yields

γ = ω3
A

8h̄π2

∫ 2π

0
dϕ

∫ π

0
dθ

∑
λ

(nλ

c

)3 |d · ekλ|2
ekλ · εekλ

sin θ. (25)

Contributions from ordinary waves: The component d1 of
the dipole does not contribute to this emission rate, as ordinary
waves have polarizations in the plane with permittivity ε2

only. We can therefore write the emission rate due to ordinary
waves as

γo = d2
2 ω3

A

8h̄π2

∫ 2π

0
dϕ

∫ π

0
dθ (μ0ε2)3/2 sin3 θ

ε2
, (26)

with the solution

γo = d2
2 ω3

Aμ
3/2
0 ε

1/2
0

4π h̄

√
ε2 ≡ d2

2 ω3
Aμ

3/2
0

4π h̄
no. (27)

We note a dependence on the ordinary refractive index no =√
ε2/ε0 only, which is just what we would expect for ordinary

waves compared to an isotropic medium.
Contributions from extraordinary waves: Extraordinary

waves, on the other hand, can have components both in the
plane of ε2 and along the anisotropy axis of ε1, so we cannot
omit any parts of the dipole moment for this calculation.
However, products of two different components, e(i)

kee( j)
ke , can

be omitted due to the structure of the polarization vector,
because they are antisymmetric in ki and k j and therefore will
cancel out after integration. Consequently, we replace the term

|d · eke|2 in Eq. (23) with (d1e(x)
ke )

2 + (d2e(y)
ke )

2
(i.e., omitting

all cross-terms). This yields

γe = ω3
A

2h̄(2π )2

∫ 2π

0
dϕ

∫ π

0
dθ

(μ0ε1ε2)3/2 sin θ

ε1ε2(ε2 sin2 θ + ε1 cos2 θ )5/2

× [
d2

2 ε2
1 cos2 θ cos2 ϕ + d2

1 ε2
2 sin2 θ

]
= ω3

A

3π h̄
μ

3/2
0

(
d2

2 ε1 + 4d2
1 ε2

4
√

ε2

)
, (28)
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FIG. 1. Angular distribution f (θ ) of the spontaneous emission rate to a fixed polar angle, ϕ, for various configurations εi ∈ {1, 7} of a
uniaxial medium with fixed ε2 (left) and fixed ε1 (right). A change in ε2 impacts on the amount of radiation to the sides of the distribution,
leaving the emission to an angle θ = π/2 constant, while a change in ε1 changes only the relative distribution, leaving the total rate (integrated
over all angles) constant. Insets: The extraordinary refractive index of light traveling towards an angle θ for the two extreme cases of εi = 1
and 7, respectively.

where we should note that this cannot be expressed as a simple
function of the extraordinary refractive index

ne = ε
−1/2
0

(
cos2 θ/ε2 + sin2 θ/ε1

)−1/2
, (29)

which is the effective refractive index of light propagating at
an angle of θ . This is in stark contrast with both the ordinary
wave contribution and the emission rate in isotropic media.

Total emission rate: With this, we can write the total
emission rate,

γ = γo + γe

= ω3
Aμ

3/2
0

3π h̄

(
ε1 + 3ε2

4
√

ε2
d2

2 + √
ε2d2

1

)
. (30)

Surprisingly, for a dipole oriented parallel to the ε1 axis, the
emission rate is that of an isotropic medium with permittivity
ε2. We note that at first glance this is in disagreement with
Ref. [31]. On further investigation, however, we found what
appears to be an error in the final steps of the calculation in
Ref. [31]. After taking this into account, our results are in fact
in agreement.

To understand our result better, let us look a bit more
closely into the emission per unit angle dγ‖/dθ by a dipole
oriented such that d = (d1, 0, 0). For such a dipole alignment,
the emission couples purely to extraordinary waves. This is
because there is no dipole component in the plane of ε2 and
therefore no coupling to the ordinary components of the field.
After performing the first integral we are left with

γ‖ = ω3
Ad2

1

8π2h̄

∫ 2π

0
dϕ

∫ π

0
dθ

√
μ3

0ε1ε2 sin2 θε2
2

(ε2 sin2 θ + ε1 cos2 θ )5/2
sin θ,

(31)
from which we can obtain the emission rate per solid angle
d� = dϕdθ sin θ as

dγ‖
d�

=
ω3

Ad2
1

√
μ3

0ε0

8π2h̄c3

[
1

ε2
1

n5
e (θ ) sin2 θ

]

≡
ω3

Ad2
1

√
μ3

0ε0

8π2h̄c3

[
f (θ )/ε2

0

]
, (32)

with ne as given in Eq. (29). We note that the emission to
an angle of θ = π/2 indeed purely depends on ε1, just like
we would expect. It follows that the dependence of the total
rate on ε2 must come due to the effect of the other possible
emission directions. Figure 1 shows the angular dependence
of the emission rate f (θ ), with the total emission rate given
by

γ‖ = 3

4
γvac

∫ π

0
dθ f (θ ) sin θ.

The change in angular distribution can be understood as an
interplay between the preferred (orthogonal) dipole emission
angle, which arises from the term |d‖ · eke|2 ∝ sin2 θ , and the
preferred direction of wave propagation towards the minimal
optical path length, which is determined by the effective
refractive index ne. Hence, the dipole will predominantly emit
towards two azimuthal angles θmax = π/2 ± θ whenever ε2

is much larger than ε1. In this, the deviation from orthog-

onal emission θ = arccos
√

2
3(r−1) increases with the ratio

r = ε2/ε1, while the emission towards θ = π/2 is fixed by
ε1. We note that, in fact, the relative angular distribution
f (θ )/[

∫
f (θ ) sin θdθ ] depends only on the ratio r = ε2/ε1

and not on the product ε2ε1.
Random dipole orientation: Finally, we average Eq. (30)

over random dipole alignments, which leads to the average
spontaneous emission rate of unordered emitters,

γavg = ω3
Aμ

3/2
0 d2

3π h̄

(
1

6

ε1√
ε2

+ 5

6

√
ε2

)
. (33)

The lack of an appearance of ε1 in the parallel-dipole term
is particularly important, as it leads to a remarkably weak
dependence of the average rate on ε1.

IV. GREEN’S FUNCTION APPROACH

Motived by the unexpectedly weak dependence on ε1 in
Eq. (33), it is worth approaching this calculation in an alterna-
tive manner. In particular, we are building upon previous work
on the dyadic Green’s function approach to macroscopic QED
[38–40], which has successfully been applied to other studies
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of anisotropic systems in the past [41–44] and, in turn, builds
on Refs. [45–47] among others. Within this formalism, it can
be shown that the decay rate for a dipole at position rA in this
formalism is given by

γ = 2ω2
A

h̄ε0c2
d · Im

[
G(rA, rA, ωA)

]
d∗, (34)

given that G is the dyadic Green’s function satisfying

∇ × (∇ × G(x, x′, ω)) − ω2μ0ε · G(x, x′, ω)=1δ(x − x′).
(35)

As we show in Appendix B, this Green’s function can be
decomposed in its eigenfunctions as

G(x, x′, ω) =
2∑

λ=0

∫
d3k

(2π )3

eik·(x−x′ )

μ0(ekλ · ε · ekλ)

ekλ ⊗ ekλ

ω2
kλ

− ω2
,

(36)

where we define ek0 ≡ k for notational simplicity, along with
its eigenvalue ωk0 = 0. After substituting G into Eq. (34),
we arrive at decay rates which are in exact agreement with
Eq. (25) [and Eq. (40) for biaxial media].

V. BIAXIAL MEDIA

A. Wave equation and solutions

The wave equation of a medium with three different per-
mittivity values, ε = diag(εx, εy, εz ), has solutions [24]

ek± =
⎛⎝k1/(εx − εk±)

k2/(εy − εk±)
k3/(εz − εk±)

⎞⎠, (37)

ωk± = ck

n±
= 1√

μ0εk±
k, (38)

with

εk± = 2εxεyεz

tk ± sk
, (39)

and tk = κ · ε(Tr(ε)I − ε)κ, sk =
√

t2
k − 4εxεyεzκ · εκ.3 Note

that tk and sk depend only on the direction, and not the mag-
nitude, of k. The same is true for the eigenvectors, apart from
a constant prefactor k2 that will vanish after normalization.
With this we can perform the integration over k in the same
manner as before. This yields the spontaneous emission rate
as

γ = ω3
A

2h̄(2π )2

∫ 2π

0
dϕ

∫ π

0
dθ

∑
λ=±

|d · eκλ|2
eκλ · εeκλ

(μ0εk)3/2 sin θ.

(40)

In the following, we solve the remaining integral numerically,
as well as introducing a model that accurately approximates
the solution with an analytical expression based on the known
rates in uniaxial media.

3The given representation of the eigenvectors can lead to singular-
ities whenever εk takes the value of any principal permittivity. This
is only a feature of the unnormalized eigenvectors and vanished after
normalization.

FIG. 2. Dependence of the spontaneous emission rate (in dimen-
sionless units) on the relative permittivity εy/ε0 with fixed values
of εx = 1.5ε0 and εz = 5ε0 for a dipole aligned with εz. Analytical
models obtained from linear interpolation with εx , linear interpola-
tion with εy, and an average of both (solid lines) are compared to
numerical results (crosses).

B. Dipole along the crystal axis: Numerical solution

Let us first consider a dipole aligned in the z direction
embedded in the biaxial medium. Using the results for uni-
axial media, we note that if εy = εx (i.e., dipole along the
extraordinary axis), we can identify εz with the extraordinary
index ε1, and εy and εx with the ordinary index ε2, and the
emission rate is given by the d1 part of Eq. (30), i.e.,

γ (a) = d2ω3
Aμ

3/2
0

3π h̄

√
εx. (41)

Similarly, the emission rate is that of a dipole aligned in the ε2

plane if εy = εz. In the same manner, we can write the rate as

γ (b) = d2ω3
Aμ

3/2
0

3π h̄

(εx + 3εz )

4
√

εz
. (42)

If we now fix εx and εz, we numerically find nearly linear
behavior with εy (see Fig. 2, crosses). This suggests a linear
interpolation between the two known values from the uniaxial
cases,

γ (εy) = γ (a) + (εy − εx )
γ (b) − γ (a)

εz − εx
(43)

= d2ω3
Aμ

3/2
0

3π h̄

(√
εx − εy − εx

4
√

εz
+ εy − εx√

εx + √
εz

)
.

This is shown in Fig. 2 (blue line). However, Eq. (43) is not
symmetric with respect to the exchange of εx and εy. As there
is nothing distinguishing εx and εy from each other, a similar
formula can be written down to be linear in εx (green line in
Fig. 2):

γ (εx ) = d2ω3
Aμ

3/2
0

3π h̄

(
√

εy + εy − εx

4
√

εz
− εy − εx√

εy + √
εz

)
. (44)

Both models deviate from the actual data on two different
sides, which suggests an average of both. By taking the
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FIG. 3. Comparison of the averaged model (solid lines) with
numerical results (crosses) for various configurations of εx/ε0 = 6,
3, and 1 [top (blue), red (middle), and green (bottom) groups of
lines] and εz/ε0 = 4, 2, and 1.2 (light, medium, and dark lines in
each group) for a dipole aligned with εz. The corresponding values
for εx and εz are also indicated by arrows where they match the value
of εy for each curve.

arithmetic mean, we find

γ = γ (εx ) + γ (εy)

2

= d2ω3
Aμ

3/2
0

6π h̄

[√
εx + √

εy + εy − εx√
εx + √

εz
+ εx − εy√

εy + √
εz

]
.

(45)

Thus we arrive at a formula that is symmetric between εx

and εy and closely fits the numerical data (see orange curve,
Fig. 2).

Finally, by introducing new variables, n+ = 1
2
√

ε0
(
√

εy +
√

εx ), n− = 1
2
√

ε0
(
√

εy − √
εx ), and n‖ =

√
εz

ε0
, we can sim-

plify Eq. (45) to

γ =
[

n+
(n+ + n‖)2 + 3n2

−
(n+ + n‖)2 − n2−

]
γvac. (46)

To check the range in which this model is valid, various
configurations for εx and εz are shown in Fig. 3. For realistic
values, Eq. (45) gives a good approximation to the numerical
results. We note that the permittivity parallel to the dipole axis
εz only weakly influences the emission rate whenever the two
orthogonal permittivities εx and εy are of similar size. This is
especially the case compared to its dependence on the other
two values.

C. Arbitrary dipole alignment

If we take a closer look at the form of the electric field
vectors in Eq. (37), we see that, just as in the uniaxial case,
the product of two different components, i and j, of an eigen-
vector is always antisymmetric in ki and k j . In other words,
e1 does not have any asymmetric parts, and e2 ∝ k1k2 and
e3 ∝ k1k3 for both polarizations. Therefore, all cross-terms
cancel out in an integration over k. This yields the following

expression for a dipole of arbitrary orientation:

γ = 1

d2

(
d2

x γ‖εx + d2
y γ‖εy + d2

z γ‖εz

)
, (47)

where γ‖εi is the transmission rate calculated for the dipole
aligned with the crystal axis of εi.

VI. LOCAL FIELD EFFECTS

We have treated the medium macroscopically so far, as-
suming that the electric field seen by the dipole is exactly the
averaged field over the medium. However, the dipole itself po-
larizes the surrounding medium, and in order to include such
microscopic effects one can introduce a local field correction
factor L [48–52] so that E loc = LE, where E loc is the actual
field at the dipole position and E is the field according to the
macroscopic Maxwell equations. With this, the spontaneous
emission rate requires adjustment. For isotropic media, the
corrected spontaneous emission rate is simply

γloc = L2γ (48)

since γ ∝ |d · E|2. In anisotropic media, the correction must
also depend on the direction of the electric field, and a
reasonable expression would be

E loc = LE, (49)

with the matrix Li j ≡ Liδi j diagonal in the basis of the
anisotropy axes. The form of local field corrections in
anisotropic media is not entirely clear and strongly depends on
the model and the configuration of molecules in the medium
and the dipole of interest [53–57]. In the following we show
how any local field correction can be incorporated into the
expressions for the spontaneous emission rate, as long as the
effects are linear in the electric field. For a tensor-valued local
field correction, the correction to the spontaneous emission is
no longer a simple multiplicative factor, as the |d · E|2 term
needs to be replaced with |d · LE|2 = |∑ diLi jE j |2. With this
correction, one would have to solve the new integral

γloc = 1

2h̄(2π )2

∫
d3k

∑
λ

ωkλ|d · Lekλ|2
ekλ · εekλ

δ(ωkλ − ωA).

(50)
However, we can rewrite this expression and let the matrix
L act on the dipole vector to its left, such that |(dT L)E|2 ≡
|̃d · E|2. This allows us to substitute the adjusted dipole vector
d̃ = LT d into the solutions from Secs. III and V. For a local
field correction represented by a diagonal matrix Li j = δi jLi,
we obtain the new expressions for the corrected spontaneous
emission rate,

γloc = ω3
Aμ

3/2
0

3π h̄

(
ε1 + 3ε2

4
√

ε2
L2

2d2
2 + √

ε2L2
1d2

1

)
(51)

in a uniaxial medium and

γloc = 1

d2

(
d2

x L2
1γ‖εx + d2

y L2
2γ‖εy + d2

z L2
3γ‖εz

)
(52)

in a biaxial medium. For each dipole component, the correc-
tion is a scalar factor again, so we do not expect any qualitative
difference to present itself, including in the accuracy of the
chosen interpolative model compared to the numerical results.
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VII. CONCLUSION

In this paper we have quantized the electromagnetic field
in absorptionless anisotropic dielectrics and used the quan-
tized field operators to derive analytic expressions for the
spontaneous emission rate of an electric dipole. In particular,
we found an exact expression in uniaxial media, and we
furthermore presented a simple formula which approximates
the spontaneous emission rate in biaxial media. The latter
reduces to the exact result in the special case of uniaxial
media. Our biaxial model is in strong agreement with numeric
simulations for realistic choices of the principal refractive
indices.

Interestingly, we found a remarkably weak dependence
of the emission rate on the extraordinary permittivity (ε1).
Specifically, γavg ∝ ε

−1/2
2 (ε1/6 + 5ε2/6) for a randomly

aligned dipole. This should be compared to γavg ∝ n = √
ε in

an isotropic medium. Also, here we note that the spontaneous
emission rate cannot be expressed as a simple function of the
refractive index in anisotropic media. Both of the above have
their roots in the direction dependence of the extraordinary
refractive index ne(θ ), which creates an interplay between the
preferred emission direction of the dipole [∝sin2 θ ] and the
favored direction of propagation of the emitted extraordinary
waves [∝ne(θ )].

Additionally, we showed that it is straightforward to gen-
eralize the expressions to arbitrary dipole orientations and
to include the effects of local field corrections. Due to the
simplicity and generality of the model, and at the same
time the strong agreement with numerical simulations, we
expect these results to be of great use for experiments and
quantum technology in optical and solid-state setups. We
wish to highlight that the linear interpolation presented for
biaxial media may be of particular use when analyzing the
specific dependencies of atomic properties on the anisotropic
parameters, given that analytical solutions in closed form
present a theoretical challenge.
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APPENDIX A: PROOFS OF ELECTRIC FIELD
PROPERTIES

We present brief proofs of the five properties of the plane-
wave electric field solutions given in Sec. II:

(1) It can be shown by explicit calculation that
Rank(M ) � 2.

(2) Equality of forward and backward frequencies follows
from the symmetry of Eq. (9). The eigenvectors are identical
apart from an arbitrary prefactor.

(3) This can be seen from Eq. (9), where the left side is
clearly orthogonal to k.

(4) The matrix M is a product of the diagonal matrix ε−1

and the symmetric matrix N := 1
μ0

(k21 − k k�). For a fixed k
(we omit that index in the following, as it is not relevant), we
can write

ε−1NE1 = ω2
1E1 (A1)

⇔ NE1 = ω2
1εE1 (A2)

⇔ (NE1) · E2 = ω2
1(εE1) · E2 (A3)

⇔ E1 · (NE2) = ω2
1E1 · (εE2), (A4)

where in (A4) we have made use of the fact that both N and
ε are symmetric. For the second solution E2, we know that
NE2 = ω2

2εE2, and therefore,

ω2
2E1 · (εE2) = ω2

1E1 · (εE2). (A5)

So for two different solutions ω1 �= ω2 we must have E1 ·
(εE2) = 0.

(5) We know that −ω2
kλμ0εEk,λ = k × k × Ek,λ for solu-

tions Ek,λ and ωkλ. Multiplying a second solution Ek,λ′ from
the left, we get

−ω2
kλμ0Ek,λ′ · (εEk,λ) = Ek,λ′ · (k × (k × Ek,λ)) (A6)

= (k × Ek,λ) · (k × Ek,λ′ ). (A7)

This is nearly what we wanted to show, apart from the pref-
actor ω2

kλ. For λ = λ′, we have ωk,λ′ = ωkλ and we are done.
For ωk,λ′ = ωkλ, we have shown that Ek,λ · (εEk,λ′ ) = 0, so
the prefactor does not matter.

APPENDIX B: DETAILS ON GREEN’S FUNCTION
APPROACH

1. Calculating the Green’s function

We can naturally solve Eq. (35) directly in the form pre-
sented. This is the method most commonly employed (see, for
instance, Ref. [39]). However, to better connect this approach
to the main body of work, let us first solve the related Green’s
function G′, as in

1

μ0
ε−1[∇ × (∇ × G′(x, x′, ω))]

− ω2G′(x, x′, ω) = 1δ(x − x′). (B1)

Furthermore, we can solve this using an eigenfunction expan-
sion [58], such that

G′(x, x′, ω) =
∑

n

e∗
n (x′) ⊗ en(x)

γn
, (B2)

where n is the discrete or continuous label for the eigenfunc-
tions e(x) with eigenvalues γ satisfying

1

μ0
ε−1∇ × (∇ × en(x)) − ω2en(x) = γnen(x). (B3)

We can then rewrite Eq. (B3) as

− 1

μ0
ε−1k × (k × ek ) = (γn + ω2)ek, (B4)
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where we have also expanded

en(x) =
∫

d3k

(2π )3
eik·xek. (B5)

We can now recognize from Eq. (10), i.e.,

− 1

μ0
ε−1k × k× ≡ M. (B6)

Importantly, M has the eigenvalues and eigenvectors as previ-
ously found, i.e.,

k with eigenvalue 0,

ek1 with eigenvalue ωk1,

ek2 with eigenvalue ωk2.

Here we assume that the eigenvectors are normalized. How-
ever, note that we also have to keep track of the null vector k.
Suppose we label ωk0 = 0 along with ek0 = κ for notational
simplicity; then it is clear that Eq. (B4) has solutions ekλ for
λ = {0, 1, 2} with

ω2
kλ = γn + ω2 ⇒ γkλ = ω2

kλ − ω2, (B7)

where we have identified the index n with the continuous wave
vector k and the discrete polarization label λ. Hence, we find
the Green’s function for the associated G′ problem as

G′(x, x′, ω) =
2∑

λ=0

∫
d3k

(2π )3
eik·(x−x′ ) ekλ ⊗ ekλ

ω2
kλ − ω2

, (B8)

which decomposes in terms of the polarization vectors ek1

and ek2 along with the wave vector k. This is, however, not
the Green’s function that we need for Eq. (34), despite its
expedient physical interpretation. To proceed, let us compare
Eq. (35) and Eq. (B1). In particular, we want to find G such
that

∇ × (∇ × G) = 1

μ0
ε−1[∇ × (∇ × G′)], (B9)

which, when written in momentum space and multiplied by
1 = ε ε−1, becomes

ε ε−1[k × (k × Gk )] = 1

μ0
ε−1[k × (k × G′

k )] (B10)

⇔ μ0ε M Gk = M G′
k. (B11)

From the structure of Eq. (B10), we see that Eq. (36) is a
viable candidate for G. If we substitute Eq. (36) into Eq. (35),

it is readily verifiable that

∇×(∇ × G(x, x′, ω)) − ω2μ0ε · G(x, x′, ω)

= μ0ε

[
2∑

λ=0

∫
d3k

(2π )3
eik·(x−x′) ekλ ⊗ ekλ

μ0(ekλ · ε · ekλ)

]
,

(B12)

which follows from the construction of ekλ. Finally, as the
polarization vectors ek1 and ek2 along with the wave vector
k span R3, such that

∑2
λ=0 ekλ ⊗ ekλ = 1, it follows that

2∑
λ=0

ekλ ⊗ ekλ

ekλ · ε · ekλ

= ε−1. (B13)

Here we have also used properties 3 and 4 of the eigenvectors
of M noted in the text. We have thus shown that

∇×(∇ × G(x, x′, ω)) − ω2μ0ε · G(x, x′, ω)

= 1
∫

d3k

(2π )3
eik·(x−x′ ) = 1δ(x − x′), (B14)

as intended. Note that for all this, we do need to keep the
wave vector k in the sum over “polarization” vectors. The
significance of this is that we technically have an extra soft-
photon (longitudinal) decay channel.

2. The decay rate

Let us ignore the longitudinal response for now and
explore the usual response, so restrict the sum over λ to
{1, 2}. We then want to find the imaginary part of the
Green’s function G(rA, rA, ωA), which is a consequence of

the fluctuation-dissipation theorem [39,45]. Using a partial
fraction expansion of (ω2

kλ − ω2)−1 along with the real line
version of the Sokhotski-Plemelj theorem [59–61], we can
rewrite

Im

[
1

ω2
kλ − ω2

A

]
= Im

[
1

2ωA(ωkλ − ωA)
− 1

2ωA(ωkλ + ωA)

]
= 1

2ωA
Im

[
iπδ(ωkλ − ωA) + P 1

ωkλ − ωA

]
= π

2ωA
δ(ωkλ − ωA), (B15)

where P denotes Cauchy’s principal value, and we have
assumed that ωkλ � 0 (i.e., the second partial fraction does
not contribute). We here also assume that all quantities are
real except for a small part of ωkλ used to choose the right
pole. Furthermore, we can rewrite∫

d3k

(2π )3
=

∫ 2π

0
dϕ

∫ π

0
dθ

∫ ∞

0
dk k2 sin θ

=
∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ ∞

0

dωkλ

(2π )3

(
n3

λ

c3

)
ω2

kλ,

(B16)
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where we have used that we can in general write

ωkλ ≡ ck/nλ. (B17)

With the above in mind, we find that

Im[G(rA, rA, ωA)]

= Im

[
2∑

λ=1

∫
d3k

(2π )3

eik·(rA−rA )

μ0(ekλ · ε · ekλ)

ekλ ⊗ ekλ

ω2
kλ

− ω2
A

]

= 1

4π2μ0

2∑
λ=1

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

(
n3

λ

c3

)
ωA

ekλ ⊗ ekλ

ekλ · ε · ekλ

.

(B18)

Finally, after substituting this into Eq. (34), we find

γ = ω3
A

8h̄π2

2∑
λ=1

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

(
n3

λ

c3

) |d · ekλ|2
ekλ · ε · ekλ

,

(B19)

in agreement with Eqs. (25) and (40) for uniaxial and biaxial
media, respectively. Note also that here we have assumed that
the permittivity is real, but this can be generalized to a com-
plex permittivity, as this does not change the mathematical
form of the Green’s function G.

3. The longitudinal component

For this component, we need to evaluate

Im
[
Gsoft(rA, rA, ωA)

]
= Im

[
−

∫
d3k

(2π )3

1

μ0ω
2
A

k ⊗ k
k · ε · k

]
≡ 0, (B20)

where we have used the fact that ε is a real matrix in the

last step. The longitudinal component of the Green’s function
hence causes an additional decay channel for absorbing media
but is 0 for the nonabsorbing media of interest here.
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