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Optical response of a topological-insulator–quantum-dot hybrid interacting
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We study the interaction between a topological-insulator nanoparticle and a quantum dot subject to an applied
electric field. The electromagnetic response of the topological insulator is derived from axion electrodynamics
in the quasistatic approximation. Localized modes are quantized in terms of dipolar bosonic modes, which
couples dipolarly to the quantum dot. Hence, we treat the hybrid as a two-level system interacting with a single
bosonic mode, where the coupling strength encodes the information concerning the nontrivial topology of the
nanoparticle. The interaction of the hybrid with the environment is implemented through the coupling with a
continuum reservoir of radiative output modes and a reservoir of phonon modes. In particular, we use the method
of Zubarev’s Green functions to derive an expression for the optical absorption spectrum of the system. We apply
our results to a realistic system which consists of a topological-insulator nanoparticle made of TlBiSe2 interacting
with a cadmium selenide quantum dot, both immersed in a polymer layer such as poly(methyl methacrylate). The
optical absorption spectrum exhibits Fano resonances with a line shape that strongly depends on the polarization
of the electric field as well as on the topological magnetoelectric polarizability θ . Our results and methods can
also be applied to nontopological magnetoelectric materials such as Cr2O3.

DOI: 10.1103/PhysRevA.102.013720

I. INTRODUCTION

Recently, topological insulators (TI) have been investigated
intensively both theoretically and experimentally [1,2]. These
materials are fully gapped in the bulk, but have gapless
edge or surface states which are topologically protected by
time-reversal (TR) symmetry. The surface states of a three-
dimensional (3D) TI consist of an odd number of massless
Dirac cones, whose existence is ensured by the Z2 topological
invariant of the bulk [3,4]. Furthermore, Kramers theorem
guarantees that no TR invariant perturbation can open up an
insulating gap at the Dirac point on the surface. However, a
TI becomes a fully gapped system (both in the bulk and on
the surface) if a TR breaking perturbation is introduced on the
surface. In this case, the electromagnetic response of a 3D TI
is described by the topological θ term of the form [5],

Sθ = α

π

√
ε0

μ0

∫
d4x θ �E · �B, (1)

where �E and �B are the electromagnetic fields, α =
e2/2ε0hc ≈ 1/137 is the fine structure constant, and θ is the
topological magnetoelectric polarization. θ = 0 describes a
conventional insulator, whereas θ = π describe topological
insulators. Such a physically measurable and topologically
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nontrivial response originates from the Dirac fermions on the
surface of the TI.

On the other hand, the optical properties of hybrid sys-
tems composed by semiconductor quantum dots (QDs) and
plasmonic nanostructures (such as spherical metallic nanopar-
ticles and metallic nanorods), have attracted great attention
because of the possible broad range of applications in pho-
tonics and optoelectronics. When these components are close
enough, the interaction between excitons from the QD and the
surface plasmons significantly influences the optical proper-
ties of the system and leads to several interesting phenom-
ena, such as Fano resonances [6–8] and plasmonic meta-
resonances [9,10]. To date, there have been several quantum
and semiclassical studies of the interaction between dipole
emitters and metallic nanoparticles [11–19].

Recent advances in the fabrication of nanostructured de-
vices made from topological-insulator materials, such as TI
nanoparticles [20–25] and TI nanowires [26–32], mark a step
towards utilizing topological properties at the nanoscale in
applications such as quantum computing, photonics, and op-
toelectronics. Also, they provide an additional scenario where
the topological magnetoelectric effect, as described by the
action (1), can be tested. This is precisely the main motiva-
tion of this work, where we pursued the idea that quantum
emitters near topological-insulator nanostructures could shed
information on the topological nontriviality of the materials.

In this paper we study the response of a hybrid nanos-
tructure consisting of a quantum dot (QD) coupled to a
topological-insulator nanoparticle (TINP), subject to an ap-
plied electric field. The field couples to both the QD and
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FIG. 1. Schematic of the topological-insulator–quantum-dot hy-
brid in the presence of an external electric field. We refer longitudinal
(transverse) coupling to the configuration where the electric field
polarization points along (perpendicular) to the line connecting the
center of the TI and the QD position.

the TINP, and all three constituents interact with each other
through a dipole-dipole coupling. The electromagnetic field of
the TINP is derived within the quasistatic approximation, and
we show that it supports well-defined dipolar bosonic modes.
In a realistic model one has to consider the finite lifetime of
the excitations of the system, which produce finite widths in
the corresponding spectral resonances. In general, such widths
are the result of the inelastic interaction with a continuum
of modes. Here we describe this inelastic interactions by
coupling the system with a continuum reservoir of radiative
output modes and a reservoir of phonon modes. Taking into
account all the interactions, we use the method of Zubarev’s
Green functions to calculate the absorption spectrum of the
system. For numerical calculations we consider the specific
case of a cadmium selenide (CdSe) QD in proximity to a TINP
made of TlBiSe2.

The paper is organized as follows. In Sec. II we com-
pute the electromagnetic response of a spherical topological-
insulator nanoparticle interacting with a probe electric field,
as depicted in Fig. 1. Then, in Sec. III, we turn to the quan-
tization of the electromagnetic field modes on the TI surface,
from which we derive a quantum-optical model to describe
the interaction between a TI nanoparticle and a quantum
dot nearby. Furthermore, we include damping effects due to
the interaction of the system with a continuum reservoir of
radiative output modes and a reservoir of phonon modes. In
Sec. IV we use the method of Zubarev’s Green function to
compute the optical absorption spectrum of the TI-QD hybrid.
We apply our results to a system in which a TI nanoparticle
made of TlBiSe2 interacts with a cadmium selenide (CdSe)
QD. Finally in Sec. V we summarize the main results of the
paper.

II. ELECTROMAGNETIC FIELD DISTRIBUTION
IN THE QUASISTATIC APPROXIMATION

In this paper we are concerned with the problem of a
TI-QD hybrid interacting with a probe electric field. To move
toward this goal, in this section we investigate the electrody-
namics of the problem. After a brief review of the electro-
magnetic response of TIs, we calculate the electromagnetic
field distribution due to a spherical topological insulator in a

monochromatic electric field, and with the aim of quantizing
the TI field, we finally obtain localized solutions.

A. Electrodynamics of topological insulators

The electromagnetic response of a system in the presence
of the θ term (1) is still described by the ordinary Maxwell
equations but with the modified constitutive equations (in SI
units) [5],

�D = εε0 �E + α(θ/π )
√

ε0

μ0

�B, (2)

�H = �B
μμ0

− α(θ/π )
√

ε0

μ0

�E , (3)

where ε and μ are the relative permittivity and permeability of
the medium. The corresponding vacuum quantities are ε0 =
8.85×10−12 F/m and μ0 = 4π×10−7 H/m. The description
of a TI in terms of the modified constitutive relations incor-
porating the topological magnetoelectric effect is only valid
when the massless topological surfaces modes are gapped.
In the case of nonmagnetic topological insulators, this is
achieved by means of a magnetic perturbation (applied field
and/or film coating) [33]. Recent advances in experimental
condensed matter physics has allowed the growth of intrin-
sic magnetic topological insulators, that is, ones that have
magnetic properties by their own since they are composed
by atoms with spinful nuclei [34–36]. Interestingly, despite
this magnetic order at atomic scale, the whole material lacks
bulk magnetization, however, it works as a source of in-
trinsic TR breaking perturbation that gaps the surface states
[37,38]. Hence, axion electrodynamics as described above
works for both magnetic and nonmagnetic topological insula-
tors [34–36]. Once the surface Dirac fermions are gapped, θ is
quantized in odd integer values of π such that θ = (2n + 1)π ,
where the value of n is determined by the nature of the TR-
breaking perturbation. In this work we consider that the TR
perturbation is a magnetic coating of small thickness whose
magnetization points outward the TI. Indeed, it corresponds
to modifying the interface by adsorbing surface layers of
nonzero Chern number [39].

As mentioned above, nontrivial effects due to the topologi-
cal θ term appear only at the interface � of a TI in contact with
a trivial insulator (or vacuum), where the TMEP suddenly
changes. Assuming that the time derivatives of the fields are
finite in the vicinity of �, Maxwell equations imply boundary
conditions, which, for vanishing free sources on �, read

[�n · (ε �E )]� = α̃c �n · �B|�, [�n × �E ]� = �0,

[�n · �B]� = 0, [�n × ( �B/μ)]� = (α̃/c) �E × �n|�, (4)

where α̃ = α(θ/π ), c = (μ0ε0)−1/2 is the speed of light in
vacuum, and �n is the outward unit normal to �. Further, the
notation is [ �F ]� = �Fout − �Fin, where the subscript “in” (“out”)
refers to inside (outside) the TI. It is worth mentioning that the
boundary conditions are perfectly consistent in relating field
discontinuities at the interface with components of the fields
which are continuous there. A number of magnetoelectric
effects have been predicted on the basis of this theory [40–57].
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However, it has been experimentally verified only through the
measurement of Kerr and Faraday angles at the surface of a
strained HgTe 3D TI [58].

B. Spherical TI in a monochromatic electric field

With the aim of quantizing the TI electromagnetic field
modes, we begin with its classical electromagnetic descrip-
tion. Let us consider a spherical topological insulator of radius
R in the presence of an electric field �E (�r, t ), as shown in
Fig. 1. The TI is characterized by a dielectric function ε1(ω), a
permeability function μ1(ω), and a topological magnetoelec-
tric polarizability θ , while the dielectric outside the TI has di-
electric function ε2(ω) and magnetic permeability μ2(ω). The
TI size is assumed to be small compared to the wavelength
of the applied electric field, so we can make the time har-
monic approximation. That is, the electric and magnetic fields
can be written, respectively, as �E (�r, t ) = Re{ �E (�r )e−iωt } and
�B(�r, t ) = Re{ �B(�r )e−iωt }, where �E (�r ) and �B(�r ) are the fields
associated with the solution of the static Maxwell equations
and Re{ } indicates the real part. In other words, the quasistatic
approximation consists of neglecting the retardation effects
everywhere except in the dielectric and permeability functions
dependence on the frequency. Here, we shall consider that the
TI is driven by an external monochromatic field, i.e., �E (�r, t )=
Re{ �E0e−iωt } , where �E0 is a constant vector. Therefore, in
order to determine the electromagnetic field distribution in the
quasistatic approximation, we have to solve the problem of a
spherical TI in a constant electric field. This is a simple but not
straightforward task, so we leave the details to Appendix A.
We find that the electric field can be written as a sum of the
externally applied electric field �E0 plus the electric field of the
topological insulator given by

�E (�r, ω) =
∑

i=x,y,z

ε2 − ε1 − μeα̃
2

2ε2 + ε1 + μeα̃2
E0i �Gi(�r ), (5)

while the induced magnetic field, which is a pure TI response,
becomes

�B(�r, ω) =
∑

i=x,y,z

ξ (r)
3ε2 μe α̃/2c

2ε2 + ε1 + μeα̃2
E0i �Gi(�r ), (6)

where ξ (r) = 1 for r > R and ξ (r) = −2 for r < R. Here,
μe = 2μ1μ2/(μ1 + 2μ2), and E0i is the ith component of
�E0. In these expressions we have defined the dimensionless
vector,

�Gi(�r ) =
{�ei r < R

−R3

r3 [3(�ei · �er )�er − �ei] r > R
, (7)

where �er is a unit vector pointing in the direction of �r, and r is
the center-to-center distance from the TI to the QD.

It is clear that the above fields satisfy the orthogonality
relation, ∫

Fi(�r, ω)F j (�r, ω) d3�r = 0, i �= j, (8)

where Fi = Ei,Bi.
To compute the time-dependent EM fields, we have to

Fourier transform the above results. In general, the permit-
tivity and permeability functions are frequency dependent.

However, since most topological insulators are nonmagnetic
in the bulk, we henceforth assume the permeabilities to be
constant, such that the only frequency dependence is through
the permittivity ε1(ω). Let us recall that even intrinsic mag-
netic topological insulators have turned out to be antiferro-
magnetic in the bulk, and as such, they have vanishing magne-
tization [37,38]. Thus we can safely take μ1(ω) ≈ μ1 and the
following analysis is valid for both magnetic and nonmagnetic
TIs. Hence, to obtain the time-dependent EM fields, a model
for the dielectric function is necessary. Because of the low
concentration of free carriers in insulators the most general
phenomenological model to describe the optical response of a
TI is a sum of oscillators to account for particular absorption
resonances. Here, we consider a single-mode model for the
dielectric function given by

ε1(ω) = 1 + ω2
e

ω2
R − ω(ω + iγ0)

. (9)

In this model, ωR is the resonant frequency of the oscillator
while ωe accounts for the oscillator strength. The damping
parameter γ0 satisfying γ0 � ωR accounts for energy dissi-
pation due to ohmic losses in the TI. In Appendix B we show
that when γ0 � ω the fields of the TI can be written as

�E (�r, ω) ≈
∑

i=x,y,z

η
ω2

0

/
2�

ω − � + iγ0/2
E0i �Gi(�r ), (10)

�B(�r, ω) ≈
∑

i=x,y,z

η (μe α̃/2c)ξ (r)
ω2

0

/
2�

ω − � + iγ0/2
E0i �Gi(�r ),

(11)

where ω0 = ωe/
√

2ε2 + 1 + μeα̃2, η = 3ε2/(2ε2 + 1 + μeα̃
2),

and � =
√

ω2
0 + ω2

R. We observe that in this limit the elec-
tromagnetic fields follow Lorentzian spectra, whose approxi-
mation is appropriate when the TI is interacting with a dipole
whose resonant frequency is close to plasmon resonance. This
will be our main interest in this paper.

C. Localized solutions

In order to quantize the optical modes, we need to find
localized solutions to the field equations. These solutions are
bounded in space and decay to zero in the far field domain.
The electromagnetic fields derived previously are not local-
ized solutions because they are driven by a monochromatic
plane wave that extends infinitely in space. Localized solu-
tions are obtained by exciting the TI with an impulse function
rather than by a monochromatic field, since after the impulse
has ended, only the localized modes will remain. Taking an
input field of the form E0(t ) = E0 δ(t ), the electric field of the
topological insulator in the time-harmonic domain is given by

�E (�r, t ) =
∑

i=x,y,z


i sin(�t ) e−γ0t/2 �Gi(�r ), (12)

where 
i = E0i η (ω2
0/2�). The induced magnetic field

is proportional to the electric field, i.e., �B(�r, t ) =
(μe α̃/2c) ξ (r) �E (�r, t ). One can readily verify that these
fields represent localized solutions to the field equations: �G
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satisfies both the field equations and the boundary conditions
at ω = � in the undamped limit.

III. QUANTUM-OPTICAL MODEL
FOR DIPOLE-TI INTERACTION

A. Quantization of the TI response

In order to quantize the confined field modes on the surface
of the TI, we ignore for the moment the term γ0, so the
fields are assumed to be steady-state sinusoidal functions.
Such a term will be included later with the incorporation of
a continuum of reservoir modes.

Because of the orthogonality of the three modes of the TI,
we may quantize each one of them individually. To this end,
we start with the energy of the ith mode of the EM fields:

Ui = ε0

2

2

i sin2(�t )
∫

d3�r | �Gi(�r )|2

×
{

d[Re(ωε)]

dω

∣∣∣∣
ω=�

+ μ2
e α̃

2

4μ
ξ 2(r)

}
, (13)

where we have used the proper definition of energy for dis-
persive materials. Note that the second term in the braces is
a contribution from the induced magnetic field. Field quanti-
zation is followed by definition of the normalized amplitude
Ai = 
i/N , where

1

N 2
= ε0

2h̄�

∫
d3�r | �Gi(�r )|2

{
d[Re(ωε)]

dω

∣∣∣∣
ω=�

+ μ2
e α̃

2

4μ
ξ 2(r)

}
,

(14)

such that the energy (13) can be rewritten in the simplest form,

Ui = h̄�A2
i sin2(�t ). (15)

The normalization factor (14) is explicitly evaluated in
Appendix C. Equation (15) only gives the energy stored in
the electromagnetic fields, but for energy conservation and
Hamiltonian estimation, it needs to consider another form of
energy due to current flowing in the TI surface. To maintain
energy conservation, we add a second term in the Hamiltonian
accounting for the periodic conversion between stored poten-
tial energy (represented by the energy of the field) and kinetic
energy due to current flowing in the TI. This energy must be
of the form,

Ki = h̄�A2
i cos2(�t ), (16)

such that the total energy Hi = Ui + Ki = h̄�A2
i is constant

at all times. Therefore, we suppose the topological insulator
acts as a normal harmonic oscillator where the energy is
periodically converted from potential energy to kinetic energy.
Defining a time-dependent amplitude, Ai(t ) = Ai sin(�t ), the
total Hamiltonian of the field modes can be written as

Hi = h̄

�

(
Ȧ2

i + �2A2
i

)
, (17)

where Ȧi is the time derivative of Ai. The substitution h̄ →
m�/2 allows us to interpret the above Hamiltonian as that of
a mechanical oscillator with mass m and resonant frequency
�. Therefore, the two variables Ai and 2h̄Ȧi/� form a
pair of canonical conjugate variables that can be quantized.
So, in order to quantize the TI response, we promote these

two conjugate variables to quantum operators as Ai → x̂i

and 2h̄Ȧi/� → p̂i, which satisfy the commutation relation
[x̂i, p̂ j] = iδi j h̄. Now, introducing the bosonic creation and
annihilation operators,

âi = x̂i + i

2h̄
p̂i, â†

i = x̂i − i

2h̄
p̂i, (18)

satisfying the commutation relation [âi, â†
j ] = δi j , the defini-

tion of the Hamiltonian takes the simple form,

Ĥ = h̄ �
∑

i=x,y,z

(
â†

i âi + 1/2
)
. (19)

Now we proceed with the quantization of the electromagnetic
fields over the TI surface as follows. By using Eq. (18),
we determine the constant 
i (appearing in the normalized
amplitude) as a function of the bosonic operators. Therefore,
in the steady-state condition, the electric field (12) can be
quantized as

�E (�r, t ) =
√

h̄�

2ε0Vm

∑
i=x,y,z

(âi + â†
i ) �Yi(�r ), (20)

where the mode volume Vm is defined as the ratio between the
total energy to the energy density inside the the TI U0, i.e.,

Vm = 1

U0

∫
d3�r | �Gi(�r )|2

[
d[Re(ωε)]

dω

∣∣∣∣
ω=�

+ μ2
e α̃

2

4μ
ξ 2(r)

]
,

(21)

where

U0 = | �Gi(�0 )|2
[

d (ωε1)

dω

∣∣∣∣
ω=�

+ μ2
e α̃

2

μ1

]
. (22)

Further, �Yi(�r ) = �Gi(�r )/
√
U0 is a rescaled version of �Gi(�r ).

The total energy density inside the TI (22) and the mode
volume (21) are explicitly evaluated in Appendix C.

B. Hamiltonian of the system

Having quantized the electromagnetic field operators, we
can now define the Hamiltonian of the system. On the one
hand, the Hamiltonian describing the topological insulator is
given by Eq. (19), which corresponds to that of a mechanical
oscillator. On the other hand, the part of the Hamiltonian
describing the interaction between the TI and the dipole can
be taken as Ĥint = − p̂ · �E , where p̂ is the dipole operator and
�E is the quantized electric field operator given by Eq. (20).
When the distance between the dipole and the TI surface is
larger than the TI radius, the dipolar approximation provides
a reasonable estimate for the interaction. However, when the
dipole is close enough to the TI surface, the effect of higher-
order multipole moments becomes particularly important.
See Refs. [59,60] for experimental and theoretical studies
regarding the validity of the dipolar approximation between
quantum dots and metallic nanoparticles, which we assume to
be feasible as well when the sample is a TI.

In general, the dipole operator can be expanded as
p̂ = ∑

i, j �pi j |i〉〈 j|, where �pi j = 〈i| �p | j〉 are its matrix ele-
ments. For a spherically symmetric dipole we can choose a
quantization direction such that �pi j points along an specific
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direction. Therefore, the interaction Hamiltonian will couple
field operators (dipole and electric field) pointing along the
same direction. So, if we excite only one specific transition of
the dipole, we can make the two-level dipole approximation,
and hence we can treat the TI-QD hybrid as a two-level
system interacting with a single bosonic mode. Applying the
two-level approximation [61,62], the dipole operator takes
the form p̂ = d (σ̂+ + σ̂−)êl (with l = x, y, z), where d is the
dipole moment of the transition and σ̂+ and σ̂− are the Pauli
raising and lowering operators, respectively. Dropping the
index in the bosonic operators corresponding to the single TI
mode interacting with the dipole, the interaction Hamiltonian
can be written as

Ĥint = h̄g(r)(σ̂+ + σ̂−)(â† + â), (23)

where g(r) is the TI-QD coupling strength. This coupling
depends on whether the electric field points along the dipole
direction (longitudinal coupling) or in the transverse direc-
tion (transverse coupling). The explicit form of the coupling
strength or Rabi frequency is then

g(r) =

⎧⎪⎨
⎪⎩

+2 d
h̄

√
h̄�

2ε0VmU0

R3

r3 longitudinal coupling

−1 d
h̄

√
h̄�

2ε0VmU0

R3

r3 transverse coupling
. (24)

This result implies that the Rabi frequency is twice as strong
for longitudinal coupling, indicating that this is the preferable
configuration for experimental detection of the TI effect. In
this paper we will consider only the energy conserving terms
in the interaction Hamiltonian (23), such that it reduces to
Ĥint = h̄g(r)(σ̂+â + σ̂−â†).

The above analysis allows us to write the Hamiltonian of
the closed system as

ĤS = ĤTI + Ĥdip + Ĥint, (25)

where ĤTI is the Hamiltonian of the electromagnetic field
excitations over the TI surface, given by Eq. (19), Ĥint is the
interaction Hamiltonian of Eq. (23), and Ĥdip = h̄ωaσ̂+σ̂− is
the dipole Hamiltonian (being ωa the resonant frequency of
the dipole). Quantum dots subject to an electric field exhibit
additional electroabsorption effects, including the quantum-
confined Stark effect. This consists in small shifts in the
energy levels, proportional to the squared magnitude of the
electric field and the QD polarizability f , which can be
properly ignored for electric fields satisfying | �E | � 2d/ f . In
Sec. IV C we estimate the numerical values for this effect and
conclude that it can be safely disregarded in the present work.

In a realistic model, we have to include also damping
effects due to the interaction of the system with the environ-
ment. To this end, here we consider that the system is coupled
with a continuum reservoir of radiative output modes and a
reservoir of phonon modes. The Hamiltonian of the radiative
and phonon reservoirs is given by [63,64]

ĤB =
∫

h̄ω′(b̂†
ω′ b̂ω′ + ĉ†

ω′ ĉω′ )dω′, (26)

while the Hamiltonian describing the interaction between the
system and the reservoirs is

ĤSB = ih̄
∫

(T1b̂†
ω′ â + T2ĉ†

ω′ â + T3b̂†
ω′ σ̂−)dω′ + H.c. (27)

Here, b̂†
ω′ and b̂ω′ (ĉ†

ω′ and ĉω′) are the creation and annihilation
operators corresponding to the radiative (phonon) modes. The
terms T1 = √

γr/2π and T2 = √
γ0/2π represent the coupling

strength between the TI and the reservoir modes, while T3 =√
γs/2π represents the coupling strength between the dipole

and the radiative modes. Further, γr , γ0, and γs are the scatter-
ing rate into free-space modes, the energy dissipation due to
ohmic losses, and the spontaneous emission rate of the dipole,
respectively. In Appendix D, by using the classical formulas
for the electric and magnetic dipole radiation, we derive an
exact expression for the scattering rate γr into free-space
modes for a TI. All in all, the full Hamiltonian of the open
system can be written as

Ĥ = ĤTI + Ĥdip + Ĥint + ĤB + ĤSB. (28)

IV. ABSORPTION SPECTRUM

The method of Zubarev’s Green functions has found in-
teresting applications in different branches of physics. It was
first conceived and successfully applied to different problems
in statistical physics and linear response theory [65–68], and
then it was adapted to study the optical absorption properties
of hybrid systems formed by plasmonic nanoparticles and
quantum emitters [12]. Outstandingly, it allows one to com-
pute the absorption spectra from the retarded Zubarev-Green
(ZG) function of the quantum operators that mediate the
photon absorption process. After briefly recalling the basics
of the method of Zubarev’s Green functions, in this section we
calculate the optical absorption spectrum of the topological-
insulator–quantum-dot hybrid.

A. Method of Zubarev’s Green functions

As is widely known, for a system initially in a state |i〉
of energy Ei that undergoes a transition to the final state | f 〉
of energy E f , the optical absorption cross section is given by
Fermi’s golden rule according to

σ (ω) ∝
∑

f

|〈 f ; n − 1|Ĥ ′|i; n〉|2 δ(ω f i − ω), (29)

where 〈 f ; n − 1|Ĥ ′|i; n〉 is the matrix element of the pertur-
bation Ĥ ′ that couples the system with the external photon
field, ω f i = (E f − Ei )/h̄ is the frequency corresponding to the
difference between the final and initial energies, and n is the
number of external photons with frequency ω.

In the problem at hand, the perturbation Hamiltonian has
the generic form Ĥ ′ ∝ Ââ† + Â†â, where â and Â (â† and Â†)
are the annihilation (creation) operators for the external pho-
tons and excitations of the system, respectively. In this way, Â
connects the initial and final states of the system, and as such
it governs the optical absorption properties. Equation (29) can
be further simplified. Using the Sokhotsky’s formula for the
Dirac delta, δ(x) = 1

π
Im{1/(x − i0+)}, and the action of the

bosonic ladder operators upon the basis {|n〉}, we can recast
Eq. (29) into

σ (ω) ∝ Im
∑

f

〈i|Â| f 〉〈 f |Â†|i〉
ω f i − ω − i0+ . (30)
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Since we are considering a system in which external photons
couple through excitation of a single quasiparticle excitation,
we can safely assume that Â† connects the initial ground state
with a set of final states with a common energy E f . Thus,
the denominator gets out of the sum in Eq. (30), and the
expression for the cross section reduces to

σ (ω) ∝ Im
〈i|ÂÂ†|i〉

ω f i − ω − i0+ , (31)

where we have used the closure relation for the final states.
Interestingly, the absorption spectrum is now written in terms
of the expectation value of ÂÂ† in the initial ground state.

We now consider the definition of the retarded ZG function
of two operators Â and B̂ in the frequency domain:

〈〈Â; B̂〉〉ω+i0+ = 1

ih̄

∫ ∞

0
dtei(ω+i0+ )tθ (t )〈[Â(t ), B̂(0)]η〉, (32)

where A(t ) means the Heisenberg representation, θ (x) is
the usual step function, and the brackets [Â, B̂]η = ÂB̂ −
ηB̂Â stand for the commutator (anticommutator) of bosonic
(fermionic) operators for η = 1 (η = −1). Now we take
B̂ = Â†, which is the appropriate choice to analyze the
cross section (31). For a fixed excitation frequency ω f i the
time-evolved (annihilation) excitation operator reads Â(t ) =
Â(0)e−iω f it , and hence, when the system is in the ground state,
the retarded ZG function (32) simplifies to

〈〈Â; Â†〉〉ω+i0+ = − 〈Â(0)Â†(0)〉
ω f i − ω − i0+ . (33)

Finally, since 〈i|ÂÂ†|i〉 and 〈Â(0)Â†(0)〉 are both the same
in the Schrödinger and Heisenberg picture, respectively, the
optical absorption cross section is then related to the retarded
ZG function by

σ (ω) ∝ −Im 〈〈Â; Â†〉〉ω+i0+ . (34)

So, by computing the retarded ZG function 〈〈Â; Â†〉〉 we will
immediately obtain the optical absorption spectrum. In order
to calculate 〈〈Â; Â†〉〉, we shall use its equation of motion [65]:

h̄ω〈〈Â; Â†〉〉 = 〈[Â, Â†]η〉 + 〈〈[Â, Ĥ ]; Â†〉〉, (35)

where Ĥ is the Hamiltonian of the system. Note that this ex-
pression depends on another ZG function 〈〈[Â, Ĥ ]; Â†〉〉, which
can also be calculated by writing down its equation of motion.
Iterating this process, one obtains a hierarchy of equations
that may need to be truncated at some point by applying a
physical approximation. This program will produce a linear
system of equations from which we will obtain 〈〈Â; Â†〉〉. In
the next section we will compute the retarded ZG function
〈〈Â; Â†〉〉 by using the Hamiltonian of Eq. (28).

B. Optical absorption of the TI-QD hybrid

In the problem at hand the bosonic operators â and â†

describe annihilation and creation of particle excitations on
the TI surface. Hence, the optical absorption spectrum can
be found from the retarded ZG function 〈〈â; â†〉〉. The above
equation of motion then reads

h̄ω〈〈â; â†〉〉 = 1 + 〈〈[â, Ĥ ]; â†〉〉, (36)

where Ĥ is the full Hamiltonian of the open system. Substi-
tuting the Hamiltonian (28) into Eq. (36) we obtain

h̄(ω − �)〈〈â; â†〉〉 = 1 + h̄g(r) 〈〈σ̂−; â†〉〉

− ih̄
∫

[T ∗
1 〈〈b̂ω′ ; â†〉〉 + T ∗

2 〈〈ĉω′ ; â†〉〉]dω′. (37)

From this expression, it is clear that we need to compute three
additional ZG functions: 〈〈σ̂−; â†〉〉, 〈〈b̂ω′ ; â†〉〉, and 〈〈ĉω′ ; â†〉〉.
These ZG functions can be obtained from their equations of
motion. The last two of them can be easily obtained from their
equations of motion:

h̄(ω − ω′)〈〈b̂ω′ ; â†〉〉 = ih̄[T1〈〈â; â†〉〉 + T3〈〈σ̂−; â†〉〉],
h̄(ω − ω′)〈〈ĉω′ ; â†〉〉 = ih̄T2〈〈â; â†〉〉. (38)

Substituting these results into Eq. (37) and solving for 〈〈â; â†〉〉
we obtain

〈〈â; â†〉〉 = 1 + h̄[g(r) + �13] 〈〈σ̂−; â†〉〉
h̄(ω − � − �11 − �22)

, (39)

where we have defined the frequencies,

�i j =
∫

T ∗
i (ω′)Tj (ω′)

ω − ω′ − i0+ dω′

= p.v.
∫

T ∗
i (ω′)Tj (ω′)

ω − ω′ dω′ + iπT ∗
i (ω)Tj (ω), (40)

which have been evaluated using the Sokhatsky-Weierstrass
theorem. Here, p.v. stands for the Cauchy principal value.
Physically, the first term of �i j represents a frequency shift,
while the second one is a decay rate.

We still need to evaluate 〈〈σ̂−; â†〉〉. The corresponding
equation of motion produces

h̄(ω − ωa)〈〈σ̂−; â†〉〉 = h̄g(r) 〈〈(1 − 2σ̂+σ̂−)â; â†〉〉

− ih̄
∫

T ∗
3 〈〈(1 − 2σ̂+σ̂−)b̂ω′ ; â†〉〉dω′. (41)

Therefore, we see that new ZG functions emerge that need to
be computed. The iteration process would produce an infinite
number of equations of motions, but we truncate it at this
point by approximating the operator σ̂+σ̂− by its expectation
value 〈σ̂+σ̂−〉 = n. Taking this approximation and substituting
Eq. (38) into the above expression we obtain

〈〈σ̂−; â†〉〉 = (1 − 2n)[g(r) + �31]

ω − ωa − (1 − 2n)�33
〈〈â; â†〉〉. (42)

Finally, inserting these results into Eq. (39), we obtain explic-
itly the ZG function 〈〈â; â†〉〉 and hence the optical absorption
spectrum of the TI-QD system:

σ (ω) ∝ Im

[
ω − W − �

ω − W

]−1

, (43)

where

W = � + �11 + �22, W = ωa + (1 − 2n)�33,

� = (1 − 2n)[g(r) + �13][g(r) + �31]. (44)

This expression shows that the resonance frequency of the
quantum modes on the TI is modified by the interaction with
the quantum dot.
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FIG. 2. Optical absorption spectrum of the TI-QD hybrid for longitudinal (left) and transverse (right) coupling and different values of QD
resonance energy h̄ωa. The TI-QD Fano resonance achieves its maximum approach for h̄ωa = 2.2 eV.

C. Numerical results and discussion

Here we apply our results to a realistic topological-
insulator–quantum-dot hybrid, we have to use appropriate val-
ues for the different parameters appearing in Eq. (43). To this
end, we consider the experimental setup used in Refs. [69,70].
There the authors engineer a metallic-nanoparticle–quantum-
dot hybrid by encapsulating gold nanospheres and cadmium
selenide (CdSe) QDs in a polymer layer such as poly(methyl
methacrylate). While it is difficult to perform this kind of
experiment with topological insulators nowadays, we envision
that a similar experimental setup could be engineered to test
our results with a spherical topological-insulator nanoparticle
(as those predicted in Ref. [71]) and CdSe quantum dots. It
is worth mentioning that our results can also be tested with
linear magnetoelectrics such as Cr2O3 [72] or in some mul-
tiferroics [73]. We will get back to this discussion in the last
section.

In order to calculate the optical absorption spectrum (43)
we focus on the specific example of a CdSe quantum dot
interacting with a TI spherical nanoparticle of TlBiSe2. The
values for the parameters which characterize this TI have been
experimentally investigated neglecting free carrier contribu-
tions and assuming high-frequency transparency [74]. They
are found to be μ1 = 1 and ε1(0) = 1 + (ωe/ωR)2 ∼ 4 and
have a single resonant frequency near 56 cm−1 (∼1.6 THz)
[75]. We take an energy for the TI of h̄� = 2.2 eV and
the scattering rate into free-space modes γr , is obtained by
substituting the above values into the formula (D4). Further,
the damping parameter γ0 satisfies γ0 � ωR, and hence it
plays a secondary role. Therefore we can safely neglect it in
the numerical simulations. The spherical TI nanoparticle is
assumed to have a radius of R ∼ 5 nm and be embedded in
a nonmagnetic material with permittivity ε2 = 1.5, which can
be attained by capping the system with polymethyl methacry-
late. We assume a CdSe quantum dot with a size of 4.5 nm;
we take a spontaneous emission decay rate γ −1

s = 10 ns
and a wavelength λ = 550 nm, which is a common value
for interactions with CdSe nanocrystals [11]. The resonance
energy h̄ωa is within the 1.5–2.9 eV range, an appropri-
ate energy range for CdSe [12,70]. Also, for the transition

dipole moment we set d = 7.2×10−28 Cm [76,77]. As dis-
cussed in Sec. III B, QDs subject to an applied electric field
exhibit electroabsorption effects. Taking these numerical val-
ues into account, together with the polarizability of a CdSe
quantum dot f = 1.5×105Å [78], we find that the energy
shifts due to the Stark effect is of the order of ∼10−3eV, which
is small as compared with the resonance energy so that we can
safely disregard this effect in the present calculations. Finally,
we suppose the system is under strong optical pumping, so
that n ≈ 0.5.

Figure 2 shows the optical absorption spectrum of the
system under study, computed from Eq. (43), for longitudinal
(at left) and transverse (at right) coupling. As we can see,
the optical spectra exhibits interesting features. Outstandingly,
a Fano resonance appears with a line shape that strongly
depends on the energy h̄ωa. The Fano resonance results from
the interaction between a continuum of modes and a narrow
discrete mode. In the problem at hand, the QD resonance
is the narrow mode, while the bosonic excitations at the
TI surface play the role of a continuum. Fano resonances
in nontopological plexcitonic systems have been extensively
studied; see, for example, [6,8,79]. On the other hand, in Fig. 3
we show the optical absorption spectrum for different values
of the QD-TI distance r, fixed h̄ωa = 2.9 eV and θ = π . At
left (right) we present the longitudinal (transverse) coupling.
Here, we observe that QD-peak decreases as increasing r,
implying that Fano resonances appear only when the QD is
close to the TI surface. This is so because in this regime the
interaction strength g(r) increases as r → R.

We finally illustrate, in Fig. 4, the optical absorption spec-
trum as a function of the (rescaled) topological magnetoelec-
tric polarizability α̃, fixing h̄ωa = 2.2 eV and r = 7 nm. Let
us recall that the value of θ depends on the nature of the TR
breaking perturbation at the TI surface. In practice, it corre-
sponds to modifying the TI interface by adsorbing surface lay-
ers of nonzero Chern number. In Fig. 4 we take α̃ = α (which
is the lowest nontrivial possible value), α̃ = 11α and α̃ = 95α.
In general, we observe that the transverse coupling exhibits a
distinctive feature: The two peaks approach each other faster
than those appearing with the longitudinal coupling. In Fig. 4
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FIG. 3. Optical absorption spectrum of the TI-QD hybrid for longitudinal (left) and transverse (right) coupling for the distances r = 8,

9, 10, 11 nm. We fix the QD resonance energy h̄ωa = 2.9 eV.

we have taken a large value of the magnetoelectric polarizabil-
ity, which although it is very large for topological insulators,
is appropriate for a magnetodielectric material such as Cr2O3,
which is also described by axion electrodynamics. It would
also be interesting to see the optical absorption spectrum
when the QD interacts with an intrinsic magnetic topological
insulator, such as the recently discovered MnBi2Te4 [37,38].
As discussed above, our analytical results are still valid for
magnetic TIs. However, this compound was discovered the
last year, and therefore we lack its full optical properties for
the time being.

Recently, the authors in Ref. [79] introduced the concept
of topological Fano resonance to name ultrasharp asymmetric
line shapes which are protected against geometrical disorder
of the sample, yet remain sensitive to external parameters.
It was experimentally observed in acoustic systems [79]. In
fact, it is worth mentioning that the Fano resonances we have
obtained in the topological-insulator–quantum-dot hybrid, do
not belong to the classification of topological Fano resonances
of Ref. [79]. This is so because the topological protection of

topological insulators is related to the band structure of the
material, and not directly to its geometrical form. So, the Fano
resonances we report are topological in a different sense.

V. SUMMARY AND CONCLUSIONS

The study and design of devices capable of controlling
light-matter interaction at the nanoscale have been subjects
of intense activity over the past decade. This interest has
been reinforced by the recent advances in the fabrication
of nanostructured devices made from topological-insulator
materials, such as TI nanoparticles and TI nanowires. Inspired
by these studies, together with the lack of confirmation of
the topological magnetoelectric effect of TIs, in this paper we
have considered a hybrid system composed of a quantum-dot
and a topological-insulator nanoparticle, subject to a probe
electric field.

In order to study the optical response of this system we
have employed a powerful quantum-mechanical approach
which is commonly used to study the internal evolution

FIG. 4. Optical absorption spectrum of the TI-QD hybrid for longitudinal (left) and transverse (right) coupling for the rescaled topological
magnetoelectric polarizabilities α̃ = α (dotted blue line), α̃ = 11α (dashed red line), and α̃ = 95α (continuous black line). Here we fix
h̄ωa = 2.2 eV and r = 7 nm.
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(beyond the perturbative regime) of plasmonic nanostruc-
tures interacting with quantum emitters under strong optical
pumping, and which takes into account energy loss due to
spontaneous emission, ohmic losses, and scattering into free-
space modes. The major advantage of this program is that
it can be extended to include several kinds of interactions
and energy loss mechanisms. The method relies on Zubarev’s
Green functions, which allow one to account for quantum
aspects of the optical response and Fano resonances in plex-
citonic systems. By using the above described method, we
have expressed the optical absorption cross section in terms of
the ZG function 〈〈â; â†〉〉ω+i0+ , where â and â† are the bosonic
operators describing creation and annihilation of quasiparticle
excitations at the TI surface.

We applied our results to a realistic system which consists
of a topological-insulator nanoparticle (made of TIBiSe2)
interacting with a cadmium selenide quantum dot, both im-
mersed in a polymer layer such as poly(methyl methacrylate).
The optical absorption spectrum is found to exhibit Fano
resonances resulting from the TI-QD interaction, similar to
what happened with a metallic nanoparticle interacting with a
quantum emitter [12,80,81]. As expected, transverse coupling
and short TI-QD distances favor the absorption of the system,
and this implies a better possibility to be experimentally
detected. This conclusion about the strength of the topological
magnetoelectric effect is similar to what occurs with the
intensity of the monopole magnetic field appearing when
a pointlike charge [40] or a finite size sphere at constant
potential [54] is close to a planar TI surface. Further, we
observe that high values of the magnetoelectric polarizability
θ significantly shift the position of the absorption resonances.
This suggests that this effect could also be explored with
other magnetodielectric materials such as Cr2O3, which can
be described by a similar axion coupling. Indeed, this material
is characterized by a uniaxial magnetoelectric susceptibility
tensor γi j , whose average is of the order of γ̄ ≈ 0.7 ps/m [82].
We leave this problem for a future work.

We close by commenting on possible extensions of this
work. On the one hand, we can use the same idea to study the
optical absorption of a quantum emitter placed in the gap of
a topological-insulator nanoparticle dimer. Additionally, the
interaction between topological-insulator quantum wires and
quantum dots can also be analyzed within the same scheme.
These problems will be further considered elsewhere.
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APPENDIX A: SPHERICAL TI IN A CONSTANT
ELECTRIC FIELD

In this section we present the detailed solution of the
field equations for a spherical TI in a constant electric field,
as shown in Fig. 1. Since there are no free sources in the
problem, one can introduce the electric φ and magnetic ψ

scalar potentials satisfying the Laplace equation,

�∇2φ = 0, �∇2ψ = 0, (A1)

such that the electric and magnetic fields are given by �E =
−�∇φ and �B = −�∇ψ , respectively. We choose coordinate axes
such that the field �E0 points along an arbitrary u direction and
the origin coincides with the center of the sphere, as shown in
Fig. 1. Due to the axial symmetry of the problem (around the u
axis), the scalar potentials will be of the form φ = φ(r, ϕ) and
ψ = ψ (r, ϕ), where r is the radial coordinate and the polar
angle ϕ is defined through cos ϕ = u/r.

The general solutions of Eq. (A1) for the potentials inside
(r < R) and outside (r > R) the topological insulator can be
expressed as an expansion in Legendre polynomials:

φin(r, ϕ) =
∑

�

A� r�P�(cos ϕ),

φout(r, ϕ) = −E0r cos ϕ +
∑

�

C�

r�+1
P�(cos ϕ),

ψin(r, ϕ) =
∑

�

D� r�P�(cos ϕ),

ψout(r, ϕ) =
∑

�

F�

r�+1
P�(cos ϕ), (A2)

where r is the radial coordinate and the polar angle ϕ is
defined through cos ϕ = u/r.

To solve the boundary value problem, we first note that, due
to the asymptotic form of the electric field, �E0 = E0�eu, only
the dipole terms with � = 1 will survive in the potentials (A2)
once the boundary conditions (4) are imposed. The application
of the boundary conditions (4) produces the following system
of algebraic equations (with only � = 1 terms):

ε2(2C1 + E0R3) + ε1A1R3 = −α̃c D1R3,

D1R3 = −2F1,

R3(E0 + A1) = C1,

F1/μ2 − D1R3/μ1 = −(α̃/c) A1R3, (A3)

whose solution is quite simple. After straightforward calcu-
lations we obtain, for the electromagnetic fields inside the
topological insulator,

�Ein(�r, ω) = 3ε2

2ε2 + ε1 + μeα̃2
�E0, (A4)

�Bin(�r, ω) = 3ε2μeα̃/c

2ε2 + ε1 + μeα̃2
�E0, (A5)

where μe = 2μ1μ2/(μ1 + 2μ2). An interesting feature to
note is the form of the fields in such region. The electric
field behaves as the field produced by a uniformly polarized
sphere, while the magnetic field resembles the one produced
by a uniformly magnetized sphere.

Outside the TI, the electromagnetic fields read

�Eout(�r, ω) = �E0 + 1

4πε2

[
3( �p · �r)�r

r5
− �p

r3

]
, (A6)

�Bout(�r, ω) = μ2

4π

[
3( �m · �r)�r

r5
− �m

r3

]
, (A7)
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where

�p (ω) = 4πε2
ε1 − ε2 + μeα̃

2

2ε2 + ε1 + μeα̃2
R3 �E0, (A8)

�m(ω) = 2π

μ2

3ε2μeα̃/c

2ε2 + ε1 + μeα̃2
R3 �E0. (A9)

The electric field consists of a superposition of the applied
electric field and that of a pointlike electric dipole �p (ω) lo-
cated at the origin and pointing in the direction of the applied
field. The magnetic field can be interpreted as that generated
by a magnetic dipole �m(ω) located also at the origin. In the
limit α̃ → 0, the fields above reduce to the well-known results
in the literature.

One can further check that Eqs. (A4) and (A6) for the elec-
tric field can be written in a unified fashion as �E0 + �E (�r, ω),
where �E (�r, ω) is given by Eq. (5). Also, Eqs. (A5) and (A7)
for the magnetic field can be written as in Eq. (6).

APPENDIX B: TI RESPONSE WITH ω-DEPENDENT
PERMITTIVITY

When substituting the dielectric function (9) into Eqs. (5)
and (6) we obtain the expressions,

�E (�r, ω) =
∑

i

[
ω(ω + iγ0) − ω2

R

]
ε2−1−μeα̃2

2ε2+1+μeα̃2 + ω2
0

�2 − ω(ω + iγ0)
E0i �Gi(�r),

(B1)

�B(�r, ω) =
∑

i

(η μe α̃/2c) ξ (r)
ω2

R − ω(ω + iγ0)

�2 − ω(ω + iγ0)
E0i �Gi(�r),

(B2)

where ω0=ωe/
√

2ε2+1+μeα̃2, η=3ε2/(2ε2 + 1 + μeα̃
2), and

�2 = ω2
0 + ω2

R. We consider the case where γ0 � ω. In this
limit, the denominator of the above expressions can be written
as

�2 − ω(ω + iγ0) ≈ −2ω[(ω − �) + iγ0/2], (B3)

which is the standard approximation for a high-Q resonator.
In this limit the TI response will be very small unless ω ≈ �.
Using the assumption that ω ≈ � � γ0 the numerator in
Eq. (B1) can be simplified to

[
ω(ω + iγ0) − ω2

R

] ε2 − 1 − μeα̃
2

2ε2 + 1 + μeα̃2
+ ω2

0 ≈ η ω2
0, (B4)

while the numerator in Eq. (B2) simplifies to

ω2
R − ω(ω + iγ0) ≈ −ω2

0. (B5)

Inserting these approximations into Eqs. (B1) and (B2) we
attain Eqs. (10) and (11).

APPENDIX C: EVALUATION OF THE NORMALIZATION
FACTOR AND MODE VOLUME

From the definition of the normalization factor in Eq. (14)
we find that

2h̄�

ε0N 2
=

(
ε2 + μ2

e α̃
2

4μ2

)
I1 +

{
d[Re(ωε1)]

dω

∣∣∣∣
ω=�

+ μ2
e α̃

2

μ1

}
I−1,

(C1)

where we have defined the integral,

Is =
∫

d3�r | �Gi(�r )|2 �[s(r − R)]. (C2)

Here, �[x] is the Heaviside step function. These integrals can
be easily evaluated. Using the form of the vector �Gi(�r ), given
by Eq. (7), we obtain

I−1 =
∫

�(R − r)d3�r =
∫ 2π

0

∫ π

0

∫ R

0
r2 sin θdrdθdϕ = 4πR3

3
,

I+1 =
∫

�(r − R)
1 + 3(�ei · �er )2

(r/R)6
d3�r

=
∫ 2π

0

∫ π

0

∫ ∞

R

1 + 3 cos2 θ

(r/R)6
r2 sin θdrdθdϕ = 8πR3

3
.

(C3)

On the other hand, the derivative in the second term of the
right-hand side in Eq. (C1) can be evaluated with the help
of the dielectric function model (9). In the limit � � γ0 we
obtain

d[Re(ωε1)]

dω

∣∣∣∣
ω=�

= 1 + (ωe/ω0)2 + 2(ωe/ω0)4(ωR/ωe)2.

(C4)

By using these results, together with the definition for the ratio
ω0/ωe, Eq. (C1) yields

1

N 2
= 4πε0R3

3h̄�

(2ε2 + 1 + μeα̃
2)[2ε2 + ε1(0) + μeα̃

2]

ε1(0) − 1
,

(C5)

where ε1(0) − 1 = (ωe/ωR)2 is the static permittivity of the
topological insulator.

In a similar fashion, one can further evaluate the energy
density inside the TI, defined by Eq. (22). The result is

U0 = 2(ε2 + 1) + μeα̃
2(1 + μe/μ1) + 2

(2ε2 + 1 + μeα̃
2)

ε1(0) − 1
,

(C6)

and with the help of the above results we obtain that the mode
volume, defined by Eq. (21), is

Vm = 8πR3

3

(2ε2 + 1 + μeα̃
2)[2ε2 + ε1(0) + μeα̃

2]

U0[ε1(0) − 1]
. (C7)

APPENDIX D: RADIATIVE DECAY OF THE TI

When the TI is excited by an input electric field of the form
�E0(�r, t ) = E0δ(t )�ez, the electric and magnetic fields due to
the TI at time t > 0 are given by �E (�r, t ) = 
 sin2(�t ) �Gz(�r)
and �B(�r, t ) = (μeα̃/2c)ξ (r) �E (�r, t ), respectively. The func-
tions �Gi(�r) and ξ (r) are defined in Eq. (7). Further, from
Eq. (15) we find that the energy stored in the electromagnetic
fields, averaged over an optical cycle, is given by

〈U 〉 = 1
2 h̄� (
/N )2, (D1)

where 
 = E0η(ω2
0/2�) and N is the normalization fac-

tor computed in Appendix C. Outside the TI, the electro-
magnetic fields take the form of dipole fields, with electric
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dipole moment �p = 4πε0ε2
R3�ez and magnetic dipole mo-
ment �m = (μeα̃c/2ε2μ2) �p oscillating at the frequency �. So,
in terms of the electric dipole moment p, the averaged energy
(D1) can be written as

〈U 〉 = 1

2
h̄�

�p2

(4πε0ε2R3N )2
. (D2)

If the TI radius is much smaller than the wavelength of the
input field, we can treat the TI as a pair of point dipoles.
Therefore, the Larmor formula is appropriate to compute
the power radiated by the dipoles, i.e., P = (μ0μ2/12πc)
( �̈p2 + 1

c2 �̈m2). Substituting the above values for the dipole

moments we obtain

P = −d〈U 〉
dt

= μ0μ2 p2�4

12πc

[
1 +

(
μeα̃

2ε2μ2

)2]
, (D3)

and the expressions (D2) and (D3) are related by P = γr〈U 〉,
from which we obtain the decay rate of the TI due to scattering
into free-space modes,

γr = 2μ2ε
2
2 R3�4

c3

[ε1(0) − 1][1 + (μeα̃/2ε2μ2)2]

(2ε2 + 1 + μeα̃2)[2ε2 + ε1(0) + μeα̃2]
.

(D4)
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