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Time-resolved multiphoton effects in the fluorescence spectra
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We study the time-resolved fluorescence spectrum in two-level systems interacting with an incident coherent
field, both in the weak and intermediate coupling regimes. For a single two-level system in the intermediate-
coupling case, as time flows, the spectrum develops distinct features that are not captured by a semiclassical
treatment of the incident field. Specifically, for a field on resonance with the atomic transition energy, the usual
Mollow spectrum is replaced by a four-peak structure, and for a frequency that is half of the atomic transition
energy, the time-dependent spectrum develops a second-harmonic peak with a superimposed Mollow triplet. In
the long-time limit, our description recovers results previously found in the literature. After analyzing why a
different behavior is observed in the quantum and classical dynamics, the reason for the occurrence of a second-
harmonic signal in a two-level system is explained via a symmetry analysis of the total (electron and photon)
system and in terms of a three-level system operating in limiting regimes. We find an increased second-harmonic
signal in an array of two-level systems, suggesting a superradiance-like enhancement for multiple two-level
systems in cavity setups. Finally, initial explorative results are presented for two-level model atoms entering and
exiting a cavity, which hint at an interesting interplay between cavity-photon screening and atomic dynamics
effects.
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I. INTRODUCTION

Fluorescence, a type of luminescence [1–3], is a hallmark
of quantum mechanics at work: A system that has absorbed
electromagnetic radiation re-emits it at a later time, while the
spins of the electrons involved in the deexcitation process
conform to specific selection rules.

In addition to being an operational mechanism in several
biological systems [4], fluorescence serves in many technolo-
gies of different complexity, ranging from simple indoor light-
ing to in-depth spectroscopic characterization at the atomic
scale. Investigations of fluorescence started before the advent
of quantum mechanics, but it would be the latter that provided
the conceptual framework for a microscopic description [1–3].

Spectroscopic methods have a rich history as a means of in-
vestigating the internal structure of matter. In particular, with
the development of ever more sophisticated laser systems,
the electronic dynamics in atomic and solid-state systems
can now be mapped out in real time while maintaining a
high frequency resolution [5,6]. This allows one to study in a
precise manner the basic processes of light-matter interaction
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and even to characterize the properties of light itself, such as,
for example, emitted via fluorescence.

A minimal-complexity model to study fluorescence emis-
sion and fluorescence spectroscopy is a two-level system
[7–9] (for example, a spinless electron that can be in either
of two nondegenerate quantum states, or in any linear super-
position thereof) interacting with a single radiation mode via
dipolar coupling. If the two levels are thought to be selected
from an atom, the model is also referred to as a “two-level
atom” (with the additional option that the center of mass of
the atom can be either at rest or in motion).

Two-level systems came into prominence with the work of
Rabi et al. on a magnetic moment exposed to a classical circu-
larly polarized field [10]. In a subsequent study by Bloch and
Siegert the linearly polarized case was then considered [11]
(in this situation, the solution is more complicated compared
with Rabi’s original case [12]). The next important develop-
ment took place when the radiation mode was also treated
quantum-mechanically, and the so-called rotating wave ap-
proximation (RWA) was introduced [13–17]. Designed for
weak-coupling and near-resonance regimes, the RWA permits
an explicit treatment of the time dependence [18] and provides
a convenient route to the so-called dressed-level (or dressed-
atom) approach [9,19,20], where the levels of the system
split and are renormalized (shifted) by the radiation field. In
turn, within this approach, a clear picture emerges [21] of
the Mollow spectrum [22], a three-peak structure due to the
fluorescent response of a two-level system to a resonant or
quasiresonant radiation mode.
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Nevertheless, a number of interesting physical situations
are outside the reach of the RWA, such as, e.g., the intense
pulsed regime, where field monochromaticity is absent and
off-resonant coupling cannot be avoided. The need under
some circumstances to go beyond the RWA has in fact been
recognized in several contexts (also by comparing exact and
RWA solutions [23,24]). For example, when discussing mod-
ifications of the shape of the three peaks in Mollow spectra
[25–27], spontaneous emission in three-level systems [28], or
when center of mass dynamics is included [29] (for a recent
review, see, e.g., Ref. [30]).

As these few, incomplete remarks suggest, two-level sys-
tems coupled to radiation in different “flavors” remain of
capital relevance to this day to probe and redefine the knowl-
edge boundaries in (quantum) optics [31–33]. This can occur
via generalization of the basic model(s) together with deeper
mathematical analysis (see, e.g., Refs. [34–36]), to address
unexplored coupling regimes [37,38], or novel areas of appli-
cations. For example, cavity quantum optics and the Unruh ef-
fect [29], quantum-mechanical interference [39], two-photon
relaxation [40], quantum phase transitions [41], interaction of
photon matter qubits [42], and Mollow spectra in ultracold
atoms [43].

The quantum nature of light manifests in a clear way at
low photon number and for large light-matter coupling. These
two aspects contribute distinctly. This is different from the
strong-field regime, where a semiclassical treatment becomes
appropriate and where the effective coupling parameter is
the product of field strength and coupling strength [12].
Concerning the few-photon limit, this can be e.g., reached
in high-quality-factor cavities [44–46]. On the other hand, to
attain the strong coupling (also denoted polaritonic) regime, a
possibility is offered by the insertion of a quantum well into a
distributed Bragg reflector cavity [47], i.e., by coupling the
photon field and an optical interband transition (a Wannier
exciton).

Scope of this work. In the present study we consider two-
level, one-electron systems interacting with two optical modes
(the coherent-pump and a deexcitation field). Specifically, we
address the (so far largely unexplored) multiphoton effects in
fluorescence spectra, which depend separately on field inten-
sity and light-matter coupling strength. This will be done in
situations of progressive complexity: a single two-level atom
at rest, an array of two-level atoms at rest, and finally a single
two-level atom moving through an optical cavity. To this end,
it is necessary to employ a theoretical framework suitable
for both nonlinear effects (in relation to certain experimental
setups [48–50]) and an explicitly time-dependent light-matter
coupling.

Several years ago, three of the present authors introduced
an exact solution method [51,52] for a large class of mul-
tiphoton spectroscopy models. Their method is based on a
recursion technique (see, e.g., Ref. [53]) in the frequency
domain, i.e., for the stationary limit of fluorescence. They also
pointed out the difference between the exact solutions and the
RWA. The aim was to address systems where interactions with
the environment are as weak as possible. That is, where both
inhomogeneous (such as due to static and dynamical disorder,
mode leakage, etc.) and homogeneous (atomic collisions, but
also nonradiative decay, etc.) decoherence factors plays a
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FIG. 1. Schematic of the systems considered in the paper. (a) A
single two-level system of transition energy ε interacting with a
coherent field of frequency ωa (with coupling strength ga) and a
fluorescent field of frequency ωb (with coupling strength gb). (b) An
array of N two-level systems interacting with a coherent field and
fluorescent field. (c) A two-level atom of momentum p passing
through a cavity of length L where it interacts with a coherent cavity
field and emits fluorescent photons.

minor role. Put differently, the focus was on a regime where
both energy-dependent broadening (not considered in the rest
of this paper, because it is assumed to be controllable), and
energy-independent broadening (denoted by � and retained
in the paper) are as small as possible. As discussed above,
current experimental capabilities provide practical and close-
to-ideal realizations of these premises with optical cavity
setups and make time-resolved studies possible. In this way,
it is possible to investigate the actual development of the
fluorescence signal before the steady-state signal sets in.

With these considerations in mind, here we take a different
methodological route from that in Refs. [51,52], by working
in a real-time (and again free of RWA) picture, and computing
the exact time-dependent fluorescence response. To establish
the effect of multiphoton contributions and counter-rotating
terms, we specialize to the Mollow regime (on-resonance
situation) and to second-harmonic generation (SHG) (off-
resonance situation). In the literature, Mollow spectra are
discussed in terms of two-level systems [22], and thus our
work conforms to previous treatments. In contrast, SHG is
commonly discussed in terms of three-level systems [54];
however, we will show that a genuine two-level system admits
SHG. Overall, our study here can thus be summarized as
an exploration of multiphoton effects in Mollow and SHG
fluorescence spectra across three different two-level-system
setups (a single system at rest, many systems at rest, and a
single system in motion).

A remark about the units used in this work: unless oth-
erwise stated at specific points in the paper, the energy unit is
ε = ε2 − ε1, the distance between the two levels in the system,
and the time unit is h̄/ε [55].

Organization of the paper. The rest of this article is orga-
nized in three parts: In Sec. II we study the time-dependent
fluorescence spectrum of an isolated two-level system [see
Fig. 1(a)]. In Sec. III, we consider an array of two-level sys-
tems interacting with a common coherent field [see Fig. 1(b)].
In this case, the fluorescence signal shows an enhancement
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compared with the single two-level-system case, consistent
with a superradiance-like mechanism. Finally, in Sec. IV, we
consider a two-level atom passing through an optical cavity
[see Fig. 1(c)]. We explicitly treat the quantum motion of
the atomic center of mass and show that this results in a
fluorescence spectrum which differs from that obtained from
a semiclassical treatment of the atomic motion. Conclusive
remarks and an outlook are in Sec. V.

II. A SINGLE TWO-LEVEL SYSTEM

We start with the simplest of the three situations, i.e., a
single two-level system interacting with two optical modes.
After presenting the model and the method of solution, we
investigate the time evolution and the long-time limit of the
system’s fluorescence spectrum in the Mollow regime. We
consider the case when the Rabi frequency g becomes a
moderate fraction of the level spacing ε of the two-level
system (about 10%). The results show that, for a field in reso-
nance with the atomic transition energy, the usual three-peak
Mollow spectrum is replaced by a four-peak structure. Instead,
when the frequency is half of the atomic transition energy, we
obtain a SHG spectrum with a superimposed Mollow splitting.
The emergence of a SHG signal in a two-level system is
anticipated by the analysis of the spectrum of a three-level
system, and further validated by a symmetry analysis of the
coupled electron-photon states.

A. Model and method

Our two-level system interacting with an incident and a
fluorescent light field [51,52] is described by the Hamiltonian

Ĥ (t ) = Ĥa + Ĥr + Ĥi(t ). (1)

We assume that the atom is occupied by a single spinless
electron, so that

Ĥa = ε1ĉ†
1ĉ1 + ε2ĉ†

2ĉ2 = εσ̂z. (2)

Here ĉi destroys an electron in the orbital |i〉 with energy εi, σ̂z

is the z-component Pauli operator, and ε = ε2 − ε1. The free
radiation modes are described by the Hamiltonian

Ĥr = ωaâ†â + ωbb̂†b̂, (3)

where â annihilates a photon of the incident field with fre-
quency ωa, which we assume to be in a coherent state defined
by â|α〉 = α|α〉. Similarly, b̂ annihilates a photon of the flu-
orescent field with frequency ωb. The light-matter interaction
Hamiltonian is given by

Ĥi(t ) = [ga(t )(â† + â) + gb(t )(b̂† + b̂)](ĉ†
1ĉ2 + ĉ†

2ĉ1)

= [ga(t )(â† + â) + gb(t )(b̂† + b̂)]σ̂x, (4)

where ga(t ) and gb(t ) are the (time-dependent) couplings
of the electron to the incident and fluorescent fields, re-
spectively, and can have any time dependence. Also, σ̂x is
the x-component Pauli operator. In the following we con-
sider the case gb(t ) = gbe−�t , which introduces a frequency-
independent, phenomenological damping of rate �. The use
of � takes into account in a qualitative way effects left out,
e.g., nonradiative transitions and/or mode leakages in a cavity
geometry (see also Appendix A 1).

Concerning the role of spontaneous decay in our descrip-
tion, we note that in the stationary regime (e.g., due to a
steady photon pump) it is often legitimate to overlook this
type of decay with respect to the stimulated regime. Away
from stationarity, other factors come into play, depending on
the situation: (i) in the single-atom case (and with Einstein’s
description of radiation-matter interaction as conceptual ref-
erence), spontaneous decay does not induce a thermal bath;
here, the coherence of the overall optical response is not
altered by neglecting such decay (see, e.g., Ref. [56]), (ii) in
the many-atom case (e.g., the Dicke regime as discussed in
Sec. III), thermal-bath effects and the significance of spon-
taneous decay are hindered by the collective effect of super-
radiance [57].

To describe the dynamics according to Eq. (1), we use the
exact configuration-interaction method. In this way, the full
wave function of the coupled atom-light system is represented
in the basis |i, n, m〉 ≡ |i〉|n〉|m〉, with |i〉 being the state of
the atom (where |1〉 is the ground state and |2〉 is the excited
state), |n〉 being a number state of the incident field, and |m〉
being a number state of the fluorescent field. We start from the
initial state |ψ0〉 = |1, α, 0〉 (here, the number state |n〉 has
been replaced by the coherent state |α〉 of the pump field),
and time-evolve it with the full Hamiltonian H using the short
iterated Lanczos technique [58,59] (see also Appendix A 2).

We note here that the recursion method originally em-
ployed to study fluorescence in the stationary limit [51,52]
can be used for more general setups, e.g., to generate exact
solutions with several electronic levels and several bosonic
modes [53]. However, its applicability is not immediate for
genuinely-time-dependent Hamiltonians, and to address the
transient response of a system. Hence the need to proceed here
with a real-time approach.

It has been shown [60] that, to make contact with experi-
mental time-resolved light spectra, the transition probability
needs to be convolved with the resolution function of a
Fabry–Pérot spectrometer. Also, depending on the experiment
performed on a quantum system, a detection of N-photon
correlations can be used [61].

However, here we employ a definition of the spectrum
different from the one considered in Refs. [60,61]. Namely,
we consider the probability P that at least one photon (at
a given frequency) is emitted. Such a spectrum would not
be obtained by an interferometer, Fabry–Pérot or otherwise,
but rather by an apparatus including, e.g., a prism and a
photomultiplier. In other words, this would correspond to
measure particle-like photons, rather than waves, and probing
simultaneously the atomic state.

Accordingly, our observable of main interest is the proba-
bility to find m photons in the fluorescent field of frequency
ωb at time t , given by

Pm(t, ωb) =
∑

ni

|〈i, n, m|T [e−i
∫ t

0 Ĥ (t ′ )dt ′
]|1, α, 0〉|2, (5)

where the dependence on ωb on the right-hand side is im-
plicitly contained in Ĥ (t ). Since gb(t ) has an exponential
decay, P will be independent of t in the long-time limit. In
the following we focus on the quantity P = ∑

m>0 Pm, giving
the probability that at least one fluorescent photon has been
emitted.
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FIG. 2. Fluorescence spectra of a two-level system interacting
with a coherent field with frequency ωa = ε and an average number
of photons α2 = 25 [panels (a) and (c)] and α2 = 1 [panels (b) and
(d)]. The light-matter coupling ga is chosen so that gaα = 0.1 in
both cases, giving ga = 0.02 and ga = 0.1, respectively. The cou-
pling to the fluorescent field is gb = 0.01. Panels (a) and (b) show
the asymptotic spectrum P (ω) = P (t → ∞, ω) obtained by using
either a quantized coherent field or taking the semiclassical limit of
Eq. (6). Panels (c) and (d) show the corresponding time-dependent
spectrum by using a quantized coherent field. The units of energy
and time are respectively given by ε = ε2 − ε1 and h̄/ε.

The semiclassical limit of our model is obtained by taking
α → ∞ and g → 0, while keeping gα constant. In this limit
Ĥr = ωb̂†b̂ and the interaction Hamiltonian is

Ĥ sc
i (t ) = [2gaα cos(ωat ) + gb(t )(b̂† + b̂)](ĉ†

1ĉ2 + ĉ†
2ĉ1). (6)

The t → ∞ limit of the model has been studied in previous
works [51,52]. In that case, the Hamiltonian was split as
Ĥ (t ) = Ĥ ′

0(t ) + Ĥ ′(t ) with Ĥ ′(t ) = gb(t )(ĉ†
1ĉ2 + ĉ†

2ĉ1)(b̂† +
b̂), and the probability P1 was evaluated under the assumption
that Ĥ ′(t ) acts only once during the time evolution. Physically
this corresponds to a first-order treatment of the fluorescent
field, in contrast with the exact numerical solution of the
present work, which retains the effects of the interaction at
all orders.

B. Two-level system and Mollow spectra

In the following we let the transition energy ε = 1 define
our unit of energy and further fix the parameters gb = 0.01
and � = 0.02. We start by studying the fluorescence spectrum
for ωa = 1 as a function of α and ga, keeping the product
gaα fixed. The results are displayed in Fig. 2 and show both
the asymptotic spectrum (as t → ∞) and the explicit time
evolution. For α = 5 and ga = 0.02 we see the well-known
Mollow spectrum, which is qualitatively reproduced by the
semiclassical approximation. Keeping the product gaα fixed
and taking α = 1 and ga = 0.1, the semiclassical result is
unchanged, while the full quantum treatment gives a fluores-
cence spectrum with four peaks and additional substructure.

To understand the spectra we consider the states |i, n〉 with
the atom in state i and n photons in the incident field. For ωa =
ε the levels |1, n〉 and |2, n − 1〉 are degenerate, and mixed by
the light-matter interaction. Diagonalizing the Hamiltonian in

this subspace (i.e., neglecting the counter-rotating terms), we
find the energies

ε±,n = ε1 + ε2

2
+ (n − 1/2)ωa ± ga

√
n. (7)

For a coherent state with large α the Poisson distribution is
sharply peaked around α2, so that n ∼ α2 and the energies
differences between successive n are

ε±,n+1 − ε∓,n = ωa ± ga

√
n + 1 ± ga

√
n

n→|α|2−−−−→ ±2gaα,

ε±,n+1 − ε±,n = ωa ± ga

√
n + 1 ∓ ga

√
n

n→|α|2−−−−→ 0. (8)

In this limit, the energy splittings are independent of n,
and transitions between successive levels give a three-peaked
structure. For small α, this is no longer the case, since the
splitting ε+,n − ε−,n = 2ga

√
n. The nonuniformity in the level

spacing is a clear sign of the quantum nature of the light (the
low-photon-number limit), and is, e.g., responsible for photon
blockade effect [62,63]. In the present context, it gives rise to
the additional features observed in the fluorescence spectrum
of Fig. 2.

C. Prelude to second-harmonic generation in a two-level
system: Frequency doubling in an ordinary three-level system

Before addressing SHG in a two-level system, we make a
detour into the more familiar theory of SHG in three-level sys-
tems. Let the Hamiltonian be Ĥ (t ) = Ĥe + Ĥr + Ĥi(t ), with
Ĥr as in previous sections, and the electronic Hamiltonian be

Ĥe = ε1ĉ†
1ĉ1 + ε2ĉ†

2ĉ2 + ε3ĉ†
3ĉ3. (9)

For the light-matter interaction we consider two scenarios,
illustrated in Fig. 3. In the first scenario, the incident field
couples to the transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉, and the
fluorescent field couples to the transition |1〉 ↔ |3〉. The in-
teraction Hamiltonian is then

Ĥ (1)
i (t ) = f (t )(â† + â)(ĉ†

1ĉ2 + ĉ†
2ĉ3 + H.c.)

+ gb(t )(b̂† + b̂)(ĉ†
1ĉ3 + ĉ†

3ĉ1). (10)

In the second case, the incident field also couples to the
transition |1〉 ↔ |3〉, with a strength g(t ), and the Hamiltonian
is

Ĥ (2)
i (t ) = Ĥ (1)

i (t ) + ga(t )(â† + â)(ĉ†
1ĉ3 + ĉ†

3ĉ1). (11)

If the levels |1〉 and |3〉 are of definite and different
symmetry, while the level |2〉 is assumed to be of mixed
symmetry, both these models allow SHG using a perturbative
treatment. However, in the case of a parity-invariant electronic
Hamiltonian, where all electronic states have definite parity,
both models forbid SHG in a perturbative approximation. The
reason is that there is no way to arrange the parities such that
both the excitation and emission steps are allowed: the parities
π1 and π3 of levels |1〉 and |3〉 need to be different (for the
fluorescent transition to be allowed), while the parity π2 of
level |2〉 needs to be different both from π1 and π3 (in order
for the exciting transitions to be allowed).

We now study the fluorescence spectrum in the nonper-
turbative limit. We take ε2 − ε1 = 0.5 and ε3 − ε1 = 1, and
let the incident field be resonant with the transition energies
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FIG. 3. Fluorescence spectra for a three-level system interacting
with a coherent field with a frequency ωa = 1 and an average
number of photons α2 = 1. The coupling between the system and
the coherent field is given by f = ga = 0.1, while the coupling to the
fluorescent field is gb = 0.01. The energy levels of the atom are ε1 =
0 and ε3 = 1, with ε2 taking the values 0.5, 1, 1.5, and 2. In panel
(a) the coherent field is coupled to the transitions 1 ↔ 2 and 2 ↔ 3,
while in panel (b) the coherent field in addition couples to transition
1 ↔ 3. The couplings in the system are indicated schematically
in the panels to the left. For ease of reading, the z axis has been
multiplied by 100. The unit of energy is given by ε = ε3 − ε1.

(ωa = 0.5). We choose the couplings as f (t ) = ga(t ) = 0.1,
take α = 1, and as before let gb = 0.01 and � = 0.02. The
results are reported in Fig. 3. For the Hamiltonian Ĥ (1)

i we
see a broadened SHG peak centered around ωb = 1, while
for Ĥ (2)

i the spectrum has two contributions corresponding to
Rayleigh scattering and SHG centered at ωb = 0.5 and ωb =
1, respectively. As expected, both models predict a nonzero
SHG signal.

A connection with a simpler two-level system can be made
by taking the limit ε2 → ∞, illustrated here by considering
ε2 − ε1 = 1, 1.5, and 2 (see Fig. 3). With the interaction Ĥ (1)

i
the fluorescence signal narrows around ω = 1 as ε2 − ε1 is
increased, since the coupling between degenerate states caus-
ing the broadening decreases as the levels are energetically
separated (cf. the discussion of the Mollow spectrum). For
even larger values of ε2 − ε1 (not shown), the peak tends
to zero since excitation of the atom becomes increasingly
unlikely. With the interaction Ĥ (2)

i both the Rayleigh and SHG
peaks narrow as ε2 − ε1 is made large. However, due to the
presence of the coupling between the incident field and the
transition |1〉 ↔ |3〉, a finite fluorescence signal remains even
for ε2 − ε1 → ∞, i.e when effectively the Hamiltonian Ĥ (2)

i
collapses onto that of the two-level system. The specific shape
of the SHG profile is discussed in the next section.

As a final consideration, we note that, in quantum optics,
it is sometimes useful to perform an adiabatic elimination of

FIG. 4. Fluorescence spectra of a two-level system interacting
with a coherent field with a frequency ωa = ε/2 and an average
number of photons α2 = 25 [panels (a) and (c)] and α2 = 1 [panels
(b) and (d)]. The light-matter coupling ga is chosen so that gaα =
0.1 in both cases, giving ga = 0.02 and ga = 0.1, respectively. The
coupling to the fluorescent field is gb = 0.01. Panels (a) and (b) show
the asymptotic spectrum P (ω) = P (t → ∞, ω) obtained by using
either a quantized coherent field or taking the semiclassical limit of
Eq. (6). Panels (c) and (d) show the corresponding time-dependent
spectrum using a quantized coherent field. The units of energy and
time are respectively given by ε = ε2 − ε1 and h̄/ε.

intermediate levels, to end up with a reduced-space effective
Hamiltonian [64,65]. In Appendix B, such a reduction is
performed to map the three-level system of Fig. 3 onto a two-
level one [66], and to see if SHG can be exactly described in a
two-level system in the limit ε2 → ∞ of a three-level system.
The results in the Appendix show that this is not the case. In
fact, going beyond the RWA and neglecting off-resonant (but
dipole-allowed) transitions in the system are two elements
which play distinct roles. Specifically, the occurrence of the
Mollow structure is not only due to the removal of the RWA,
but also due to the explicit inclusion of the virtual state in the
total Hamiltonian. Preventing transitions to this state removes
the Mollow structure, also without RWA and for strong light-
matter coupling.

D. Two levels again: Second-harmonic generation

With the information gained so far, we finally move to
study the fluorescence spectrum in a two-level system as
described in Eqs. (1)–(4) [67]. Since a common theme of this
work is fluorescence in the SHG regime, we consider the case
of ωa = ε/2, with all other parameters, as in Secs. II A and
II B.

In Fig. 4 we show results for α = 1 and α = 5, while
keeping gaα = 0.1 fixed. For a small light-matter coupling the
semiclassical calculation is seen to be in good agreement with
the quantum treatment, while for large coupling the results
differ by the presence of a superimposed Mollow spectrum
on the second-harmonic peak. This additional feature can be
understood similarly to the Mollow spectrum of Fig. 2, as due
to an energy-level splitting depending on the coupling strength
ga and photon number α2. The energy levels are shown in
Fig. 5, and we see that for small ga and large α the splittings
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FIG. 5. Energy levels as a function of coupling strength for a
two-level system interacting with a single light field. In both panels,
the solid black line indicates the coupling ga and the dashed line
indicates the average energy εav = ωaα

2 of the setups described in
the main text. Panel (a) shows the energy levels in a range around the
coupling ga = 0.02 and energy εav for ωa = 0.5 and α = 25, while
panel (b) shows the energy levels in a range around the coupling
ga = 0.1 and energy εav for ωa = 0.5 and α = 1. The unit of energy
is given by ε = ε2 − ε1.

are small and uniform (between successive levels), while for
large ga and small α the splittings are large and nonuniform.
We note that for small ga, in contrast with the Mollow spec-
trum discussed above, the level splitting is expected to be ∼g2

a
to leading order, since the coupling between the levels is of
second order in the interaction. To summarize, (i) the ability
of the quantum treatment to discriminate between photon
number and coupling strength (they always appear via their
product in the semiclassical treatment) and (ii) the photon
fluctuations at low photon number, are likely the reasons for
the Mollow structure in the quantum SHG signal. This is
in line with the evidence provided by the three-level system
results in Fig. 3 where, depending on the closure of the “three-
level triangle” via the pump field, the Mollow structure in the
SHG peak is observed or not.

For the results just presented the photon energy h̄ωa of
the coherent field is commensurate with the atomic transition
energy, i.e., h̄ωa = ε/n. Although our approach is completely
general and we can in principle study any frequency, a sys-
tematic scan of the parameters is outside the scope of the
of the present work. However, we mention that, according to
additional calculations (not shown), the spectra for frequen-
cies h̄ωa/ε ≈ 0.3–0.8 resemble the second-harmonic spec-
trum above, although with the position of the Rayleigh peak
displaced to h̄ωb ≈ h̄ωa. Instead, for frequencies h̄ωa/ε ≈
0.9–1.1 the Rayleigh and harmonic peaks blend together to
form the four-peak Mollow structure discussed above.

Parity conservation. Although borne by the exact numer-
ical results of Sec. II D (and also supported by the connec-
tion to three-level physics as discussed in Sec. II C), the
occurrence of a SHG in a two-level system might remain
at some extent counterintuitive. For second-harmonic gener-
ation (SHG) to occur, two photons are needed to excite the
atom. This requires atomic levels of equal parity, since in the

low-intensity limit where the absorption process is well de-
scribed by perturbation theory, the two-photon absorption
probability otherwise vanishes. However, the emission of a
double-frequency photon requires the atomic levels to have
opposite parity. This apparent paradox however vanishes at
stronger light-matter coupling, where a more appropriate de-
scription of the system is in terms of dressed atomic levels. In
this regime the electronic states are mixed by the coupling to
the light field, and no longer have definite parity.

To understand how SHG can happen in a two-level system,
we look at the parity of the eigenstates of Ĥ . A parity operator
can be defined through [68]

	̂ = (n̂1 − n̂2)eiπ n̂a eiπ n̂b, (12)

where n̂a and n̂b are the photon-number operators of the
incident and fluorescent fields, respectively. It is straightfor-
ward to show that [Ĥ , 	̂] = 0, from which it follows that the
eigenstates of Ĥ can be classified according to the eigenvalues
of 	̂. The general structure of the eigenstates with the electron
and the incident field coupled is [68]

∣∣
k
e

〉 =
∑

n

ck
2n|1, 2n〉 +

∑
n

ck
2n+1|2, 2n + 1〉, (13)

∣∣
k
o

〉 =
∑

n

ck
2n+1|1, 2n + 1〉 +

∑
n

ck
2n|2, 2n〉, (14)

where e and o denote even- and odd-parity states, respectively.
We see that an eigenstate with a well-defined parity in the
coupled system has in general an undefined parity in the
electronic and photonic subspaces. Therefore, an argument
against SHG in the two-level system, which relies on the
conservation of only electronic parity is not applicable.

Consider now the evolution of a system starting from
the initial state |
〉 = |1, α〉. Since the coherent state is a
superposition of number states, it explicitly breaks parity
symmetry. We therefore expect the time-evolution to induce
transitions between the initial state and all eigenstates allowed
by energy conservation, which in particular means that an
electron may be excited to the upper atomic level. However,
even for an initial state of definite parity (such as, for example,
|
〉 = |1, n〉) the time evolution will mix eigenstates, but now
in a definite parity sector.

Thus, in stark contrast with the predictions of perturbation
theory, a SHG signal also occurs for parity conserving dynam-
ics. In addition, and differently from a three-level system, the
closure of the multiphotonic triangle (which seems needed for
the appearance of the three-peaked Mollow structure), always
occurs in a two-level system, as an emerging symmetry-
mixing behavior. Furthermore, Mollow-like overtones can
also be present in higher-order harmonics [51,52], a feature
that could become relevant in the time domain (e.g., in the
ultrafast regime). These summary notions provide rigorous
foundation and motivation to investigate SHG in more com-
plicated two-level system setups and out of the stationary
limit, i.e., when the effects discussed so far will appear within
characteristic timescales (for example, when investigating an
atom moving through a cavity of finite length). Accordingly,
time-resolved multiphoton fluorescence is the main theme of
the rest of the paper.
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III. AN ARRAY OF TWO-LEVEL SYSTEMS

We now consider N two-level systems interacting with
one incident and one fluorescent light mode. This brings in
the possibility that the different two-level systems interact
cooperatively with the radiation, with an enhancement of the
radiation field that goes under the name of superradiance [69]
(more precisely, depending on the nature of the initial state,
one can speak of superradiance or supercoherence [70]).

The standard Dicke model [69], which describes N two-
level systems interacting with a single optical mode, plays an
archetypal role in the study of superradiance and has been the
focus of extensive investigations (see, e.g., Refs. [71–74]). An
exact solution within the RWA of the Dicke model at reso-
nance has been known for quite some time (for this reason, the
model is also referred to as the Tavis-Cummings model [75])
but some aspects related to this model are still being debated
[76]. A notable case concerns the existence of a no-go theorem
for superradiance, also in connection to the role of dipolar
couplings between electrons and photons and the interactions
among the different two-level systems. Furthermore, consid-
eration is needed for the superradiant behavior when N → ∞,
i.e., the periodic-array limit. Mathematically, the intensity
diverges in that situation, but in fact a continuous electronic
band structure emerges in the thermodynamical limit, and the
bulk polaritonic regime applies, with a finite optical response
[77].

These different aspects are not addressed here. Rather, our
simple analysis is aimed to gain qualitative insight into how
the behavior of the single two-level system discussed above
changes in a more complex setup. As before, we position
ourselves in the fully resonant and the SHG regimes for
the incident field. We will consider the problem from two
different but complementary perspectives: (i) We first study
the equilibrium properties of the system in the large-N limit
by using a generalization of the Dicke model. (ii) Second,
we investigate the nonequilibrium properties of the system
for finite N (similar to what was done earlier for N = 1) by
using an exact numerical treatment. We find that, compared
with the single two-level system case, the fluorescence signal
shows an enhancement compatible with a superradiance-like
mechanism, both in the resonant and SHG regimes.

As an obvious extension of the N = 1 case considered
earlier, the total Hamiltonian becomes

H = Ĥa + Ĥf + Ĥi(t ), (15)

with

Ĥa =
2N∑
i=1

εiĉ
†
i ĉi, (16)

Ĥf = ωaâ†â + ωbb̂†b̂, (17)

Ĥi(t ) = ga(t )(â† + â)
N∑

i=1

(ĉ†
2i−1ĉ2i + ĉ†

2iĉ2i−1)

+ gb(t )(b̂† + b̂)
N∑

i=1

(ĉ†
2i−1ĉ2i + ĉ†

2iĉ2i−1). (18)

Here ĉ2i−1 refers to the ground state and ĉ2i to the excited
state of the two-level system i. Due to the specific way the
fields couple to the two-level systems, we can rewrite the
Hamiltonian in a more compact form as

Ĥ =
N∑

i=1

ωiσ̂z,i + ω0â†â + ωb̂†b̂

+ [ga(t )(â† + â) + gb(t )(b̂† + b̂)]
N∑

i=1

σ̂x,i, (19)

where ωi = ε2i − ε2i−1. When all excitation energies ωi = ωs,
the fields only couple to the total spin operators Ŝz = ∑

σ̂z,i

and Ŝx = ∑
σ̂x,i. The Hamiltonian then closely resembles the

Dicke Hamiltonian [69] and is written

Ĥ = ωsŜz + ωaâ†â + ωbb̂†b̂

+ [ga(t )(â† + â) + gb(t )(b̂† + b̂)]Ŝx. (20)

A. Ground state

We start by discussing the ground-state properties. For an
initial state with all two-level systems in their ground state, we
can further simplify the Hamiltonian by using the Holstein-
Primakoff transformation [78]. Writing the spin operators in
terms of bosonic creation and annihilation operators, Ŝz =
−(N/2) + ŝ†ŝ and Ŝ+ = ŝ†(N − ŝ†ŝ)1/2, it is straightforward
to check that the commutation relations defining the spin
algebra are preserved. Taking the limit where N 
 〈ŝ†ŝ〉, the
Ŝ+ operator can be expanded as Ŝ+ ≈ ŝ†N + O(N−1), and the
Hamiltonian becomes

Ĥ = ωsŝ
†ŝ + ωaâ†â + ωbb̂†b̂

+ N[ga(t )(â† + â) + gb(t )(b̂† + b̂)](ŝ† + ŝ), (21)

and the system maps onto three coupled oscillators.
For gb = 0, the Hamiltonian of Eq. (21) reduces to the

usual Dicke Hamiltonian, where a transition to a superradiant
state takes place at a critical coupling ga ≈ (2N )−1, with
the field intensity of the radiation becoming proportional to
N2 [76]. To see this, we follow closely and reproduce here
the discussion given in Ref. [76], starting by writing the
Hamiltonian in terms of canonical coordinates:

Ĥ = 1

2

(
p̂2

s + p̂2
a

) + 1

2
(x̂s x̂a)

(
ωs 2λ

2λ ωa

)(
x̂s

x̂a

)
, (22)

where, to keep the notation light, we have introduced the
coupling parameter λ = Nga. We also assume that the field
is resonant with the two-level systems, i.e., ωa = ωs = 1. To
identify the superradiant transition, we look for the point λc

where the number of photons in the lowest normal mode
of Ĥ diverges. The lowest mode is identified by moving
to normal canonical coordinates and momenta of Ĥ , given
by x̂± = (x̂s ± x̂a)/

√
2 and p̂± = ( p̂s ± p̂a)/

√
2, respectively,

and with normal frequencies �2
± = 1 ± 2λ. In the ground

state, the expectation value of x̂2
± is 〈x̂2

±〉 = (2�±)−1, which
diverges at coupling λc, while 〈p2

±〉 remains well behaved. We
then go back to the original coordinates x̂a/b, p̂a/b, expressing
them in terms of x̂±, p̂±, and note that na = 〈â†â〉 = (〈p̂2

a〉 +
〈x̂2

a〉 − 1)/2. Then, when λ → λc, the diverging contribution
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comes from 〈x̂2
±〉, i.e.,

na ≈
λ→λc

1

4
√

1 + 2λ
+ 1

4
√

1 − 2λ
, (23)

which diverges for |λ| = λc = 1/2. Thus, for λ > 0 we can
identify the ground-state superradiant transition as the point
where the lowest eigenvalue �− vanishes.

To extend the above discussion from Ref. [76] to the orig-
inal Hamiltonian Eq. (21) with the fluorescent field included,
we write

Ĥ = 1

2

(
p̂2

s + p̂2
a + p̂2

b

)

+ 1

2
(x̂s x̂a x̂b)

⎛
⎝ ωs 2λa 2λb

2λa ωa 0
2λb 0 ωb

⎞
⎠

⎛
⎝x̂s

x̂a

x̂b

⎞
⎠, (24)

where again λa = Nga and λb = Ngb. At this point, if we take
ωs = ωa = ωb = 1, the lowest normal-mode eigenvalue �0 of
H is given by

�0(λa, λb) = 1 − 2
√

λ2
a + λ2

b, (25)

which is the generalization to the case of two fields both in
resonance with N two-level systems. If instead, to address the
SHG regime, we assume that ωs = ωb = 1 and ωa = 1/2, we
obtain

�0(λa, λb) = 1

12

[
11 − 4β

(
2

A

)1/3

− 4

(
A

2

)1/3
]
, (26)

where A = α − (α2 − 4β3)1/2, α = 1/32 + 9λ2
a − 18λ2

b, and
β = 1/16 + 12λ2

a + 12λ2
b. As before, we search for signatures

of a superradiant transition by looking at the points where �0

vanishes. In the resonant case this is easily done, and one
obtains the semicircle solution set λa = (1/4 − λ2

b)1/2. We
note that, for either λa = 0 or λb = 0, we recover the critical
coupling of the standard Dicke model discussed above. In
the nonresonant case, we solve instead Eq. (26) numerically
to find the result in Fig. 6(a). Interestingly, we find that the
signature of a superradiant transition occurs for smaller values
of the coupling when one of the fields is nonresonant with the
atomic transitions.

The above argument indicates that the lowest eigenstate
of the Hamiltonian undergoes a superradiant transition. How-
ever, we have not yet determined how this state is related to
the original photon fields, and therefore at this point it is not
clear how these fields behave at the transition. In analogy with
the Dicke model, the average number of photons in each of
the original light fields (in the ground state) is proportional
to |ca/b|2(2�0)−1, where |ci|2 = |〈i|�0〉|2 are the projections
of the normal mode |�0〉 onto the original oscillators. The
fields should therefore undergo a transition to a superradiant
state for values of λa and λb such that (i) �0 = 0, and (ii)
|ca/b|2 are finite. The coefficients are found by numerical
diagonalization of the Hamiltonian in Eq. (24) and shown in
Fig. 6(b) for values of λa and λb at the superradiant transition.
It is apparent that, for λa/b > 0, we always have |ca/b|2 > 0,
so that condition (ii) above is always satisfied. We thus find
that at the transition points found above, both the incident and
the coherent fields behave as if a superradiant state is attained.

FIG. 6. (a) The critical coupling strength for the ground-state
superradiant transition as a function of λa = Nga and λb = Ngb. The
green line refers to the resonant case ωs = ωa = ωb = 1, while the
blue line shows the nonresonant case ωs = ωb = 1 and ωa = 1/2.
(b) Expansion coefficients |ci|2 of the lowest eigenstate of Eq. (24)
in the basis of oscillators from Eq. (21). The dashed lines refer to
the resonant case ωs = ωa = ωb = 1, while the solid lines show the
nonresonant case ωs = ωb = 1 and ωa = 1/2. The unit of energy is
given by ωs.

B. Real-time simulations for finite N

Having discussed some ground-state features of a two-level
system array coupled to radiation, we now return to explore
the time evolution of the system defined by Eq. (19). We start
from an initial state with all atoms in their ground state, and
therefore we do not expect to see a superradiant emission
burst. However, we are interested in exploring how the fluo-
rescence spectrum changes as we approach coupling strengths
close to the (equilibrium) superradiant transition. We consider
the parameters ωs = ωb = 1, ωa = 0.5, and choose |α|2 =
M = 9 for the average number of photons in the cavity. With
M of the same of order as the number N of atoms, the energy
of the field should be enough to simultaneously excite all
the atoms. This means that, for a two-level array with bare
couplings given by, e.g., ga = 0.03 and gb = 0.01 (to be used
below in the actual simulations), the minimal value of N
needed to get the critical values of λa and λb indicated in
Fig. 6 is given by N ≈ 14. This is done by checking for which
value of N that λa = Nga and λb = Ngb cross the blue line in
Fig. 6(a).

Since the arguments of the previous section are only strictly
valid in the ground state and for large N (due to the use of
the Holstein-Primakoff transformation), there is no guarantee
that they would hold in real time. Thus, our estimate for
N just provides a hint of the order magnitude of N where
we can expect superradiant effects to appear. In addition,
the nonequilibrium signatures of superradiance are typically
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FIG. 7. Fluorescence spectra for an array with N two-level sys-
tems, for N = 2 in panel (a) and N = 10 in panel (b). The parameters
are given by ωs = ωb = 1, ωa = 0.5, and |α|2 = 9, and the bare
couplings are taken as ga = 0.03 and gb = 0.01. The white (red)
vertical lines indicate the time at which the height of the Rayleigh
(SHG) peak reaches half of its maximum value. The spectral curves
at such times and at the end of the simulation time are explicitly
shown on the right side of the respective panels. The colormap is
normalized to the maximum value of the Rayleigh peak at the final
time. The units of energy and time are respectively given by ωs and
h̄/ωs.

expressed through the scaling of the duration and intensity of
the superradiant burst with the number of two-level systems
N , given respectively by 1/N and N2. We therefore consider
below the fluorescence spectrum for N ∈ {1, 2, . . . , 10} and
look for signatures consistent with these scaling laws.

In Fig. 7 we show the fluorescence spectra for an array
of N = 2 and N = 10 two-level systems. We find that, with
increasing N , the time it takes for the peaks to develop
is reduced, as indicated by the vertical lines in the figure.
For N = 2 the resonant Rayleigh peak develops before the
second-harmonic peak, while for N = 10 the order is the
opposite. In addition, for N = 10 the SHG peak transiently
exceeds the Rayleigh peak also in magnitude.

To quantify these observations, we define T as the time
it takes a peak to reach half its maximum value. As shown
in Fig. 8, we find that T as a function of N shows a
crossover around N = 2, from a regime where the Rayleigh
peak develops first to a regime where the SHG peak comes
first. Furthermore, we find for the Rayleigh peak that the
dependence of T on N is approximately linear, while for the
SHG peak it behaves as 1/N . For the latter case the scaling
is consistent with a superradiant behavior, where the duration
of the superradiant burst decreases as 1/N . In Fig. 8 we also
show the number of photons P (ωb = 1) in the fluorescent
field as a function of N , and we find that it increases as N2

FIG. 8. The rise time T (dashed lines, crosses) and the number
of emitted photons P (ω) (solid lines, circles) of the Rayleigh (blue)
and second-harmonic (red) peaks as a function of the number N of
two-level systems. The parameters are given by ωs = ωb = 1, ωa =
0.5, and |α|2 = 9, and the bare couplings are taken as ga = 0.03 and
gb = 0.01.

for both the Rayleigh and SHG peaks. Again this is consistent
with a superradiant mechanism.

Taken together, the results presented here indicate that,
compared with a single two-level system, the SHG signal
can be enhanced by considering an array of N of two-level
systems. Furthermore, the dependence on N of both the
emission time and intensity of the field are consistent with
a superradiance behavior.

IV. MOTION OF A TWO-LEVEL SYSTEM IN A CAVITY

The two-level systems considered in the previous sections
were at fixed positions in space, such as, e.g., for a given pair
of levels in a quantum dot. However, if a two-level system
is meant to model a pair of atomic orbitals, then the atomic
center-of-mass motion can be an important, if not crucial,
element to take into account.

On the experimental side, compelling evidence comes,
for example, from studies of quantum control, where atoms
moving across an optical cavity provide information about
cavity photons [79], or laser beams across an ion trap provide
information about the internal state of the ions [80]. On
the theoretical side, the role of atom dynamics has been
extensively considered [9,21,29,32,81–90], often in terms of
a generalized Jaynes-Cummings model where the standard
two-level, one-mode Hamiltonian is augmented by a kinetic-
energy operator (for the center-of-mass motion). Furthermore,
the light-matter coupling can become position dependent [9],
for example, when the atom is moving from inside to outside
of the optical cavity and vice versa.

The solution of the generalized Jaynes-Cummings model
has been approached in many different ways [9,21,29,32,81–
90]. For example, with or without the RWA, with the center-
of-mass motion described classically or quantum mechani-
cally, using density-matrix techniques, or resorting to a direct
solution of the generalized Rabi equations in wave-function
space. Here, we again consider the exact numerical time-
evolution of the full system wave function, thus avoiding
the RWA. Since we are interested in how the atom dynam-
ics affects fluorescence spectra, we consider a generalized
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Jaynes-Cummings model with two (pump and fluorescence)
modes, and with a center-of-mass that moves longitudinally
across a cavity of finite length. Transverse motion is not
considered (i.e., space-wise, our system is strictly one dimen-
sional). We treat the atom dynamics quantum mechanically
but, for comparison, we also consider a classical description
via the Ehrenfest approximation. Our approach includes all
these element on equal footing, and in a single coherent
description. This can offer an advantage: for example, the
cavity boundaries can have nontrivial effects on the spectra
which depend also on the level of description.

Since we intend to look only in a preliminary and explo-
rative way at fluorescence spectra in this setup, we already
anticipate here that, in our calculations, the “atomic” mass
value is taken rather small, but not so small that it is necessary
to take into account spatial dispersion effects in the radiation-
matter interaction. The purpose of this choice is twofold: on
the one hand, the atom moves “faster,” which alleviates the
costs of the numerical time evolution to reach the long-time
limit. On the other hand the role of quantum effects in the
nuclear motion is enhanced, since on increasing the value of
the atomic mass a classical description becomes increasingly
appropriate.

It is worth mentioning that excitons in solid-state systems
(e.g., heterostructures [91]) can also be used for two-level
atom optics in quantized light fields, with the exciton dynam-
ics manipulated by optical means. This option has the merit
that the value of the exciton electron or hole effective masses
(and thus of the total mass) can be tailored by manipulating
the band-edge curvatures. Furthermore, using a mass-scaling
transformation as described in Appendix A 3, the calculations
and results to follow can qualitatively relate to microwave
transitions of atoms with realistic masses.

Out of this discussion, the Hamiltonian to consider is

Ĥ (t ) = p̂2

2M
+ ε1ĉ†

1ĉ1 + ε2ĉ†
2ĉ2 + ωaâ†â + ωbb̂†b̂

+ [ga(x̂, t )(â† + â) + gb(x̂, t )(b̂† + b̂)](ĉ†
1ĉ2 + ĉ†

2ĉ1),

(27)

where p̂ and x̂ are the momentum and position operators of
the atomic center of mass, and M is the atomic mass. As
mentioned above, Eq. (27) satisfies a useful scaling property
(see Appendix A 3.) For the definition of the other quantities,
we refer to Eqs. (1)–(4). As before, we assume that the atom
is occupied by a single spinless electron, that the cavity field
is of frequency ωa and, in a coherent state, defined by â|α〉 =
α|α〉. Furthermore, the fluorescent field is of frequency ωb and
initially in the vacuum state b̂|0〉 = 0.

The interaction between the light and the atom is given
by the couplings ga(x̂, t ) and gb(x̂, t ), respectively, with the
spatial dependence of the coupling ga coming from the spa-
tial profile of the cavity mode. We assume that the atomic
motion happens only along the cavity axis and restrict the
length of the coordinate axis to the set X = [0, L] of length
L. We further divide the coordinate axis into two parts Xin

and Xout, corresponding respectively to inside and outside
the cavity, where the set Xin = [x1, x2] is of length l = x2 −
x1 and the complementary set Xout = X \ Xin is of length
L − l . For consistency we need to take 0 < x1 < x2 < L.

The cavity electric field E is assumed to be in the low-
est mode, with a spatial profile given by E (x) = sin[(x −
x1)π/l] for x ∈ Xin and E (x) = 0 otherwise. Using the
characteristic function χI , which is unity on the interval
I and zero otherwise, the light-matter couplings are then
given by

ga(x̂, t ) = g sin

(
π (x̂ − x1)

l

)
χ

Xin
(x̂), (28)

gb(x̂, t ) = g1e−�1tχ
Xin

(x̂) + g2e−�2tχ
Xout

(x̂). (29)

For the coupling to the fluorescent field we have assumed a
constant coupling g1 (g2) inside (outside) the cavity, with a
phenomenological decay �1 (�2) taking into account collision
effects and an effective coupling to additional radiation modes
in the continuum.

A. Time-dependent fluorescence spectrum

Taking into account the quantum motion of the center of
mass significantly increases the numerical effort necessary to
obtain the fluorescence spectrum. To simplify the calculations
we therefore consider the fluorescence response in the one-
photon limit, where the coupling between the fluorescent field
and the atom only acts once during the time evolution. For the
initial state, it is assumed that (i) the atom is prepared with a
nuclear wave function of the form

φ(x) = e−(x−x0 )2/σ 2
eixp0 , (30)

and with the electron in level 1 (with energy ε1); (ii) the cavity
field is in a coherent state α, and there are zero photons of
the fluorescent field. Thus the system’s initial state is denoted
by |1, φ, α〉 (the label for the fluorescent state being omitted
because of the zero-photon assumption).

The spectrum is defined as the probability that, at time t ,
there is one photon in the fluorescent field:

P(t, ω) =
∑

ni

∫
dx |〈i, x, n|b̂e−iĤt |1, φ, α〉|2. (31)

Here, the state |i, x, n〉 also contains zero photons of the
fluorescent field (note the b̂ operator immediately to the right
of 〈i, x, n|). In the final state, i denotes the electronic level (1
or 2), x the atomic position, n the number of photons in the
cavity field, and

∑∫
the trace over i, x, n. The perturbative

limit is obtained by assuming that the time-evolution operator
can be written as

e−iĤt ≈
∫ t

0
dt ′ e−iĤ0(t−t ′)Ĥ ′(t ′)e−iĤ0t ′

, (32)

where Ĥ ′(t ) = gb(x̂, t )(ĉ†
1ĉ2 + ĉ†

2ĉ1)(b̂† + b̂) and Ĥ0 = Ĥ −
Ĥ ′. In Appendix C we show that, in this limit, the probability
is given by

P(t, ω) =
∑

λ

∣∣∣∣∣
∑
λ′

(
e−i(ελ+ω)t − e−iελ′ t−�1t

ω + ελ − ελ′ + i�1
S1

λλ′ (33)

+ e−i(ελ+ω)t − e−iελ′ t−�2t

ω + ελ − ελ′ + i�2
S2

λλ′

)
〈λ′|1, φ, α〉

∣∣∣∣
2

.
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where ελ are the eigenenergies of Ĥ0. The coefficients S1/2
λλ′ are

given by

S1/2
λλ′ =

∑
ni

∫
Xin/out

dx 〈λ|Ĥ ′|i, x, n〉〈i, x, n|λ′〉, (34)

where λ, λ′ label complete sets of states of Ĥ0 (but again with
zero photons in the fluorescent field), and Xin and Xout have
been defined earlier. This expression, used in the next section
to calculate the fluorescence spectrum, is valid for all times
t and has the practical advantage of requiring only a single
diagonalization of the Hamiltonian Ĥ0. However, in actual
calculations the numerical grid for the nuclear coordinate x
is confined to the interval (0 � x � L), and, for a given L, the
maximum useful t is limited by the need to avoid wave-packet
reflection at the interval boundaries.

B. Classical versus quantum nuclear motion

Before studying the full dynamics of the system, we con-
sider the classical limit of the nuclear dynamics as given
by the Ehrenfest approximation. Assuming that x̂ and p̂ in
Eq. (27) are replaced by classical variables x and p evolving
under the force F (t ) = −〈∂xĤ (t )〉, the spatial dependence of
ga turns into a time dependence through ga(t ) = ga(x(t )) =
ga sin{[x(t ) − x1]π/L}. For the coupling to the fluorescent
field we assume (temporarily) that there is no decoherence in
the cavity, so that

gb(t ) = g1χXin
(x(t )) + g2e−�(t−t0 )χ

Xout
(x(t )), (35)

with t0 being the time at which the atom has passed through
the cavity. The quantum evolution is obtained by solving
the time-dependent Schrödinger equation on a grid xn, as
described in more detail later on. In the following we work in
atomic units (a.u.) and take M = 10 a.u., ε = ε2 − ε1 = 0.043
a.u., ωa = ε, α = 1, ga = 0.1ε, g1 = 0.1ε, g2 = 0.01ε, and
� = 0.02ε. Except for the coupling g1 of the fluorescent field
to the atom inside the cavity, these values are the same as
earlier in the paper with the identification ε = 0.043 a.u. How-
ever, the value of g1 was increased to enhance the emission
into the fluorescent field, with 〈b̂†b̂〉 � 1 still applying.

A physical notion of the chosen parameters can be gathered
by noting that, for a cavity of length lc = λ/2 and ε = h̄ωa/κ

(for example, κ = 0.5 for SHG), we have ε = (h̄cπ )/(κlc).
Choosing lc = 104 a.u., one obtains ε ≈ 0.043/κ a.u., which
can be a reasonable value, for example, for excitons and fairly
consistent with the value of M = 10 a.u. introduced above
[92].

Within the given units, the spatial simulation interval (cav-
ity and outside) of our calculations is L = 10lc (i.e., about
5 μm), and the cavity boundaries are set at x1 = 4lc and x2 =
5lc. As initial conditions we take p0 = 0.5 a.u. and x0 = 4lc
for the classical simulations, while in the quantum simulations
the initial wave packet is given by the expression in Eq. (30)
with p0 = 0.5 a.u., x0 = 3.5lc, and σ = 3lc. This momentum
corresponds to a velocity v ≈ 104 cm/s.

In Fig. 9 we compare the results obtained with the Ehren-
fest approximation with the results of the full quantum evo-
lution. To characterize the atomic motion, we look in the
classical case at the functions x(t ) and p(t ), and in the

FIG. 9. Fluorescence spectra for classical and quantum atomic
motion. (a) x(t ) and p(t ) for the classical atomic dynamics within
the Ehrenfest approximation. (b) Nuclear probability density N (x, t )
from the quantum dynamics. Panels (c) and (d) show snapshots of
the corresponding fluorescence spectra P (ω) at different times for
classical and quantum atomic dynamics, respectively. Taking lc =
104 a.u., the initial conditions are given by p0 = 0.5 a.u., x0 = 4lc,
x1 = 4lc, and x2 = 5lc in the classical case, and by p0 = 0.5 a.u.,
σ = 3lc, x0 = 3.5lc, x1 = 4lc, x2 = 5lc, and L = 10lc in the quantum
case. The remaining parameters are M = 10 a.u., ε = ε2 − ε1 =
0.043 a.u., ωa = ε, α = 1, ga = 0.1ε, g1 = 0.1ε, g2 = 0.01ε, and
� = 0.02ε.

quantum case at the nuclear probability density N (x, t ) =∑
in |〈i, x, n|
(t )〉|2.
We see in Fig. 9 that, in the classical case, the atom moves

through the cavity with little resistance, and we note that the
effect of the oscillations of p is not visible in x due to the scale
of the figure. In contrast, the quantum results show a splitting
of the atomic wave packet. This is precisely the regime where
the Ehrenfest approximation fails [93], since in a classical
description the atom must be either reflected or transmitted.
However, at t = 6400 a.u. the quantum particle has both
a (larger) reflected and (smaller) transmitted contribution,
while the classical particle is out of the cavity already at t =
3000 a.u. Thus the atom has a reduced amplitude in the
barrier and a reduced coupling to the field. Compared to the
classical case, treating the atomic motion at the quantum level
also has a large impact on the fluorescence spectrum. This is
addressed in the bottom panels for different time snapshots
(spectra at different times are rather similar to each other, and
only the one at the latest time is fully visible). The Ehrenfest
result resembles at great extent that of a stationary atom (cf.
Fig. 2), while the spectrum corresponding to the quantum
motion looks qualitatively different: It contains two main
peaks instead of four and is asymmetric with respect to the
central frequency.

To understand this dissimilarity in behavior, we note that,
in the classical approach, the nuclear wave packet is per-
fectly localized both in position and momentum. By contrast,
the quantum amplitude gets smaller in the repulsive barrier
region. Furthermore, the classical atom sees only a single
resonant frequency (Doppler shifted due to the motion) and
coupling to the cavity field at each given time of its travel
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FIG. 10. Nuclear probability densities (top row) and atomic fluorescence spectra (bottom row) for an atom moving through a cavity of
frequency ωa = ε2 − ε1 = 0.043 a.u. The vertical lines denote the boundaries of the cavity. The initial atomic state is given by Eq. (30), and
we take x0 = 3.5lc [except for panels (a) and (d) where x0 = 4.5lc] and σ = 3lc with lc = 104 a.u. Panels (a) and (d) correspond to p0 = 0,
panels (b) and (e) to p0 = 0.5 a.u., and panels (c) and (f) to p0 = 2 a.u. The remaining parameters are given by M = 10 a.u., ε = ε2 − ε1 =
0.043 a.u., α = 1, ga = 0.1ε, g1 = 0.1ε, g2 = 0.01ε, �1 = 0.01ε, and �2 = 0.02ε.

through the cavity. Since the field is strongest in the center
of the cavity, where it takes the same value as in the station-
ary case discussed above (α = 1 and ga = 0.1ε), the main
contribution to the fluorescence signal comes from when the
atom is in this region. However, compared with the stationary
case there is an enhancement of the spectrum for frequencies
ωb ≈ ε, which most likely comes from fluorescent photons
emitted in the regions where ga < 0.1ε and the fact that the
classical atom couples to the photons more strongly.

In contrast, the quantum atom simultaneously experiences
a range of resonance frequencies and field-atom couplings,
there is a lot of structure in the corresponding spectrum, and
its wave function gets low within the barrier region. From
the shape of the nuclear wave packet we expect the dominant
contribution to the fluorescence signal to come from when the
atom is in the initial and final part of the cavity, the prob-
ability distribution being mainly localized to these regions
(see Fig. 9). Consequently, the spectrum is closer to what
could be expected for a stationary atom weakly interacting
with a light field (ga < 0.1ε), leading to a smaller splitting
between the Mollow peaks. However, a detailed explanation
of the asymmetric form of the spectrum is difficult to give, but
plausibly related to the varying Doppler shifts associated with
the different parts of the atomic wave packet.

C. Fluorescence and quantum motion

We now consider the fluorescence spectra resulting from a
quantum evolution of the coupled atom-photon system. We
take L = 10lc and, as before, the cavity is placed between
x1 = 4lc and x2 = 5lc. To solve the Schrödinger equation we
consider a grid xn for the atomic position, with 500 points

in the interval [0, L]. The fluorescence spectrum is com-
puted from Eq. (33), and to get the atomic probability den-
sity N (x, t ) = ∑

in |〈i, x, n|
(t )〉|2 we solved the Schrödinger
equation without the fluorescent field. We have verified that
the atomic dynamics is highly insensitive to the presence of
the fluorescent field by explicitly solving the Schrödinger
equation with the complete Hamiltonian for a number of
values of the fluorescence frequency. This insensitivity is due
to the weak atom-field coupling and the absence of the spatial
dispersion effects. The weak coupling also guarantees that
the first-order fluorescence spectrum is a good approximation
of the exact fluorescence spectrum. In the following we let
M = 10 a.u. and ωa = 0.043 a.u. be fixed and take ε = ωa

or ε = 2ωa for the Mollow or SHG regimes, respectively.
The remaining parameters are α = 1, ga = 0.1ε, g1 = 0.1ε,
g2 = 0.05ε, �1 = 0.01ε, and �2 = 0.02ε.

In Fig. 10 we show N (x, t ) and P(ω, t ) for ε = ωa. We see
that, for a stationary atom placed in the center of the cavity,
x0 = 4.5lc and p0 = 0, the spectrum resembles the Mollow
spectrum in Fig. 2. We also find that, although the atomic
wave packet is initially contained in the cavity, parts of the
probability distribution are ejected as time progresses. For
higher initial momentum p0, we see that an atom initially
outside the cavity (at x0 = 3.5lc) is either split (for p0 =
0.5 a.u.) or travels through the cavity (for p0 = 2 a.u.). This is
in agreement with the expectation based on an atom moving
in the presence of a dipole force [94], where the force on the
particle is proportional to the negative of the detuning and the
gradient of the light intensity F ∼ −[ωa − (ε2 − ε1)]∂xI (x).
For a field on resonance, an atomic motion in the positive
direction leads to a positive detuning via a Doppler shift, so
that atom is expelled from regions of higher intensity. This is
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FIG. 11. Nuclear probability densities (top row) and atomic fluorescence spectra (bottom row) for an atom moving through a cavity of
frequency ωa = (ε2 − ε1)/2 = 0.043 a.u. The vertical lines denote the boundaries of the cavity. The initial atomic state is given by Eq. (30),
and we take x0 = 3.5lc [except for panels (a) and (d) where x0 = 4.5lc] and σ = 3lc with lc = 104 a.u. Panels (a) and (d) correspond to p0 = 0,
panels (b) and (e) to p0 = 0.5 a.u., and panels (c) and (f) to p0 = 2 a.u. The remaining parameters are given by M = 10 a.u., ε = ε2 − ε1 =
0.086 a.u., α = 1, ga = 0.1ε, g1 = 0.1ε, g2 = 0.01ε, �1 = 0.01ε, and �2 = 0.02ε.

why a minimal nonzero momentum is needed to pass through
the cavity.

In Fig. 11 we show N (x, t ) and P(ω, t ) for ε = 2ωa.
We note that the results for N (x, t ) are rather similar to
those in Fig. 10, presumably because the coupling to the
radiation is too weak to make a larger difference. As for the
Mollow regime above, we find that, for an atom at rest with
x0 = 4.5lc and p0 = 0, the spectrum resembles the stationary
SHG spectrum in Fig. 4. For this initial state, the atomic
probability distribution is trapped in the cavity, consistent with
motion under a dipole force as discussed above. For nonzero
initial momentum p0, we find that the SHG signal is strongly
suppressed, and that the elastic-scattering peak is broadened.
Following considerations similar to those for Fig. 10, this
effect is likely ascribable to the finite extent of the atomic
wave packet. Interestingly, and as for Fig. 10, on increasing
p0 the intensity of the SHG spectrum exhibits a nonmonotonic
behavior. Furthermore, due to the emission of a fluorescent
photon being delayed with respect to the atomic excitation,
the resonance frequency of the atom has time to change
slightly between the two events. In fact, being a second-order
process, SHG is expected to be more sensitive to this type of
detuning than the resonant scattering. Thus the combination
of detuning and the decoherence induced by emission from
different parts of the atomic wave packet is likely the cause of
the suppression of the SHG signal.

V. CONCLUSIONS

In optics and in photonics, the two-level system plays the
role of a Rosetta stone for light-matter interactions, at the
interface of quantum with classical and linear with nonlinear
behavior. In this work, we used this paradigmatic system

to address basic aspects of multiphoton fluorescence in the
time-dependent and stationary regimes. The fluorescence re-
sponse was considered in three cases of increasing complex-
ity, namely, in a single two-level system interacting with an
incident coherent field, as well as in an array of two-level
systems, and a finally for a two-level atom moving across a
cavity.

By solving the Schrödinger equation through exact nu-
merical time propagation, we showed that, depending on the
system and field parameters, the time-dependent fluorescence
spectrum develops distinct features that in some cases are not
captured by a semiclassical treatment of the incident field.
Some of these features offer direct evidence that the usual
selection rules of perturbative optics, which consider photons
and electrons separately, do not apply in the strong-coupling
regime.

As a clear-cut example, we showed that a second-harmonic
signal (SHG) can occur in a two-level system. This result was
analyzed in terms of the parity of the coupled electron-photon
states, and we argued that this nonlinear process is allowed
even for parity-invariant Hamiltonians. We also studied the
SHG process in a three-level system and showed that, in an
appropriate limit, the three-level system reproduces the results
of the two-level system.

The SHG signal gets enhanced in a setup with N two-level
systems (compared with the N = 1 case), with trends sugges-
tive of superradiant behavior. This conclusion was gathered
by looking analytically at possible signatures of a phase
transition in the large-N limit, and by analyzing the onset of
the SHG response in exact numerical calculations for N � 10.
However, compared with the case of one atom at rest, both
Mollow and SHG signals are suppressed by atomic motion.
This effect is especially notable in the quantum case: For
quantum atomic motion, the spread in space of the traveling
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nuclear wave packet is greatly increased by the presence of
the barrier represented by the optical cavity, giving rise to
a position-dependent Doppler shift. This in turn results in
a large frequency dispersion in the fluorescence signal. It
is important to specify here that the noted quantum effects
were enhanced by choosing artificially small nuclear masses.
However, although we focused here on model atomic systems,
it is a fair assumption that many of the results obtained should
carry over to solid-state two-level systems, where suitable
(excitonic) masses could be engineered.

The aforementioned effects are weak, and they manifest
at low intensities; this is confirmed by the fact that, for the
chosen parameters, a linear and an all-orders treatment of
the fluorescence field provide an identical scenario. This also
means that our situation does not correspond to standard
heterodyne setups, and no intensity renormalization is needed.
Even so, the said effects should be of some conceptual (if
not practical) interest. It can in fact be argued that the found
superimposed Mollow-like structure to the SHG signal is
specifically distinctive of the genuine “two-level” character of
the material system, as also gathered by looking at three-levels

results. We add that a similar (albeit weaker) superimposed
structure also occurs for higher-order harmonics.

Concerning dissipation effects, we expect on purely spec-
ulative grounds that the peculiar four-peak structure of the
Mollow spectrum could be dimmed, while the SHG signal
would change considerably but still survive for not-too-strong
dissipation.

In conclusion, we have addressed general features of mul-
tiphoton fluorescence, but only in very simple model systems:
The inclusion of additional radiation modes, more general
time-dependent couplings, a careful inclusion of bath effects,
and more realistic atomic and solid-state setups are possible
directions for future work, and to confirm in a broader sense
the robustness of present results. Ultimately, true validation
comes from experiment, and we hope that our work will
stimulate investigations in that direction.
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APPENDIX A

We provide here some additional motivation and detail about the model and the method of solution.

1. About dissipative effects

For the first two typologies of systems considered, i.e., one or many two-level system(s) at rest, we assume that (via, e.g., a
cavity geometry or a high-optical-quality sample in ultrahigh vacuum and at helium temperature), the inhomogeneous broadening
has been made as negligible as possible. In this way, the focus is solely on the homogeneous broadening. This is due to both
radiative and nonradiative components, that in our treatment are accounted for by a total phenomenological Lorentzian damping.

For the third typology of system (i.e., the “atom” in motion, and where the dissipative environment can be considerably
different) we have followed a common practice in the literature, considering only the moving material system and the relevant
modes of interest. Ultimately, this choice is also dictated by computational convenience, since the full quantum treatment of
nuclear motion adds considerable complexity to the numerics.

Looking ahead, a possible way to include dissipative effects is via Lindblad-type master equations or, alternatively, via
nonequilibrium Green’s functions (NEGFs). NEGFs permit the inclusion of memory effects and the dispersive contribution of
the environment in a very direct and systematic way, and it would be rather interesting to perform a comparison between NEGFs
and master-equation results. These calculations and comparisons are deferred to future work.

2. Computational details

The short iterated Lanczos method is an efficient algorithm to approximate the time-evolution operator U . This is done by
constructing U in a small optimized subspace (the Krylov space), which allows us to maintain unitarity of U (in contrast to
a straightforward Taylor expansion) while being numerically efficient. We used this algorithm to propagate the many-particle
Schrödinger equation, and additional details can be found in Ref. [58].

Regarding the choice of basis, we use two basis states |1〉 and |2〉 two describe the “atomic” electron states, and the number
states |na〉 and |nb〉 for the coherent and fluorescent fields respectively. In the last part of the paper, where we study the motion
through a cavity, we use the position basis |xn〉 on an equidistant grid to describe the “atomic” center of mass.

Finally, the choice of cutoff number(s) for the radiation modes is determined by the convergence (i.e., by increasing the
number of states until the results are converged within machine accuracy). For the fluorescent field we found it was sufficient
in all cases considered to use a maximum nb ≈ 10. For the coherent field the numerical cutoff depends on α, since the coherent
field follows a Poissonian distribution when written in terms of number states. For α = 1 and α = 5, respectively, we found that
a cutoff at na ≈ 30 and na ≈ 150 is enough.

3. A scaling property

The Hamiltonian in Eq. (27) satisfies a scaling property relating the full quantum dynamics of systems with different masses.
Specifically, we start by considering a scaling parameter Z , and the Schrödinger equation i∂tψ (t ) = Ĥ (t )ψ (t ). Dividing by Z ,
and setting t ′ = Zt , we get i∂t ′φ(t ′) = Z−1Ĥ (t ′/Z )φ(t ′), where φ(t ′) = ψ (t ′/Z ). By relabeling the time variable, t ′ → t , we
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then have i∂tφ(t ) = H̃ (t )φ(t ), where H̃ (t ) = Z−1Ĥ (t/Z ). According to this scaling prescription, a given numerical calculation
represents in fact a entire one-parameter set of numerical simulations, where the integration interval, the time dependence in Ĥ ,
and the fermion-boson interactions are changed.

APPENDIX B

We consider here the adiabatic elimination approximation (AEA) for the three-level Hamiltonian given by the sum of Eqs. (9)
and (10) and the free-field part. Most often, the AEA is done in connection with the rotating wave approximation (RWA) (see
e.g., Refs. [64–66,95]), and choosing the order in which the AEA and RWA are performed can be important [95]. Since our
considerations here aim to be qualitative and general in character, we use for simplicity the more common protocol where the
RWA is introduced before the AEA [65], and before the pump field undergoes a transformation to a coherent photon picture.
Proceeding in this way, we obtain

ĤRWA = f (t )[ĉ†
3ĉ2 + ĉ†

2ĉ1]â + gb(t )ĉ†
3ĉ1b̂ + H.c. + ε1ĉ†

1ĉ1 + ε2ĉ†
2ĉ2 + ε3ĉ†

3ĉ3 + ωaâ†â + ωbb̂†b̂. (B1)

After an AEA of the intermediate level |2〉 (therefore, the dynamical Stark effect due to the intermediate level is neglected) we
get

ĤAEA
RWA = ĉ†

3ĉ1[ f (t )â2 + gb(t )b̂] + H.c. + ε3 − ε1

2
(ĉ†

3ĉ3 − ĉ†
1ĉ1) + ωaâ†â + ωbb̂†b̂. (B2)

At this point the coherent-state picture could be introduced. However, already at this stage, the AEA two-level model of Eq. (B2)
seems rather different from the original two-level model of Eqs. (1)–(4). Therefore, the results of the main text for the SHG and
Mollow spectra in a two-level system should not be ascribed to an adiabatic suppression of the virtual level.

APPENDIX C

We want to calculate the probability defined in Eq. (31) and repeated here for convenience:

P(t, ω) =
∑

ni

∫
dx |〈i, x, n|b̂e−iĤt |1, φ, α〉|2. (C1)

In the perturbative limit, the time-evolution operator becomes

e−iĤt ≈
∫ t

0
dt ′ e−iĤ0(t−t ′ )Ĥ ′(t ′)e−iĤ0t ′

, (C2)

and to further simplify the analysis, we define the probability amplitude

Ax
in(t, ω) = − iθ (t )

∫ t

0
dt ′ 〈i, x, n|b̂e−iĤ0(t−t ′)Ĥ ′e−iĤ0t ′ |1, φ, α〉. (C3)

Since Ĥ0 is independent of time, the probability amplitude can be found through a straightforward expansion in the eigenstates
of Ĥ0. In the expression for the probability P above, we trace over a complete set of final states |i, x, n〉, but since any complete
set is allowed we can instead choose to trace over the eigenstates of Ĥ0. In the following we therefore consider the probability
amplitude Aλ(t, ω), and, by inserting a set of complete states, we find

〈λ|b̂e−iĤ0(t−t ′ )Ĥ ′(t ′)e−iĤ0t ′ |1, φ, α〉 =
∑
λ′′λ′

〈λ|b̂|λ′′〉e−i(ελ′′ +ω)(t−t ′ )H ′
λ′′λ′ (t ′)e−iελ′ t ′ 〈λ′|1, φ, α〉

=
∑
λ′

e−i(ελ+ω)(t−t ′ )−iελ′ t ′
H ′

λλ′ (t ′)〈λ′|1, φ, α〉. (C4)

Now the matrix elements H ′
λλ′ (t ′) can be broken into two parts according to

H ′
λλ′ (t ′) =

∑
ni

∫
dx 〈λ|Ĥ ′(t ′)|i, x, n〉〈i, x, n|λ′〉

=
∑

ni

∫
Xin

dx g1e−�1t ′ 〈λ|Ĥ ′|i, x, n〉〈i, x, n|λ′〉 +
∑

ni

∫
Xout

dx g2e−�2t ′ 〈λ|Ĥ ′|i, x, n〉〈i, x, n|λ′〉

= g1e−�1t ′
S1

λλ′ + g2e−�2t ′
S2

λλ′ (C5)
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where the coefficients S1
λλ′ and S2

λλ′ are given by

S1
λλ′ =

∑
ni

∫
Xin

dx 〈λ|Ĥ ′|i, x, n〉〈i, x, n|λ′〉,

S2
λλ′ =

∑
ni

∫
Xout

dx 〈λ|Ĥ ′|i, x, n〉〈i, x, n|λ′〉. (C6)

Integrating over t ′, we find the probability amplitude to be

Aλ(t, ω) =
∑
λ′

(
e−i(ελ+ω)t − e−iελ′ t−�1t

ω + ελ − ελ′ + i�1
S1

λλ′ + e−i(ελ+ω)t − e−iελ′ t−�2t

ω + ελ − ελ′ + i�2
S2

λλ′

)
〈λ′|1, φ, α〉, (C7)

and inserting this into the expression for the probability we find

P(t, ω) =
∑

λ

∣∣∣∣∣
∑
λ′

(
e−i(ελ+ω)t − e−iελ′ t−�1t

ω + ελ − ελ′ + i�1
S1

λλ′ + e−i(ελ+ω)t − e−iελ′ t−�2t

ω + ελ − ελ′ + i�2
S2

λλ′

)
〈λ′|1, φ, α〉

∣∣∣∣∣
2

. (C8)

If necessary, it is possible to further simplify Eq. (C8) by going at long times (i.e., where the exponentials e−�kt tend to zero)
provided that L is correspondingly taken large enough to avoid atom reflection at the ends of the x-coordinate domain. Arguing
that the cross terms vanish for t → ∞, the asymptotic limit becomes

P(ω) =
∑

λ

∣∣∣∣∣
∑
λ′

(
1

ω + ελ − ελ′ + i�1
S1

λλ′ + 1

ω + ελ − ελ′ + i�2
S2

λλ′

)
〈λ′|1, φ, α〉

∣∣∣∣
2

.

This latter result makes contact with the long-time limit of the static-atom case of Sec. II. However, to calculate the time-
dependent fluorescence spectrum for a moving atom we go back to the full expression for P(t, ω) in Eq. (C8) here, or Eq. (33)
in the main text.

[1] A. Einstein, The quantum theory of radiation, Phys. Z. 18, 121
(1917).

[2] P. A. M. Dirac, The quantum theory of the emission and
absorption of radiation, Proc. Roy. Soc. A 114, 243 (1927).

[3] V. Weisskopf and E. Wigner, Berechnung der natürlichen Lin-
ienbreite auf Grund der Diracschen Lichttheorie, Z. Phys. 63,
54 (1930).

[4] M. Gabriela Lagorio, G. B. Cordon, and A. Iriel, Reviewing
the relevance of fluorescence in biological systems, Photochem.
Photobiol. Sci. 14, 1538 (2015).

[5] S. Neppl, R. Ernstorfer, A. L. Cavalieri, C. Lemell, G. Wachter,
E. Magerl, E. M. Bothschafter, M. Jobst, M. Hofstetter, U.
Kleineberg et al., Direct observation of electron propagation
and dielectric screening on the atomic length scale, Nature
(London) 517, 342 (2015).

[6] S. H. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt,
F. Süßmann, M. F. Kling, U. Kleineberg, E. Mårsell, C. L.
Arnold et al., Attosecond Nanophysics (Wiley, Weinheim,
2015), p. 325.

[7] L. Allen and J. H. Eberly, Optical Resonance and Two-Level
Atoms (Wiley, New York, 1975).

[8] B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley-
Interscience, New York, 1990).

[9] W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH,
Berlin, 2001).

[10] I. I. Rabi, S. Millman, P. Kusch, and J. R. Zacharias, The molec-
ular beam resonance method for measuring nuclear magnetic
moments. The magnetic moments of 3Li6, 3Li7 and 9F19, Phys.
Rev. 55, 526 (1939).

[11] F. Bloch and A. Siegert, Magnetic resonance for nonrotating
fields, Phys. Rev. 57, 522 (1940).

[12] S. Stenholm, Saturation effects in RF spectroscopy. I. General
theory, J. Phys. B 5, 878 (1972); Saturation effects in RF
spectroscopy. II. Multiple quantum transitions, ibid. 5, 890
(1972).

[13] E. T. Jaynes and F. W. Cummings, Comparison of quantum and
semiclassical radiation theories with application to the beam
maser, Proc. IEEE 51, 89 (1963).

[14] H. J. Carmichael and D. F. Walls, A quantum-mechanical
master equation treatment of the dynamical Stark effect, J. Phys.
B: At. Mol. Phys. 9, 1199 (1976).

[15] Bruce W. Shore and Peter L. Knight, The Jaynes-Cummings
model, J. Mod. Opt. 40, 1195 (1993).

[16] K. Fujii, Dynamics of an N-level system of atoms interacting
with laser fields, J. Math. Sci. 153, 57 (2008).

[17] Q. Xie, H. Zhong, M. T. Batchelor, and C. Lee, The quantum
Rabi model: solution and dynamics, J. Phys. A: Math. Theor.
50, 113001 (2017).

[18] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Pe-
riodic Spontaneous Collapse and Revival in a Simple Quantum
Model, Phys. Rev. Lett. 44, 1323 (1980).

[19] S. Guérin, F. Monti, J.-M. Dupont, and H. R. Jauslin, On the
relation between cavity-dressed states, Floquet states, RWA
and semiclassical models, J. Phys. A: Math. Gen. 30, 7193
(1997).

[20] A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and
F. Nori, Ultrastrong coupling between light and matter, Nat.
Rev. Phys. 1, 19 (2019).

[21] C. Cohen-Tannoudji and D. Guéry-Odelin, Advances in Atomic
Physics: An Overview (World Scientific, Singapore, 2011).

[22] B. R. Mollow, Power spectrum of light scattered by two-level
systems, Phys. Rev. 188, 1969 (1969).

013719-16

https://doi.org/10.1098/rspa.1927.0039
https://doi.org/10.1007/BF01336768
https://doi.org/10.1039/C5PP00122F
https://doi.org/10.1038/nature14094
https://doi.org/10.1103/PhysRev.55.526
https://doi.org/10.1103/PhysRev.57.522
https://doi.org/10.1088/0022-3700/5/4/023
https://doi.org/10.1088/0022-3700/5/4/024
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1088/0022-3700/9/8/007
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1007/s10958-008-9120-5
https://doi.org/10.1088/1751-8121/aa5a65
https://doi.org/10.1103/PhysRevLett.44.1323
https://doi.org/10.1088/0305-4470/30/20/020
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1103/PhysRev.188.1969


TIME-RESOLVED MULTIPHOTON EFFECTS IN THE … PHYSICAL REVIEW A 102, 013719 (2020)

[23] S. Swain, A continued fraction solution to the problem of a
single atom interacting with a single radiation mode in the elec-
tric dipole approximation, J. Phys. A: Math., Nucl. Gen. 6, 192
(1973); Continued fraction expressions for the eigensolutions
of the hamiltonian describing the interaction between a single
atom and a single field mode: comparisons with the rotating
wave solutions, ibid. 6, 1919 (1973).

[24] A. D’Andrea, Optical absorption and emission in simple sys-
tems: Beyond the rotating-wave approximation, Phys. Rev. A
39, 5143 (1989).

[25] C. H. Keitel, Vacuum modified resonance fluorescence in in-
tense laser fields, J. Mod. Opt. 43, 1555 (1996).

[26] D. E. Browne and C. H. Keitel, Resonance fluorescence in
intense laser fields, J. Mod. Opt. 47, 1307 (2000).

[27] E. Perfetto and G. Stefanucci, Some exact properties of the
nonequilibrium response function for transient photoabsorp-
tion, Phys. Rev. A 91, 033416 (2015).

[28] Q. Xu, Sideband structure spontaneous spectrum without the
rotating wave approximation, Eur. Phys. J. D 51, 387 (2009).

[29] M. O. Scully, V. V. Kocharovsky, A. Belyanin, E. Fry, and F.
Capasso, Enhancing Acceleration Radiation from Ground-State
Atoms via Cavity Quantum Electrodynamics, Phys. Rev. Lett.
91, 243004 (2003).

[30] C. O’Brien and M. O. Scully, Analytical treatment of the
continuous wave driving of a two-level atom without mak-
ing the rotating wave approximation, J. Mod. Opt. 63, 27
(2015).

[31] D. Braak, Q.-H. Chen, M. T. Batchelor, and E. Solano, Semi-
classical and quantum Rabi models: In celebration of 80 years,
J. Phys. A: Math. Theor. 49, 300301 (2016).

[32] H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker,
Cavity quantum electrodynamics, Rep. Prog. Phys. 69, 1325
(2006).

[33] T. Halfmann, Quantum control of light and matter, Opt.
Commun. 264, 247 (2006).

[34] F. A. Wolf, F. Vallone, G. Romero, M. Kollar, E. Solano, and D.
Braak, Dynamical correlation functions and the quantum Rabi
model, Phys. Rev. A 87, 023835 (2013).

[35] F. A. Wolf, M. Kollar, and D. Braak, Exact real-time dynamics
of the quantum Rabi model, Phys. Rev. A 85, 053817 (2012).

[36] H.-P. Eckle and H. Johannesson, A generalization of the quan-
tum Rabi model: exact solution and spectral structure, J. Phys.
A: Math. Theor. 50, 294004 (2017).

[37] A. Paris-Mandoki, C. Braun, J. Kumlin, C. Tresp, I.
Mirgorodskiy, F. Christaller, H. P. Büchler, and S. Hoffer,
Free-Space Quantum Electrodynamics with a Single Rydberg
Superatom, Phys. Rev. X 7, 041010 (2017).

[38] C. Sánchez Munõz, A. Frisk Kockum, A. Miranowicz,
and F. Nori, Simulating ultrastrong-coupling processes
breaking parity conservation in Jaynes-Cummings systems,
arXiv:1910.12875v2.

[39] Shi-Yao Zhu, L. M. Narducci, and M. O. Scully, Quantum-
mechanical interference effects in the spontaneous-emission
spectrum of a driven atom, Phys. Rev. A 52, 4791 (1995).

[40] M. Malekakhlagh and A. W. Rodriguez, Quantum Rabi Model
with Two-Photon Relaxation, Phys. Rev. Lett. 122, 043601
(2019).

[41] Wang Ning, Gong Zhi-Rui, Lu Jing, and Zhou Lan, Phases
transitions in a cross-cavity quantum Rabi model possessing PT
symmetric structure, Front. Phys. 7, 127 (2019).
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