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In this paper we use time-dependent Josephson coupling to enhance unconventional photon blockade in a
system of two coupled nonlinear bosonic modes which are initially loaded with weakly populated coherent states,
so the evolution is restricted to the manifold of up to two field quanta. Using numerical optimal control, we find
the optimal coupling which minimizes the two-photon occupation of one mode, which is actually transferred
to the other, while maintaining a nonzero one-photon occupation in the same mode. Moreover, we choose for
the continuous coupling to vanish after the transfer between the modes such that they are decoupled and one of
them is left only with some one-photon population which can be observed upon its decay. We numerically find
lower values of the second-order correlation function obtained at earlier times than with constant coupling, with
larger one-photon populations and for longer time windows, corresponding thus to higher emission efficiency
and easier detection. The presented methodology is not restricted to the system under study, but it can also be
transferred to other related frameworks, to find the optimal driving fields which can improve the single-photon

emission statistics from these systems.
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I. INTRODUCTION

Photon blockade is a nonlinear quantum phenomenon
which favors the one-photon state of a quantum mode, while
preventing the formation of multiphoton states [1,2]. This
effect can be exploited for the generation of single photons,
a key procedure at the heart of many modern quantum tech-
nology applications [3], and for implementing quantum simu-
lation and many-body physics with light [4-7]. Conventional
photon blockade is based on the presence of a strong non-
linearity which leads to anharmonic spectra of multiphoton
states, allowing thus the selective excitation of the single-
photon state [1]. The method fails when the nonlinearity is
weaker than the linewidth.

In 2010 Liew and Savona, using a system of coupled
quantum modes, showed that unconventional photon blockade
can be achieved even for weak nonlinearity [8]. As explained
in Ref. [9], this effect is based on the destructive interference
between two excitation paths of the two-photon state. An al-
ternative explanation was given in Ref. [10], as the destructive
interference between squeezing and displacement of a Gaus-
sian state. Closely related is the understanding of this interfer-
ence phenomenon in terms of homodyning the signal [11], an
idea which has been successfully used recently [12,13] (see
also the review [14]). Several variations have been suggested
in order to improve unconventional photon blockade [15-24],
while other blockade schemes based on similar ideas have
been proposed [25-32]. Recently, the unconventional photon
blockade was implemented experimentally [33,34]. The draw-
back of this blockade mechanism, also encountered in these
experiments, is that the two-time second-order correlation
function presents rapid oscillations, thus its detection requires
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high time resolution. In order to overcome this problem,
Ghosh and Liew introduced recently the dynamical blockade
scheme [35]. According to this method, a combination of con-
tinuous and pulsed excitations is applied to a single nonlinear
bosonic mode, resulting in a much stronger blockade during
longer time windows.

In the present paper we use a dynamical (time-dependent)
Josephson coupling in order to enhance unconventional pho-
ton blockade in the standard framework of two coupled
nonlinear bosonic modes [20]. We consider that initially the
two modes are loaded with weakly populated coherent states,
as in Ref. [20], thus the system evolution is approximately
restricted to the manifold of up to two field quanta. Using
numerical optimal control we find the time-dependent cou-
pling which minimizes the two-photon occupation of one
mode (by sending it to the other), while maintaining a nonzero
one-photon occupation in the same mode. Additionally, the
continuous coupling is selected such that it vanishes after the
transfer between the modes is completed. The two modes
are thus decoupled and one of them is left with some one-
photon population, which can be detected upon its decay.
We show with specific examples that when using an optimal
time-dependent coupling lower values of the second-order
correlation function can be obtained at earlier times than with
constant coupling, as in Ref. [20]. Moreover, these results
are accompanied by larger one-photon populations and are
maintained for longer time windows, corresponding thus to
higher emission efficiency and easier detection. The suggested
methodology is not restricted to the system studied, but can
also be exploited in other related contexts, for example, the
original dynamical blockade framework of a driven dissipative
nonlinear bosonic mode [35], to find the optimal driving field
which can improve the single-photon emission statistics.

The paper is organized as follows. In the next section we
summarize the theoretical framework of the current study,
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while in Sec. III we present the results. Section IV concludes
this paper.

II. THEORY

The Hamiltonian describing a bosonic Josephson junction
with two quantized modes in the Bose-Hubbard approxima-
tion is [20,21,36]

H = Z[ha)a

where a; and &;. are the creation and annihilation operators at
site i, w is the common resonant frequency of both modes, and
U is the nonlinearity strength. The time-dependent Josephson
coupling J(¢) will be exploited to control system dynamics.
For example, in the context of exciton polaritons this coupling
can be controlled by external electric [37] or optical [38—42]
fields. In the framework of superconducting microwave cav-
ities, the coupling can be varied in ns timescales [43—45],
which is particularly relevant to the recent experimental im-
plementation [34] of unconventional photon blockade. The
time evolution of the system is described by the following
master equation for the density matrix:
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are Lindblad terms with loss rate k.
Initially, the two modes are prepared in a separable product
of coherent states:

[¥(0)) = ler1)|a2), “4)

where

) = =% Zf i=1,2. (5)

with a small average number of quanta
o =]’ + oo < 1. (6)

Initial condition (4) is exactly the same as in Ref. [20] and
we use it here to facilitate comparison. As pointed out there,
the initial population imbalance between the modes can be
set by driving them with Gaussian laser pulses of varying
relative strength. At the end of this section we explain how
the methodology presented below can be applied even if the
initial state is not the product of coherent states, as long as
the low-photon approximation is valid. Master equation (2) is
actually derived from a stochastic Schrodinger equation with
random quantum jumps, which become rare for vanishing
occupation numbers of the two modes, as we consider here.
In this case, the nondiagonal Lindblad terms Z&ip&j,z =
1,2, can be neglected and the density-matrix equation be-
comes [20,21,46,47]
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where the effective non-Hermitian Hamiltonian is
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Then, the density matrix can be factorized as
@) = (Y @) (Y @)l, )]
where state | (¢)) satisfies the Schrodinger equation
0
— | (1)) = —H, 1)). 10
atw( )) ; BV (10)

In the weak excitation limit (6), the system evolution is
approximately restricted to the manifold of up to two field
quanta and thus the state can be well described by the fol-
lowing truncated wave function [20,21,46,47]:

1Y (1)) = coo()]00) + c10(£)[10) + co1(1)01)
+ e (1) + ¢20(1)[120) + c2(1)102),  (11)
where |ij) is the state with i and j quanta in the two modes,

respectively. From Schrodinger equation (10) we obtain the
following differential equations for amplitudes c¢;;(¢):

icop = 0, (12)
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Note that in Eqgs. (13) and (14) we have omitted the diago-
nal terms proportional to resonant frequency w, since they
simply add phase factors e~ to cjo and co; and e~ %' to
c20, €11, and cgp, which are eliminated by the absolute value
operation in the calculation of the second-order correlation
function. From the initial state (4) and the expansion (5) we
find the following initial values for the probability amplitudes:

P

coo(0) =e" 7,
112

cip(0) =e 7y,
(12

co1(0) = e Zay,

c1(0) = 677061062,
o2

NeL

o

cn(0) =e 5=

o

c(0) = e~ T (15)

V2

In the recent work [20], Flayac and Savona used a constant
Josephson coupling to obtain for one of the modes, let us say
mode 1, nonclassical values of the equal-time second-order
correlation function, g(z)(t t) < 1, where
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FIG. 1. (a) Initially (r = 0), both states |10) and |20) are popu-
lated. (b) Using an optimal time-dependent Josephson coupling J(t),
at time = T most of the population of state |20) is transferred to
the other states of the two-photon manifold, while some population
remains in state [10). Forz > T we set J(¢) = 0, thus the one-photon
population is trapped in mode 1 until its decay.

and

Ni(1) = (ajar) = lewl* + lenl® +2len . (A7)
In the present paper we try to achieve g(lz)(t, t) < 1 using
time-dependent coupling J(¢). Our idea is to use numerical
optimal control to find the optimal J(¢) which minimizes the
two-photon population in mode 1 at a specific timet = T, i.e.,
leao(T)I?, starting from initial conditions (15). If the duration
T is large enough then |c2o(7')|? attains a very small value, and
only one-photon population is left in mode 1. We also impose
the boundary conditions

J(0)=0, J(T)=0, (18)

so initially and finally the two modes are decoupled. For
t > T we set J(¢t) = 0, thus mode 1 maintains its one-photon
population until it is lost due to dissipation «. The whole
concept is illustrated schematically in Fig. 1, for the case
where only mode 1 is initially populated. We also constrain
J(t) between zero and a maximum value Jyax,

0 < J() < Jmax 19)

in order to make a fair comparison with the constant control
case where J(¢) = Jmax and also to facilitate the convergence
of the numerical solver towards the optimal solution. Note that
a direct minimization of g(lz) (¢, t) presents difficulties since the
denominator N;(¢) can become very small at certain times.

For the solution of the optimal control problem, we focus
on the two-photon subsystem (14). We use the optimal control
solver BOCOP [48], thus it is necessary to use real variables
instead of complex amplitudes. Let

2a2

V2
thus A3 is the initial two-photon occupancy, which is a con-
served quantity in the absence of loss (k = 0). If we define

the real variables x;, k = 1,2, ..., 6, through the normalized
complex amplitudes

a

Ay = 1en0)2 + lc11(0) + lc(0)) = ™7 (20)

% = x1 + ixa, % = X3 + ix4, % =xs5 +ixg, (21)
then they satisfy the following system of differential equa-
tions:

%1 = 2Uxy + V27 (t)xs,

X = —2Ux; — 2J(0)x3,

i = V20000 + x6),

kg = —V2J(t)(x1 + x5),

%5 = ~/2J(t)xs + 2Uxs,

%6 = —/2J(t)x3 — 2Uxs. (22)

The corresponding initial conditions can be found from
Eq. (15) and they are

1+ 2z

x1(0) = 7 x(0) =0,

_22
%(0) =/ — 0 x4(0) =0,
x5<0>=_TZ°, x6(0) = 0, (23)

where note that we have expressed them using the initial
population imbalance between the modes,

it | 24)

for real a;, as.

In order to find a time-dependent coupling J(¢) satisfying
the boundary conditions (18), we consider J as an extra state
variable, on which we impose these conditions, while we
place the control in its derivative. If we additionally exploit
a BOCOP feature which allows us to express the control as a
harmonic series of time, then the corresponding equation in
normalized time T = k't is

d (J 4 ,
—| =) =ay+ Z(aZk_l CcoSkT + ay, sinkt), 25)
dt \« P

where p is the number of harmonics used. We use the
BOCOP solver to find the coefficients a; which minimize
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FIG. 2. Equal-time second-order correlation function (in loga-
rithmic scale) of the first mode for optimal coupling with duration
T, when two (cyan squares), three (red circles), and four (green
triangles) harmonics are used in the control (25). (a) Example with
strong nonlinearity U = k. (b) Example with weak nonlinearity U =
2 x 1072

|cz0(T)|2/A% = x%(T) +x§(T) for specific duration t =T,
while satisfying the boundary conditions (18) and the con-
straint (19). Having found a; we can integrate Eq. (25) and
obtain the coupling J(¢). In the next section we consider two
examples, for strong and weak nonlinearity U, as in Ref. [20].
Note that in the formulation of the optimal control problem
we have used without loss of generality real coherent field
amplitudes «; and op. The same methodology can be applied
for complex «; and «;, and even if the initial state is not a
product of coherent states, as long as the low-photon approx-
imation is valid. In these cases one has simply to perform the
optimization of the coupling J(¢) using the appropriate set of
initial conditions (23).

III. RESULTS

We study first the case with strong nonlinearity U = «.
For the other parameters we use the values Ji,,x = 5k, thus
Jmax = SU, a1 = 0.1, and zp = 1, so only the first mode is
initially populated, as in Ref. [20]. In order to find the duration
T during which a nonzero J(¢) is applied, and the number p
of harmonics needed in the control (25), we solve numerically
the optimal control problem for various values of 7 and p. In
Fig. 2(a) we plot the resultant equal-time second-order corre-
lation function in logarithmic scale, for 2.1V T <3kt

TABLE I. Optimal coefficients for the trigonometric series (25)
with p = 3. The first column corresponds to the example with strong
nonlinearity and the second column corresponds to that with weak
nonlinearity.

Coefficients Example 1 Example 2

ap 258.3070 136.4215
a 15.5649 5561.9086
a —432.1063 —8295.7429
as —236.0900 —7716.0838
ay —5.0417 2879.9583
as 5.3701 2081.7869
ag 57.1314 558.8372

with step 87 = 0.1«~!, and three values of p: p =2 (cyan
squares), p = 3 (red circles), and p = 4 (green triangles). For
T =2.6¢~" and p = 3 harmonics we find the small value
g(lz)(T, T) = 4.845 x 1078, while observing that using more
harmonics with this duration increases the complexity of the
control without improving much the performance. We thus
choose to proceed with these parameter values.

For this case, the coefficients a; of the control (25) are
displayed in the first column of Table I. In Fig. 3(a) we plot
with a red solid line the corresponding Josephson coupling
J(t). Note that we have extended time in the interval T <t <
7k~!, where J(t) = 0. We also show with a blue dashed line
the constant control Jy.x = SU used in Ref. [20]. In Fig. 3(b)
we display the equal-time second-order correlation function
for the two cases. With the optimal time-dependent cou-
pling the value 4.845 x 1078 is obtained at t = T = 2.6~
and approximately maintained thereafter, when the modes
are decoupled. With constant coupling the (larger) minimal
value 9.878 x 1077 is obtained at the later time t = 7« . In
Fig. 3(c) we plot in logarithmic scale the population N;(¢) of
the first mode for both protocols. Observe that for the time-
dependent protocol and most of the interval T <t < wx ™!,
where the corresponding correlation function is minimized,
the population is larger than that of the constant protocol at
t = mk~! [compare the red star marker and the subsequent
red straight line with the blue cross marker in Fig. 3(c)].
Also, observe from Fig. 3(b) that the correlation function of
the time-dependent protocol attains nonclassical values (lower
than 1) in a window of approximate width !, roughly in
the interval x~! <t < 2«~'. From Fig. 3(c) we see that the
population of mode 1 during this interval is about 1073,

The second example that we consider corresponds to a
weak nonlinearity U = 2w X 1072k, Jopux = K, a1 = 0.1,
and initial population imbalance zo = 0.95, as in Ref. [20].
As in the previous case, in Fig. 2(b) we plot the equal-
time second-order correlation function in logarithmic scale
for various durations in the interval 0.8x ! < T < 1.5¢7!
with step 8T = 0.1k !, and three numbers of harmonics:
p = 2 (cyan squares), p = 3 (red circles), and p = 4 (green
triangles). For T = 1.2«~! and p = 3 harmonics we obtain
the acceptable value g(lz)(T, T) = 7.384 x 1073, much lower
than the minimum value obtained with constant coupling as
we shall immediately see, thus we present further results
using these values. Obviously, using more harmonics does
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FIG. 3. Example for strong nonlinearity U = k. The blue dashed
line corresponds to constant Josephson coupling J = 5« as in
Ref. [20], while the red solid line corresponds to optimal time-
dependent 0 < J(¢) < 5«, which is selected to minimize the two-
photon occupation |c,(T)|* of the first mode at T = 2.6/« while it
vanishes for ¢+ > T'. (a) Josephson coupling. (b) Equal-time second-
order correlation function for the first mode. (c) Population of the
first mode.

not improve the performance substantially. The corresponding
coefficients a; of the control (25) are displayed in the second
column of Table I. In Fig. 4(a) we plot with a red solid
line the corresponding Josephson coupling J(¢) and with
a blue dashed line the constant control Jy,x = wk used in
Ref. [20], while noting that we have extended time in the
interval T <t < 1.6x~!, where J(t) = 0. In Fig. 4(b) we
display the equal-time second-order correlation function for
the two cases. Using the optimal time-dependent coupling,
the value 7.384 x 107> is achieved at t = T = 1.2« ' and
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FIG. 4. Example for weak nonlinearity U = 27 x 10~%«. The
blue dashed line corresponds to constant Josephson coupling J = w«
as in Ref. [20], while the red solid line corresponds to optimal
time-dependent 0 < J(¢) < w«, which is selected to minimize the
two-photon occupation |cyo(T')|> of the first mode at T = 1.2/«
while it vanishes for # > T'. (a) Josephson coupling. (b) Equal-time
second-order correlation function for the first mode. (c) Population
of the first mode.

approximately maintained after the modes are decoupled,
while using the constant coupling the (much larger) minimum
value 8.961 x 1073 is achieved at the later time # &~ 1.55« .
In Fig. 4(c) we plot in logarithmic scale the population N; ()
of the first mode for both protocols. Observe that for the time-
dependent protocol and most of the interval 7 < ¢ < 1.6x71,
where the corresponding correlation function is minimized,
the population is larger than that of the constant protocol at
t ~ 1.55k ! (compare the red star marker and the subsequent
red straight line with the blue cross marker).
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It appears from Figs. 3(b) and 4(b) that, for t > T, the
equal-time second-order correlation function remains con-
stant to its value at r = 7. We will show that it actually
increases in the course of time, although slightly. Fort > T,
where the Josephson coupling has been turned off, it is
le20 () = e Plea(T),

N] (t) — e*K([*T)

x {leto(T)I? + e Dller (T + 2lea(T)I*1}
< e DN,
From the above relations we get

leao(1)[? leao(T)I?

(2) —
=270 N2(T)

=P, T). (26

=

For example, in Fig. 4(b) and for¢; = 1.6/, itis g(lz)(tl, ) =
7.399 x 1073, slightly larger than ¢ (T, T') = 7.384 x 107°.
Although g(lz)(t, t) is an increasing function of t > T, ob-
serve that for large «t it is Ni(t) — e " Dic)o(T)|* ~
e *C=T)N,(T), thus the correlation tends to a limit which is
larger but close to g(lz)(T, T).

We next find the two-time second-order correlation func-
tion g(lz)(t, t+ 1), fort > T and t > 0, following the method-
ology described in Ref. [46]. After the emission of one
photon at time ¢ > T, the wave function [v/) collapses to
the reduced state |¢,(0)) = < II/ILI&]’}!Z)\ e This is a one-quantum
state with dynamical behavior similar to |y (¢)), thus it can be
expressed as

1§ (7)) = boo(z, 0)|00) + bio(r, T)|10) + bo:1 (¢, 7)[01),

where by is constant with respect to T while by and by; obey
system (13) with initial conditions

2
bio(t,0) = %, bo1(t,0) = \;;\111(_[(;))
1

Using the reduced state, we express the two-time correlation
function as

@ aj + va +v)a @)
@l ®ar Ol + va e + 1))
(B (0)|a] (2 4 T (r + 7)|¢ (0))

@t 4 a4+ 1)
(i (D)]alar|g (7))
Ni(t+71)
_ b, )
NG+

For t > T, after the Josephson coupling has been turned off,
we easily find from system (13) that

P +1)=

7 2o
bt )= ¢St 0= Y26 L)
1

thus

2lea0(0)?

, 27
NI (N (1 + T)e "

g(lz)(t, t+1)=

x107°

7.392
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gP(T.T+)
\‘
W
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FIG. 5. Two-time second-order correlation function for the sec-
ond example and a photon emissionatt =7 = 1.2/«.

where N, (¢) is given in Eq. (17) and
Ni(t + 1) = e {lcio®)]* + e [lc11 () + 2lca0(®)I*T}

for t > T and 7 > 0. Since N;(t + 7)e*" < Ny(t), from
Eq. (27) we obtain

2|ea0(t)?

— @
N2(0) =g 0. (28)

g(f)(t, t4+1) 2>

In Fig. 5 we plot the correlation function g(12)(T, T+71)
for the second example considered previously. Observe that,
although it increases from its value at T = 0, it remains very
small. When ¢ > T, even for large «t it is Ni(f + 1)e“" —
lcio(t)|? &~ Ni(t), thus the two-time correlation given in
Eq. (27) tends to a limit which is larger but close to g(12>(t, 1),
and thus close to zero. We conclude that if a photon is emitted
att > T then, with very high probability, it is the only one.
This is intuitively expected since for + > T the two-photon
population has been transferred to mode 2 and the modes are
decoupled. As in the case of dynamical blockade [35], in order
to detect single photons a shutter can be placed in the emission
and be opened afterr = T.

In order to test the robustness of the proposed method,
in Fig. 6 we plot the equal-time second-order correlation
function at t = T when there is a mismatch between the non-
linearities of the modes U; and U, in the range of £20%. Red
circles correspond to the example with strong nonlinearity
and blue crosses correspond to that with weak nonlinearity.
Observe that for both cases it is g(lz)(T, T) < 1. The case with
weak nonlinearity appears to be more robust in general, since
the deviation from the ideal evolution due to mismatch U; #
U,, which is accumulated over time, is smaller. Finally note
that for both examples the behavior is better for U, > U than
for U, < Uj. Since U; is held fixed to its unperturbed value,
a larger nonlinearity U, is expected to give better results.
Aside from the considered nonlinearity mismatch, other pos-
sible experimental limitations include thermal noise, detuning
between the modes, and pure dephasing. The effect of these
mechanisms on photon statistics for a bosonic Josephson
junction with constant coupling has been studied in Ref. [20].
The conclusion is that, as long as the strength of these mecha-
nisms is kept below certain levels, the phenomenon of photon
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FIG. 6. Robustness of the equal-time second-order correlation
function at + = 7 when there is a mismatch between the nonlin-
earities of the modes U; and U,. Red circles correspond to the first
example with strong nonlinearity and blue crosses correspond to the
second example with weak nonlinearity.

antibunching can still be observed. We expect that the same
applies in our model, where time-dependent coupling is used.

IV. CONCLUSION

In this paper we considered the standard framework for
unconventional photon blockade with two coupled nonlin-
ear bosonic modes and used an optimized time-dependent
coupling to improve single-photon emission statistics from
one of the modes. This approach led to lower values of
the second-order correlation function at earlier times, with
larger one-photon populations and for longer time windows
than the case with constant coupling, corresponding thus to
higher emission efficiency and easier detection. The proposed
methodology can also be applied to other related physical
contexts, for example, to optimize the driving field in the case
of dynamical photon blockade or a time-dependent coupling
in the Jaynes-Cummings model.
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