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Adiabatic elimination for ensembles of emitters in cavities with dissipative couplings
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We consider an ensemble of cavity-coupled two-level emitters interacting via full (coherent and dissipative)
dipole-dipole interactions. We detail an adiabatic elimination procedure to derive effective equations of motion
for a subsystem consisting of the cavity and a single emitter and analyze limitations of effective subsystem
parameters. We study how joint dissipative decay processes in the subsystem affect cavity-coupling properties
of the single emitter and cavity transmission spectra.
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I. INTRODUCTION

The strong-coupling regime of cavity QED is reached
when an excitation in matter can exchange energy with a
confined mode of the electromagnetic field at a rate faster
than losses [1–3]. In this case, hybrid light-matter normal
modes called polaritons with frequencies shifted from the bare
resonances are formed. Since the first pioneering experiments
with atoms [4–6], there has been a growing interest in the pos-
sibility of modifying the fundamental properties of condensed
matter systems by harnessing strong coupling to a cavity-
type structure [7–17]. However, strong coupling is generally
impeded by either weak dipole moments or large losses, and
finding strategies to overcome these issues is therefore of
fundamental importance in the field. In this context, recent
experiments have demonstrated that strong coupling of a
target oscillator playing an important role in certain chemical
reactions or in the onset of superconductivity can be achieved
by exploiting an “active” environment consisting of auxiliary
oscillators that are strongly coupled to cavity photons and
quasiresonant with the target oscillator [18,19].

In Ref. [20], we proposed a general scheme to collectively
enhance the coupling of a single quantum emitter (A) to a cav-
ity mode via the presence of a nearby ensemble of emitters (B)
that couple to both the cavity and A. In experimental systems,
reaching strong coupling for a single emitter can often be very
difficult because of the requirement of small mode volumes
of the cavity with large quality factors. A common path to
reach strong coupling has been to simultaneously couple a
large number N of emitters to the same mode, which leads
to a collective coupling strength enhancement by a factor√

N . Unfortunately, collective coupling does not lead to an
enhanced photon-blockade effect, i.e., a nonlinear quantum
effect for the cavity mode [21–23]. The latter effect would be
desirable for photonic quantum information processing [24].
In Ref. [20] we proposed a mechanism of how a collective
effect can still lead to an enhanced photon nonlinearity, simply
by increasing the number of surrounding emitters B. There,
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we have demonstrated a viable path for a strong collective en-
hancement of the coupling strength of a single silicon-vacancy
center to a microcavity. This may lead to new possibilities
for engineering quantum information applications based on
photon nonlinearities in such systems. Reference [20] further
emphasizes the crucial role that active environments can play
in cavity-QED experiments [18,19].

In the first part of this work, we present the detailed proce-
dure for the microscopic adiabatic elimination of ensemble B
from Ref. [20], either when the latter is far detuned from A or
when the decay rates of the B emitters are the largest param-
eters of the problem. We show that the dissipative couplings
of A to B can lead to effective coherent Hamiltonian terms
within the subsystem S consisting of A and the cavity that can
help to reach strong coupling. We compare results from the
full adiabatic elimination vs the one where the emitters are
treated in a linear classical approach. While the general effect
of dissipatively engineered coherent interactions has been
well studied for quantum information applications [25–30],
here we explain how dissipative couplings can be exploited
in cavity QED. As an additional feature to Ref. [20], in the
second part we analyze the limitations of achievable effective
parameters in subsystem S and its effective collective dissi-
pative dynamics. Specifically, here we discuss the impact of
effective collective decay processes on the cavity transmission
spectrum and the onset of strong coupling.

The paper is organized as follows: In Sec. II, we introduce
our model and describe the quantum master equation for the
full system consisting of A, B, and the cavity. In Sec. III we
derive in detail the effective master equation for subsystem S .
We first use an extension of the method given in [31] for the
general situation where dissipative couplings between A and
B are also present and derive the effective master equation
parameters (Sec. III A). We then show that the same effective
parameters appear in a linear classical approach valid in the
low excitation limit (Sec. III B). In Sec. IV we discuss the
limitations of the effective parameters of the subsystem and
their dependence on the geometry. Therefore, we analyze the
case where B can be reduced to an effective single emitter
(Sec. IV A) and provide analytical formulas for the modi-
fication of the parameters in this case. We then focus on
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FIG. 1. (a) Sketch of the model setup: A single quantum emitter A (decay rate γA) and an ensemble of nearby emitters B (decay rates γB)
are coupled to a cavity mode (decay rate κ). (b) Schematics of couplings: A and B couple to the cavity with the respective coherent Hamiltonian
terms ∝ gA and ∝ gB (rounded arrows). The emitters interact among each other via dipole-dipole interactions with both Hamiltonian (rounded
arrows) and dissipative (wavy line) terms. (c) Schematics of couplings in subsystem S after adiabatic elimination of B: The presence of B
modifies γA → γ

(eff )
A and κ → κ (eff ). Effective couplings in the subsystem comprise both coherent [gA → g(eff)

A ] and dissipative (μ) couplings.

the consequences of collective decay processes of A and the
cavity (Sec. IV B), which effectively appear after the adiabatic
elimination of B. Finally, we provide a conclusion and an
outlook in Sec. V.

II. MODEL

We consider a single two-level emitter A (level spacing
ωA, decay rate γA), an ensemble B consisting of N emitters
(each with level spacing ωB, decay rate γB), and a cavity mode
(frequency ωc, decay rate κ) [see Fig. 1(a); h̄ ≡ 1 throughout
this paper]. All emitters are coupled to the cavity and interact
with each other via dipole-dipole interactions (the dipole
direction is chosen along the z axis). In a frame rotating with
ωA, the full quantum master equation for the density matrix ρ

of the system can be written as

∂tρ = −i[H0 + HTC + HDD, ρ] + Lρ. (1)

Here, the Hamiltonian parts include the bare system ener-
gies,

H0 = �ca†a +
N∑

j=1

�Bσ+
j σ−

j , (2)

with �c = ωc − ωA and �B = ωB − ωA. The bosonic oper-
ators a and a† annihilate and create a photon in the cavity,
while σ±

A and σ±
j are the spin ladder operators for A and for

the jth emitter of ensemble B, respectively. The emitter-cavity
interaction is governed by a Tavis-Cummings Hamiltonian
[1,32],

HTC = a†

⎛⎝gAσ−
A +

N∑
j=1

g jσ
−
j

⎞⎠+ H.c., (3)

with respective coupling strengths gA and g j . The dipole-
dipole interaction Hamiltonian is given by [33,34]

HDD =
N∑

j=1

	 jA(σ+
j σ−

A + σ+
A σ−

j ) +
N∑

j �=


	 j
σ
+
j σ−


 , (4)

with 	 jA denoting the coupling strengths between A and the
jth spin of B, and 	 j
 the coupling strengths between pairs of
emitters within B.

Dissipation in Eq. (1) is described by the superoperator

Lρ = −κD(a†, a)ρ − γAD(σ+
A , σ−

A )ρ + LBBρ + LABρ,

(5)

with D(x, y)ρ = [x, yρ] + [ρx, y]. The dissipator given by
LBBρ = −∑N

j,
=1 γ j
D(σ+
j , σ−


 )ρ describes collective decay
processes within the B ensemble, and γ j j = γB. Additionally,

LABρ = −
N∑

j=1

γ jA(D(σ+
j , σ−

A )ρ + D(σ+
A , σ−

j )ρ) (6)

describes dissipative couplings between A and B [see Fig. 1(b)
for a sketch of the couplings].

In this work we are interested in deriving effective equa-
tions of motions for the density matrix of subsystem S con-
sisting of A and the cavity after adiabatically eliminating B
[see Fig. 1(c)]. As we show below, besides energy shifts, these
equations feature modified decay rates [γA → γ

(eff )
A and κ →

κ (eff )], as well as modified couplings between A and the cavity.
The latter consist of both coherent Jaynes-Cummings-type
couplings [with an effective coupling strength gA → g(eff)

A ] as
well as collective dissipation terms with rate μ.

III. DERIVATION OF THE EFFECTIVE QUANTUM
MASTER EQUATION

In this section, we derive the effective quantum master
equation obtained when the emitter ensemble B is adiabati-
cally eliminated, which leads to modified physical parameters
for subsystem S [Fig. 1(c)]. The main results are the effective
master equation parameters provided in Sec. III A 6. The
derivation of the parameters is split into two parts. In Sec. III A
we utilize a full adiabatic elimination procedure similar to that
in Ref. [31]. In Sec. III B we show that the same effective
parameters also appear in a classical linear theory for low spin
excitations.

A. Full adiabatic elimination procedure

Our derivation of the effective master equation in this
section relies on elimination techniques (see, e.g., [35–38])
and is based on a projection method given in Ref. [31], which
we extend to the general case where dissipative dipole-dipole
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couplings between A and B (i.e., S and B) are also present.
This method relies on the projection of the density operator
onto the ground-state manifold of B (Sec. III A 1), suitable
decompositions of the master equation and the density op-
erator (Sec. III A 2 and Sec. III A 3), followed by second-
order perturbation theory in the interaction between S and
B (Sec. III A 4) and time-scale separation (Sec. III A 5). The
main results of the adiabatic elimination are the effective
parameters for the subsystem S master equation and are
provided in Sec. III A 6.

1. Projection onto the ground-state manifold

We assume that the set {|si〉} forms a basis for subsys-
tem S , while {|bi〉} is a basis for the interacting ensemble
B. The density operator ρ of the full system can be writ-
ten as ρ = ∑

i jkl ρi j;kl |si〉〈s j | ⊗ |bk〉〈bl | with matrix elements
ρi j;kl = 〈si, bk|ρ|s j, bl〉 and |s j, bl〉 = |s j〉 ⊗ |bl〉. We are in-
terested in the time evolution of the reduced density operator
ρeff = ∑

i j ρ
eff
i j |si〉〈s j | of S obtained by taking the partial trace

TrBρ = ∑
m〈bm|ρ|bm〉 over the B ensemble, where ρeff

i j =∑
m ρi j;mm involves a sum over all possible basis states of B.
We assume that state |g〉 with all spins of B in their ground

states mainly contributes to the latter sum and, therefore,
introduce the superoperator P• = |g〉〈g| • |g〉〈g| as a projector
onto the elements of interest of the density operator ρ with
Pρ = ρgg|g〉〈g| and ρgg = 〈g|ρ|g〉. In the following, we derive
an equation for the time evolution of v = Pρ. Under the
assumption that the spins of B remain close to their ground
states, we derive the effective time evolution for the reduced
density operator ρeff of S with ρeff ≈ ρgg.

2. Decomposition of the master equation

We start by decomposing the full quantum master equation,
(1), for the total density operator ρ as

∂tρ = Lρ = (LS + LB + J + Lint )ρ. (7)

The first term

LSρ = −i[HS, ρ] + LAρ + Lcρ (8)

is associated with the dynamics in S , which includes the co-
herent evolution governed by the Hamiltonian HS = �ca†a +
gA(σ+

A a + a†σ−
A ), as well as a coupling to the environment

associated with the terms LAρ = −γA(σ+
A σ−

A ρ + ρσ+
A σ−

A −
2σ−

A ρσ+
A ) for spin A and Lcρ = −κ (a†aρ + ρa†a − 2aρa†)

for the cavity mode.
The second term reads

LBρ = −i�σ T
+M�σ−ρ + iρ �σ T

+M∗ �σ−. (9)

Here, we have used vector and matrix notations (a superscript
T denotes the transpose operation) with

(M) j
 = (�B − iγB)δ j
 + (1 − δ j
)(	 j
 − iγ j
) (10)

and the spin ladder operators of B (�σ±) j = σ±
j . The matrix M

describes the internal dynamics of the B ensemble, namely, the
free evolution ∼�B of each spin of B, their couplings to the
environment ∼γB, and their mutual interactions due to coher-
ent (∼	 j
) and incoherent (∼γ j
) dipole-dipole interactions.

The third term in Eq. (7) reads

Jρ = 2�σ T
−γρ �σ+ (11)

and includes both individual (diagonal) and correlated (off-
diagonal) terms for the ensemble B with (γ ) j
 = γ j
.

The last term in Eq. (7) is given by

Lintρ =−i[(a �GT + σ−
A

�V T)�σ+ + (a† �GT + σ+
A

�V T)�σ−]ρ

+ iρ[(a �GT + σ−
A

�V ∗T)�σ+ + (a† �GT + σ+
A

�V ∗T)�σ−]

+ 2(σ−
A ρ(�γ T �σ+) + (�γ T �σ−)ρσ+

A ) (12)

and describes the coupling of B to A and to the cavity mode.
Here, we have introduced the vector notations ( �G) j = g j

and �V = �	 − i�γ with ( �	) j = 	 jA and (�γ ) j = γ jA. While
coherent spin-cavity and spin-spin couplings are encoded in
�G and �	, respectively, the terms ∝ �γ describe the dissipative
part of the spin-spin coupling between A and B. The latter
constitute a dissipative coupling between S and B.

3. Decomposition of the density operator

With the convenient form of Eq. (7), we can now decom-
pose the total density operator as

ρ = (P + Q)ρ = v + w, (13)

with w = Qρ = (1 − P)ρ, and derive an equation of motion
for the projection v = ρgg|g〉〈g| of the density operator onto
the ground-state manifold of B. The projectors P and Q fulfill
the relations P2ρ = Pρ, Q2ρ = Qρ, and PQρ = QPρ = 0.
Using Eq. (7), the time evolution of the operators v and
w is given by ∂tv = P(∂tρ) = PLPρ + PLQρ and ∂tw =
Q(∂tρ) = QLPρ + QLQρ. One can show that among all
possibilities stemming from the different contributions to L,
the only nonvanishing terms are

PLP = PLSP, PLQ = PJQ + PLintQ,

QLP = QLintP, QLQ = Q(LS + LB + J + Lint )Q. (14)

Henceforth, we assume that

w = Qρ �
∑

j

〈g|ρ|e j〉|g〉〈e j | +
∑

j

〈e j |ρ|g〉|e j〉〈g|

+
∑

j,l

〈e j |ρ|el〉|e j〉〈el |, (15)

i.e., we restrict the following calculations to the single-
excitation subspace where the B ensemble contains at most
one excitation, consistently with the assumption that the spins
of B remain close to their ground states. Here, |e j〉 denotes the
state where the jth spin of B is in its excited state, while the
others are in their ground states. This approximation allows
us to discard the term QJQ ∼ 0 in Eq. (14). In total, the
equations of motion of the projected density operators then
read

∂tv = PLSv + P(J + Lint )w, (16)

∂tw = Q(LB + LS )w + QLintv + QLintw. (17)
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Introducing the operator L0 = LS + LB that describes the
free evolution of the system, the formal solution of Eq. (17) is

w(t ) = eQL0(t−t0 )w(t0)

+
∫ t

t0

dτeQL0 (t−τ )[QLintv(τ ) + QLintw(τ )], (18)

which we now insert into Eq. (16). This yields

∂tv = PLSv + P(J + Lint )
∫ t

t0

dτeQL0(t−τ )QLintv(τ )

+ P(J + Lint )
∫ t

t0

dτeQL0 (t−τ )QLint

×
∫ τ

t0

dτ ′eQL0(τ−τ ′ )[QLintv(τ ′) + QLintw(τ ′)], (19)

assuming that the B ensemble is initially in its ground state
[w(t0) = 0].

Equation (19) is the desired equation of motion for the
projection v of the density operator onto the ground-state
manifold of B. In the following sections, we evaluate the
different contributions entering this equation using the defi-
nitions in Sec. III A 2, as well as a perturbative expansion in
Lint which describes the couplings of B to A and to the cavity
mode.

4. Perturbation to second order in Lint

We now consider all possible processes up to second order
in Lint. This procedure consists of a perturbative treatment
of the interaction between A and the cavity mode with the
quasimodes of the interacting B ensemble. It is justified when
the coupling strengths of these quasimodes to subsystem S
is sufficiently small compared to their (far-detuned) eigenfre-
quencies or dissipation rates (see, e.g., the Appendix), which
ensures that the spins of B remain weakly excited. Up to
second order in Lint, Eq. (19) provides

∂tv = PLSv + PLint

∫ t−t0

0
dτeQL0τ QLintv(t − τ )

+ PJ
∫ t−t0

0
dτeQL0τ QLint

×
∫ t−t0−τ

0
dτ ′eQL0τ

′
QLintv(t − τ − τ ′). (20)

Note that we have neglected the term QLintw(τ ′) in
Eq. (19) since its contribution is at least of order O(L3

int )
[see Eq. (18)]. Furthermore, our truncation is also consistent
with neglecting the term QJQ in Eq. (14) as we did before
since the latter would provide contributions of higher order in
Lint. In order to calculate the different contributions entering
Eq. (20), it is convenient to use a spectral decomposition of
the N × N non-Hermitian, complex symmetric matrix M in
Eq. (10). Assuming that the latter can be diagonalized [39],
we write B ≡ −iM and B = ∑

j λ j �x j �xT
j , where λ j and �x j ( j =

1, . . . , N) denote the complex eigenvalues and eigenvectors of
B, respectively. The eigenvectors satisfy the completeness re-
lation

∑
j �x j �xT

j = 1 and form an orthogonal basis with respect
to the inner product �xT

j �x
 = δ j,
.

5. Integration using time-scale separation

We can now proceed with the integration of the different
terms entering Eq. (20) and first calculate quantities of the
type LinteQL0τ QLintv(t − τ ). Using the definitions Eq. (12)
and v(t ) = ρgg(t )|g〉〈g|, as well as the completeness relation,
we obtain

Lintv(t − τ ) = −i
∑

j

V ↑
j ρgg(t − τ )|x j〉〈g| + H.c., (21)

where V ↑
j = (a �GT + σ−

A
�V T)�x j describes the action on sub-

system S when an excitation |x j〉 = (�xT
j �σ+)|g〉 for the jth

eigenmode of B is created.
Under the assumption that the dynamics of subsystem

S is slow compared to the internal dynamics of B, one
can use ρgg(t − τ ) ≈ ρgg(t ) in the integrand of Eq. (20),
together with a Taylor expansion to zeroth order in LSτ of
the operator exp[QLSτ ]Q, such that exp[Q(LB + LS )τ ]Q ≈
exp[QLBτ ]Q. Using the relation LB|x j〉〈g| = λ j |x j〉〈g|, we
obtain

eQL0τ QLintv(t − τ ) ≈ −i
∑

j

eλ jτV ↑
j ρgg(t )|x j〉〈g| + H.c.

(22)

Now applying Lint to the previous expression (while restrict-
ing ourselves to the single-excitation subspace) leads to

LintQ

⎛⎝−i
∑

j

eλ jτV ↑
j ρgg(t )|x j〉〈g| + H.c.

⎞⎠
= −(a† �GT + σ+

A
�V T)�σ−

∑
j

eλ jτV ↑
j ρgg(t )|x j〉〈g| + H.c.

− 2i(�γ T �σ−)
∑

j

eλ jτV ↑
j ρgg(t )|x j〉〈g|σ+

A + H.c.

+
∑

j

eλ jτV ↑
j ρgg(t )|x j〉〈g|(a† �GT + σ+

A ( �V ∗)T)�σ−+H.c.

(23)

Integration of the previous expression according to Eq. (20)
provides terms proportional to 1 − eλ j (t−t0 ) ≈ 1. This is justi-
fied when the expression is averaged on a coarse-grained time
scale �t [40,41] that fulfills |λ j |−1 � �t � τs, with τ−1

s the
typical rate for the dynamics of subsystem S . Note that, e.g.,
Re[λ1] = −γB < 0 for a single B.

We now use the completeness relation once again, as well
as the relations

P(�xT
j �σ−)(�xT


 �σ+)|g〉〈g| = δ j
|g〉〈g| and
∑

j �x j �xT
j /λ j = B−1,

in such a way that the second term in the first line of Eq. (20)
becomes

PLint

∫ t−t0

0
dτeQL0τ QLintv(t − τ )

≈ i([ �GTM−1 �G]a†a + [ �GTM−1 �V ]a†σ−
A

+ [ �V TM−1 �G]σ+
A a + [ �V TM−1 �V ]σ+

A σ−
A )v(t ) + H.c.

− 2([�γ TM−1 �G]av(t )σ+
A +[�γ TM−1 �V ]σ−

A v(t )σ+
A ) + H.c.

(24)
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The third term in Eq. (20) is calculated similarly, first us-
ing ρgg(t − τ − τ ′) ≈ ρgg(t − τ ) together with exp [QL0τ

′] ≈
exp [QLBτ ′] and then ρgg(t − τ ) ≈ ρgg(t ) with exp [QL0τ ] ≈
exp [QLBτ ]. Moreover, we use

LB|x j〉〈x∗
k | = (λ j + λ∗

k )|x j〉〈x∗
k | (25)

with 〈x∗
k | = 〈g|(�x∗T

k �σ−) and exploit the relations 2�xT
j γ�x∗


 =
−(λ j + λ∗


 )�xT
j �x∗


 and �X TM−1 �V ∗ = �X TM−1 �V + 2i �X TM−1 �γ
with �X = �G, �V . Averaging over a coarse-grained time scale
�t , we finally obtain

PJ
∫ t−t0

0
dτeQL0τ QLint

∫ t−t0−τ

0
dτ ′eQL0τ

′
QLintv(t − τ − τ ′)

≈ −i([ �GTM−1 �G]av(t )a† + [ �GTM−1 �V ]av(t )σ+
A

+ [ �V TM−1 �G]σ−
A v(t )a† + [ �V TM−1 �V ]σ−

A v(t )σ+
A ) + H.c.

+ 2([ �GTM−1 �γ ]av(t )σ+
A +[ �V TM−1 �γ ]σ−

A v(t )σ+
A )+H.c.

(26)

Now that the second and third terms on the right-hand side
of Eq. (20) have been calculated [Eqs. (24) and (26), respec-
tively], we can gather these contributions to write Eq. (20) in
the usual master equation form with new effective parameters.

6. Effective master equation parameters

Using the property �X TM−1 �Y = �Y TM−1 �X ( �X , �Y = �G, �V )
for the symmetric matrix M, the effective master equation
reads

∂tv = Leffv = −i
[
H eff

0 + H eff
JC , v

]+ Leffv, (27)

with the effective Hamiltonians

H eff
0 = �eff

A σ+
A σ−

A + �eff
c a†a, (28)

H eff
JC = geff

A (a†σ−
A + σ+

A a) (29)

and the effective dissipator

Leffv = − κeffD(a†, a)v − γ eff
A D(σ+

A , σ−
A )v

− μ(D(a†, σ−
A )v + D(σ+

A , a)v). (30)

Here, the effective parameters are

�eff
c = �c − Re[ �GTM−1 �G], �eff

A = −Re[ �V TM−1 �V ],

geff
A = gA − Re[ �GTM−1 �V ], κeff = κ + Im[ �GTM−1 �G],

γ eff
A = γA + Im[ �V TM−1 �V ], μ = Im[ �GTM−1 �V ]. (31)

Here, dissipative couplings between A and B (and thus S and
B) are encoded in �γ = −Im[ �V ].

Note that since the emitters of the eliminated ensemble B
are supposed to remain close to their ground states (low spin
excitations), the same derivation can be carried out when B
consists of bosonic degrees of freedom instead of spins.

The effective master equation parameters in Eq. (31) are
the main result of the adiabatic elimination procedure. In
Sec. IV below, we analyze those parameters for various sit-
uations.

B. Elimination in the classical limit

We now show that the parameters from Eq. (31) are iden-
tical to parameters that appear in a linear classical model for
the limit of low excitation numbers. The equations of motion
for the expectation values of the photon annihilation operator
a and the spin-lowering operators σ−

A and σ−
j are derived from

Eq. (1) as [42]

∂t 〈a〉 = −i(�c − iκ )〈a〉 − igA〈σ−
A 〉 − i

∑
j

g j〈σ−
j 〉, (32)

∂t 〈σ−
A 〉 = −γA〈σ−

A 〉 − igA〈a〉 −
∑

j

(γ jA + i	 jA)〈σ−
j 〉, (33)

∂t 〈σ−
j 〉 = −i(�B − iγB)〈σ−

j 〉 − ig j〈a〉
− (γ jA + i	 jA)〈σ−

A 〉 −
∑

 �= j

(γ j
 + i	 j
)〈σ−

 〉,

(34)

under the assumption of low-spin excitations [σ−
A , σ+

A ] ≈ 1
and [σ−


 , σ+

 ] ≈ 1 [43]. Note that since these equations of

motion describe coupled harmonic oscillators, this method
can alternatively be used when considering another cavity or a
mechanical oscillator for B and/or A (see, for instance, Refs.
[44] and [45]).

It is convenient to introduce the notations α ≡ 〈a〉, βA ≡
〈σ−

A 〉, and �β ≡ 〈�σ−〉, which allows us to write the previous set
of equations in the compact form

∂tα = −i[�c − iκ]α − igAβA − i �GT �β, (35)

∂tβA = −i[−iγA]βA − igAα − i �V T �β, (36)

∂t �β = −iM�β − i �Gα − i �V βA, (37)

where �G and �V are defined in Sec. III A 2. Equation (37)
admits the steady-state solution

�β = −M−1 �Gα − M−1 �V βA. (38)

Now using the solution Eq. (38) in Eqs. (35) and (36) one
obtains

∂tα = −i
[
�eff

c − iκeff
]
α − i

[
geff

A − iμ
]
βA,

∂tβA = −i
[
�eff

A − iγ eff
A

]
βA − i

[
geff

A − iμ
]
α, (39)

with the same effective parameters as in Eq. (31). Equation
(39) describes the effective dynamics for the expectation
values of the photon and spin operators a and σ−

A , respectively,
after adiabatic elimination of the degrees of freedom of B. In
the Appendix we show that this procedure is generally valid
for a situation where the full adiabatic elimination discussed
in Sec. III A is valid, i.e., when the eigenvalues of matrix M
(or, equivalently, B) associated with the internal dynamics of
B are the largest parameters of the problem. We have thus
shown that the time evolution of subsystem S in the classical
limit [Eq. (39)] corresponds to that of the classical fields α and
βA with oscillation frequencies �eff

c and �eff
A and decay rates

κeff and γ eff
A , respectively, as well as a coupling ∝ geff

A − iμ
between them.
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B

A

FIG. 2. (a) Two dipoles A and B aligned in the z direction and separated by the vector �r = (r, θ ) interact via dipole-dipole couplings
and with a cavity mode. The first two modes of the cavity are shown as red and green lines. (b) The coherent [g(�r)] and dissipative [ f (�r)]
dipole-dipole couplings are plotted for polar coordinates (r, θ ). The outer circles correspond to r/λ = 1 (λ: cavity mode wavelength). Since
the function g(�r) diverges for r → 0, it is plotted for g(�r) ∈ [−2, 2]. The thin dashed lines in the g(�r) profile correspond to the magic angles
θ∗ = arccos(1/

√
3) and π − θ∗ (see text).

Note that the same classical equations, (39), also follow
from the quantum master equation, (27), in the limit of low
excitations in S . The fact that the change in the correspond-
ing effective system parameters is identical, in both the full
classical and the quantum approach, is interesting. On a
qualitative level, the modification of the effective parameters
in subsystem S depends on the dynamics of the B ensemble
that it is coupled to. We operate in a regime where the B
emitters can be adiabatically eliminated and remain in the
low-excitation limit at all times. In this limit the linear classi-
cal model for the B ensemble becomes essentially exact. It is
thus plausible that the change in the corresponding effective
subsystem parameters is the same, independent of whether
subsystem S is treated quantum mechanically or classically.
In contrast to the full effective quantum master equation, (27),
the classical equations, (39), cannot of course feature quantum
correlations between the cavity mode and A since they enforce
the factorization 〈σ−

A a〉 = 〈σ−
A 〉〈a〉. They also cannot lead to

nonlinear effects for the photon mode, such as the photon
antibunching observed in [20], since the mode is described by
a complex number and not an operator. We point out that also
in the fully classical derivation of (39) a “correlated” decay at
rate μ emerges. We analyze this collective dissipative process
in detail in Sec. IV B below.

IV. DISCUSSION OF EFFECTIVE PARAMETERS

In this section we analyze how the physical parameters of
subsystem S [Eq. (31)] are modified and what their limits
are, depending on the system parameters and the geometry.
Therefore, we consider the case where B is reduced to a
single emitter and provide analytical formulas for the effective
parameters in this case (Sec. IV A). We find that the presence
of B results in a modification of the cavity-coupling strength
of A (Sec. IV A 1) and a change in the linewidths (Sec. IV A 2)
and leads to joint dissipative processes (Sec. IV A 3). In
the second part of this section (Sec. IV B) we analyze the
consequences of the joint dissipative processes for the system
dynamics. We discuss modifications of cavity transmission
spectra (Sec. IV B 1) and modification of the onset of strong
cavity coupling of A (Sec. IV B 2).

A. Effective parameters for B being a single emitter

We first consider the situation where B can be considered
a single emitter (e.g., a collective mode [20]) at position �rB ≡
(xB, yB, zB) separated from A by �r ≡ (x, y, z) ≡ �rB − �rA with
�rA ≡ (xA, yA, zA) [see Fig. 2(a)]. The coupling strength be-
tween the A [B] and the cavity mode reads gA = g(0)

A cos (kyA)
[gB = g(0)

B cos (kyB)]. Here, we choose g(0)
A , g(0)

B > 0, and k =
2π/λ = ωc/c denotes the cavity-photon wave vector (along
the y direction), with λ the cavity-mode wavelength and c the
speed of light in vacuum. We also assume that k ≈ kA ≈ kB,
with kA = ωA/c and kB = ωB/c, which is usually a good
approximation at optical frequencies.

The dipole-dipole interaction strength between A and B is
[33,34]

VAB = −3
√

γAγB

2

(
sin2(θ )

exp(iξ )

ξ

+ [3 cos2(θ ) − 1]

[
exp(iξ )

ξ 3
− i

exp(iξ )

ξ 2

])
, (40)

with ξ = kr (r ≡ |�r|) and θ = arccos (z/r). Using �V ≡
VAB = 	AB − iγAB, one can compute the quantities �GTM−1 �G,
�GTM−1 �V , and �V TM−1 �V entering Eq. (31), and the effective
parameters for the evolution according to Eqs. (27) and (30)
become

geff
A = gA − gB

	AB�B + γABγB

�2
B + γ 2

B

, (41)

γ eff
A = γA + γB(	2

AB − γ 2
AB) − 2�B	ABγAB

�2
B + γ 2

B

, (42)

κeff = κ + g2
BγB

�2
B + γ 2

B

, (43)

μ = gB
γB	AB − �BγAB

�2
B + γ 2

B

, (44)

and

�eff
A = − (	2

AB − γ 2
AB)�B + 2	ABγABγB

�2
B + γ 2

B

, (45)

�eff
c = �c − g2

B�B

�2
B + γ 2

B

. (46)
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The two parameters �B and γB are limited by the condition
of the validity of the adiabatic elimination, i.e., the effective
model. For instance, they have to fulfill

max(|	AB|, |γAB|) � |�B − iγB|. (47)

In the following discussion, we use the two dimensionless
functions g(�r) and f (�r), corresponding to the coherent and
dissipative parts of the dipole-dipole interaction,

	AB = √
γAγBg(�r), (48)

γAB = √
γAγB f (�r), (49)

respectively. Their geometry dependence is plotted in
Fig. 2(b).

1. Effective coupling strength

We first focus on the modification of the coupling strength
between A and the cavity mode. Using Eq. (41), the modifica-
tion of the coupling strength, �gA ≡ geff

A − gA, is

�gA = −gB

(
	AB

|�B − iγB|
�B

|�B − iγB|

+ γAB

|�B − iγB|
γB

|�B − iγB|
)

. (50)

Therefore, from Eq. (50) and from Eq. (47) it follows that
|�gA| � |g(0)

B |, which means that �gA generally cannot over-
come the cavity-coupling strength of B, as long as the adia-
batic elimination condition remains valid.

Using the position dependence of the cavity couplings, the
functions g(�r) and f (�r), and the fact that g(0)

A /g(0)
B = √

γA/γB

we can rewrite Eq. (50) as

�gA/g(0)
A = − cos(kyB)

γB

�2
B + γ 2

B

(
�Bg(�r) + γB f (�r)

)
. (51)

Evidently, the change in the cavity coupling of A can be
induced either by coherent [∝ �Bg(�r)] or by dissipative [∝
γB f (�r)] dipole-dipole interactions in Eq. (51). Let us now
analyze those two limits in more detail.

The dissipative limit |γB f (�r)| � |�Bg(�r)| is difficult to
achieve in the near-field, purely by the geometry. This is due
to the divergence |g(�r)| ∝ 1/r3, while | f (�r)| → 1 for r � λ.
An exception is “magic angle” dipole configurations with
3 cos2(θ ) = 1, for which near-field terms vanish in Eq. (40),
then only implying |g(�r)| ∝ 1/r for r → 0 [see Fig. 2(b)]. In
general, however, the dissipative limit is achieved for �B ≈ 0,
i.e., if B is close to resonance with A and the cavity. In this case
the validity of the adiabatic elimination in Eq. (47) must be
ensured by large γB, i.e., by γB � γAg2(�r) and γB � γA f 2(�r).
The modification of the cavity coupling becomes

�gA/g(0)
A = − cos(kyB) f (�r). (52)

Since | f (�r)| < 1, it follows that |�gA/g(0)
A | < 1 and the modi-

fication of the coupling strength is therefore generally limited
by g(0)

A . Still, coherent coupling of A to the cavity can be
effectively induced, for instance, when A is at a node of the
cavity mode (gA = 0) and B in the near-field of A with r � λ

and cos(kyB) �= 0 [20].

The coherent limit |�Bg(�r)| � |γB f (�r)| is generally
achieved for most configurations in the near-field where
|g(�r)| � | f (�r)|, as long as |�B| � γB. The modification of the
coupling,

�gA/g(0)
A = − cos(kyB)g(�r)

�BγB

�2
B + γ 2

B

, (53)

is then generally limited by the magnitude of g(�r). In a regime
where the adiabatic elimination condition, (47), is valid, if
|�B| ∼ γB, it is required that |	AB| � γB and thus |g(�r)| �√

γB/γA. On the other hand, condition (47) can be easily
fulfilled for large detuning, |�B| � γB, in this case

�gA/g(0)
A = − cos(kyB)g(�r)

γB

�B
� |g(�r)|. (54)

While the change in coupling strength is still limited by |g(�r)|,
generally large enhancements of gA are possible in this regime
[20].

2. Effective linewidths

We now focus on the linewidth modifications of the cavity
and A. From Eq. (43), it is evident that the cavity mode
linewidth κ can only be broadened by the interaction with B
since

�κ ≡ κeff − κ = g2
BγB

�2
B + γ 2

B

� 0. (55)

The change in effective linewidth of A, �γA ≡ γ eff
A − γA,

using Eq. (42), can be written in the form

�γA/γA =
[

[γBg(�r) − �B f (�r)]2

�2
B + γ 2

B

− f 2(�r)

]
. (56)

The first term in Eq. (56),

[γBg(�r) − �B f (�r)]2

�2
B + γ 2

B

� 0, (57)

always leads to a broadening of γA, while the second term,
f 2(�r) � 0, always contributes to a linewidth reduction.

Importantly, strong linewidth narrowing is possible for spe-
cial points for which the broadening from Eq. (57) vanishes,
i.e., when

γBg(�r) = �B f (�r) (58)

is fulfilled. Then one can achieve large linewidth reductions
�γA/γA → −1 in the near-field, where f (�r) → 1. Further-
more, we note that a reduction can also be achieved in the
dissipative limit with �B = 0, discussed above. Then

�γA/γA = [
g2(�r) − f 2(�r)

]
, (59)

and γ eff
A < γA occurs for any geometry with | f (�r)| > |g(�r)|,

e.g., close to the magic angle θ∗ = arccos(1/
√

3) in the near-
field [see Fig. 2(b)].

3. Joint dissipative couplings

We now focus on the effective parameter μ that enters as a
collective dissipative term in Eq. (30). Defining the (positive)
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broadening of A as

δγA ≡ γA
[γBg(�r) − �B f (�r)]2

�2
B + γ 2

B

, (60)

the modulus of μ [Eq. (44)] can be written in the very simple
form

|μ| =
√

�κδγA. (61)

Since δγA < γ eff
A and �κ < κeff, this implies that |μ| <√

κeffγ eff
A � max(κeff, γ eff

A ), which sets a fundamental limi-
tation on |μ|. Note that at special points of ideal linewidth
narrowing [condition (58)], δγA = 0 and then also μ = 0.

B. Consequences of joint dissipative coupling

Importantly, the new dissipative terms in Eq. (30) are not
in Lindblad form, i.e., they do not consist only of terms
D(L†, L), with L a Lindblad operator. In addition to the
“diagonal” decay of the cavity [D(a†, a)] and A [D(σ+

A , σ−
A )],

there are also off-diagonal decay processes involving both the
cavity and A [D(a†, σ−

A ) and D(σ+
A , a)], which are not present

in the bare system decay in Eq. (5). To bring Eq. (30) back into
a Lindblad form, we define new collective operators

L+ = cos(α/2)a + sin(α/2)σ−
A , (62)

L− = − sin(α/2)a + cos(α/2)σ−
A . (63)

Then Eq. (30) can be written as

Leffv = −γ+D(L†
+, L+)v − γ−D(L†

−, L−)v. (64)

The Lindblad operators are linear combinations of the
photon annihilation operator a and the spin-lowering operator
σ−

A , with tan(α) = 2μ/(κeff − γ eff
A ) and 0 � α < 2π . The

decay rates associated with the Lindblad operators are

γ± = κeff + γ eff
A

2
±
√

(κeff − γ eff
A )2

4
+ μ2 (65)

and correspond to the eigenvalues of the matrix(
κeff μ

μ γ eff
A

)
. (66)

The two Lindblad jump operators describe mutual decay
processes between the cavity and A, which are mediated by the
presence of B. This is analogous to sub- and superradiant de-
cay of atoms due to collective incoherent processes, induced
by the coupling to a joint cavity mode [36,46]. Similarly,
also the parameters γ jA introduced in Sec. II correspond to
such off-diagonal decay mechanisms, which are in this case
mediated by the surrounding electromagnetic field [33].

In the following, we now investigate the consequences of
the mutual decay mechanisms between the cavity mode and
A in the effective model that is mediated by the presence of
ensemble B. We analyze the modification of the cavity trans-
mission spectum in Sec. IV B 1 and study the modification
of the onset of strong coupling between the cavity and A in
Sec. IV B 2.

1. Cavity transmission spectrum

To compute a cavity transmission spectrum, we consider a
weak laser probe driving the cavity, described by the (addi-
tional) time-dependent Hamiltonian

HL = η(aeiωLt + a†e−iωLt ) (67)

with frequency ωL and strength η.
Similarly as in Sec. III B, we derive the equations of motion

in the classical linear limit valid for low excitation numbers
(initial state without excitations and weak drive η → 0). Then,
using the classical variables α ≡ 〈a〉, βA ≡ 〈σ−

A 〉, and �β ≡
〈�σ−〉, in the frame rotating with the laser frequency ωL, the
equations of motion are

∂tα = −i[�̃c − iκ]α − igAβA − i �GT �β − iη, (68)

∂tβA = −i
[
�̃A − iγA

]
βA − igAα − i �V T �β, (69)

∂t �β = −iM̃�β − i �Gα − i �V βA, (70)

where �̃c = ωc − ωL, �̃A = ωA − ωL, and (M̃) j
 = (�̃B −
iγB)δ j
 + (1 − δ j
)(	 j
 − iγ j
) with �̃B = ωB − ωL. The
steady-state solution is⎛⎝αst

βst
A

⎞⎠ = −
⎛⎝�̃eff

c − ĩκeff g̃eff
A − iμ̃

g̃eff
A − iμ̃ �̃eff

A − iγ̃ eff
A

⎞⎠−1⎛⎝η

0

⎞⎠, (71)

with the definitions

�̃eff
c = �̃c − Re[ �GTM̃−1 �G], �̃eff

A = �̃A − Re[ �V TM̃−1 �V ],

g̃eff
A = gA − Re[ �GTM̃−1 �V ], κ̃eff = κ + Im[ �GTM̃−1 �G],

γ̃ eff
A = γA + Im[ �V TM̃−1 �V ], μ̃ = Im[ �GTM̃−1 �V ]. (72)

The cavity transmission spectrum is proportional to the mean
photon number in the steady state ∝ |αst|2, which can be
obtained from Eq. (71).

We consider a situation where the eigenvalues of the matrix
in the laser frame, M̃ = M + 1(ωA − ωL ) (1 is the identity
matrix), are well approximated by the eigenvalues of M. This
is true when the shift |ωA − ωL| is small compared to the
real part of the eigenvalues of M, which are related to the
eigenfrequencies of the interacting B ensemble. Note that this
condition can be ensured in the dispersive limit (where the
eigenfrequencies of B are far detuned, i.e., spectrally well
separated from S) and that this is consistent with the require-
ment for the validity of the adiabatic elimination (see the Ap-
pendix), also in the presence of the laser drive. The probe laser
is then scanned only over a frequency range that is relevant for
the dynamics of the subsystem S . In this situation κ̃eff ≈ κeff,
γ̃ eff

A ≈ γ eff
A , g̃eff

A ≈ geff
A , μ̃ ≈ μ, and the laser frequency only

enters through the detunings �̃eff
c = ωeff

c − ωL and �̃eff
A =

ωeff
A − ωL with ωeff

c � ωc − Re[ �GTM−1 �G] and ωeff
A � ωA −

Re[ �V TM−1 �V ]. Then we define the normalized steady-state
cavity transmission spectrum by Tc(ωL ) ≡ (κ2/η2)|αst|2 with

αst = η
(
�̃eff

A − iγ eff
A

)(
geff

A − iμ
)2 − (

�̃eff
A − iγ eff

A

)(
�̃eff

c − iκeff
) . (73)

For a finite mutual decay rate μ �= 0, we find that this
transmission spectrum features two asymmetric peaks sepa-
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FIG. 3. Normalized steady-state cavity transmission spectra Tc.
(a) μ = 0: Dotted, dashed, and solid lines correspond to geff

A = 0.3,
1, and 2, respectively. (b) geff

A = 2: Solid, dashed, and dotted lines
correspond to μ = 0, 0.2, and 0.5, respectively. All parameters are in
units of g(0)

A ≡ 1. Here, γ eff
A = 1, κeff = 2, and η = 0.1.

rated by an energy splitting ∝ 2|geff
A | for large enough geff

A .
It is instructive to associate the peaks with “polaritons” by
diagonalizing the matrix entering Eq. (71). Considering A in
resonance with the cavity mode, i.e., ωeff

A = ωeff
c ≡ ωeff

0 , and
by defining �̃eff = ωeff

0 − ωL, Eq. (71) can be decomposed as
(assuming the dispersive limit)⎛⎝αst

βst
A

⎞⎠ =
⎧⎨⎩−iT −

⎛⎝�̃eff 0

0 �̃eff

⎞⎠⎫⎬⎭
−1⎛⎝η

0

⎞⎠, (74)

where

T =
⎛⎝ −κeff −igeff

A − μ

−igeff
A − μ −γ eff

A

⎞⎠ (75)

is a non-Hermitian, complex symmetric matrix, which we
diagonalize as T = ∑

p=± ξp�up�uT
p . Here, the two eigenvec-

tors are defined as �u+ = (u+
1 , u+

2 ) and �u− = (u−
1 , u−

2 ), with∑
p=± �up�uT

p = 1. The eigenvalues are

ξ± = −γ eff
A + κeff

2
∓
√(

κeff − γ eff
A

2

)2

− (
geff

A − iμ
)2

. (76)

We introduce the polariton linewidths and frequencies as-
sociated with the real and imaginary parts of ξ±, namely,
�± = −Re[ξ±] and ω± = ωeff

0 − Im[ξ±]. This leads to

Tc(ωL ) = κ2

∣∣∣∣ Z+
ωL − ω+ + i�+

+ Z−
ωL − ω− + i�−

∣∣∣∣2, (77)

where Z+ = u+
1 u−

2 /(u+
1 u−

2 − u−
1 u+

2 ) and Z− =
u−

1 u+
2 /(u−

1 u+
2 − u+

1 u−
2 ) are related to the cavity and spin

admixtures of the polaritons eigenmodes.
Cavity transmission spectra from Eq. (77) are plotted

for μ = 0 and different effective coupling strengths geff
A in

Fig. 3(a) and for geff
A = 2 and different mutual decay rates

μ in Fig. 3(b). For μ = 0, the spectrum is symmetric with
respect to ωeff

0 , and increasing geff
A allows it to enter the

strong-coupling regime characterized by the emergence of
two well-resolved polariton peaks. We find that increasing
μ > 0 leads to an asymmetric spectrum with two peaks of
different heights and linewidths �+ > �−, which is a common
feature discussed for cavity-coupled molecules [47–49]. In
particular, we find that here the joint dissipative processes
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0.5

1

1.5

2

2.5

FIG. 4. Polariton linewidths �± (a) and frequencies ω± (b) as
a function of geff

A � 0 for different μ � 0. The upper (here ξ+) and
lower (here ξ−) polaritons are depicted as blue and red lines, while
the solid, dashed, and dotted lines correspond to μ = 0, 0.2, and 0.5,
respectively. All parameters are in units of g(0)

A ≡ 1. Here, γ eff
A = 1

and κeff = 2.

between A and the cavity lead to a lower or upper polariton
with a subradiant or superradiant linewidth, respectively.

2. Onset of strong coupling

Finally, we focus on how a finite μ �= 0 modifies the
conditions for reaching strong coupling between A and the
cavity. The polariton linewidths �± and frequencies ω± are
plotted in Figs. 4(a) and 4(b), respectively, as a function of
geff

A � 0 for different μ � 0.
We first focus on the case μ = 0 (solid lines). For

geff
A < |κeff − γ eff

A |/2, the two polariton modes are unde-
fined, and the eigenmodes of the system have frequencies
ω± = ωeff

0 and linewidths �± with min(γ eff
A , κeff ) � �− �

�+ � max(γ eff
A , κeff ). In this weak-coupling regime, the cav-

ity transmission spectrum features two strongly overlapping
peaks [see Fig. 3(a)], and the time evolution of the system
exhibits overdamped Rabi oscillations.

For μ = 0, the strong coupling is reached when geff
A >

|κeff − γ eff
A |/2 or, alternatively, when geff

A > max(γ eff
A , κeff ). In

this case, two polariton modes with different frequencies,
ω±, and identical linewidths, (κeff + γ eff

A )/2, emerge. The
transmission spectrum features two weakly overlapping peaks
[see Fig. 3(a)], and the dynamics of S exhibits well-defined
Rabi oscillations. The two eigenvalues ξ± coalesce for the
“exceptional point” geff

A = (κeff − γ eff
A )/2 [50,51].

Finite μ �= 0 affects the onset of strong coupling. In this
case, the degeneracy of the two eigenvalues ξ± is removed
and the exceptional point for the onset of strong coupling
disappears. The polariton linewidths and frequencies are dif-
ferent for all geff

A . By calculating the first derivative of the
linewidth �+ with respect to geff

A � 0, we find that �+ is a
monotonically decreasing function of geff

A . Therefore, the most
restrictive condition for strong coupling in the case μ �= 0 is
geff

A > γ+, where

γ+ ≡ �+(geff
A = 0) = γ eff

A + κeff

2
+
√(

κeff − γ eff
A

2

)2

+ μ2.

(78)

We note that for the discussion of Fig. 3 and Fig. 4 above,
μ � 0 and geff

A � 0 have been assumed. The fact that the
lower and upper polaritons display subradiant and superra-
diant properties, respectively, is a consequence of this. The

013714-9



D. HAGENMÜLLER et al. PHYSICAL REVIEW A 102, 013714 (2020)

features presented in Figs. 3 and 4 hold for arbitrary μ and
geff

A , whereas for μgeff
A < 0 the asymmetry is reversed, i.e.,

the lower (upper) polariton exhibits superradiant (subradiant)
behavior.

V. CONCLUSION AND OUTLOOK

In conclusion, we have carried out a detailed study of the
impact of a dipolar environment on the dynamics of a single
dipole A coupled to a cavity mode. We performed a detailed
adiabatic elimination of the dipoles in the environment and
computed effective parameters for the subsystem consisting of
A and the cavity. Since the dipoles in the environment couple
to both A (with full coherent and dissipative dipole-dipole
interactions) and the cavity, they modify the properties of the
subsystem significantly. We analyzed effective modifications
and limitations of subsystem linewidths, coherent cavity-
coupling strengths, and emerging collective dissipative pro-
cesses between A and the cavity. In particular, the latter joint
dissipative decay processes can lead to peculiar signatures in
the strong-coupling regime.

Our work highlights the impact of “active” environments
on cavity-QED systems, which are relevant in the field of
molecular polaritonics [11,17,52–55] where environments
such as solvents can play a crucial role [18,19]. There, other
interesting perspectives of this work include extensions to
disordered ensembles in the context of the emergent field of
polaritonic chemistry.
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APPENDIX: VALIDITY OF THE ADIABATIC
APPROXIMATION

In this Appendix, we discuss in more detail the condi-
tions required for the validity of the adiabatic elimination of
B, using the derivation of the model in the classical limit
(Sec. III B). We derive the general condition, under which
the steady-state solution for the B ensemble [Eq. (38)] can be
inserted into Eqs. (35) and (36) to obtain the set of equations
in (39).

We first write Eq. (37) as ∂t �β = B�β(t ) + �S(t ) with
B = −iM and �S(t ) = −i[ �Gα(t ) + �V βA(t )]. The formal so-
lution of this differential equation reads �β(t ) = eBt �β(0) +∫ t

0 dτ ′eBτ ′ �S(t − τ ′). The eigenvalues of matrix B are given by
λ j (as in Sec. III A 4). These eigenvalues determine the fast
dynamics of the interacting B ensemble. For simplicity, we
assume the limit of large t (with Re{λ j} < 0) and set the upper
limit of integration to infinity,

�β(t ) =
∫ ∞

0
dτ ′eBτ ′ �S(t − τ ′). (A1)

The first term eBt �β(0) vanishes when assuming the initial
condition �β(0) = 0 similarly as in Sec. III A. If the ensemble
emitters are initially (here t = 0) sufficiently close to the
ground state, the first term eBt �β(0) becomes negligible when
one averages over a time interval �t � |λ j |−1, where �t is
a coarse-grained time scale assumed to be large compared to
the typical time scale associated with the dynamics of the B
ensemble but small compared to the time scale of the effective
dynamics of subsystem S . In other words, this requires a
time-scale separation between the B ensemble and subsystem
S .

Using the definition B = ∑
j λ j �x j �xT

j from Sec. III A 4,

Eq. (A1) provides �β(t ) = ∑
j �x j

∫∞
0 dτ ′eλ jτ

′ �xT
j
�S(t − τ ′). Af-

ter integration by parts, the previous equation can be written
as �β(t ) = �βad(t ) + �βret (t ) with

�βad(t ) = −
∑

j

�x j

λ j
�xT

j
�S(t ) = i

∑
j

�x j

λ j

[
�xT

j
�Gα(t ) + �xT

j
�V βA(t )

]
,

(A2)

�βret (t ) = −
∑

j

�x j

λ j

∫ ∞

0
dτ ′eλ jτ

′
∂τ ′ �xT

j
�S(t − τ ′). (A3)

Using the relation B−1 = iM−1 = ∑
j �x j �xT

j /λ j , one can

write the adiabatic solution �βad(t ) in Eq. (A2) in the form of
Eq. (38), namely, �βad(t ) = −M−1 �Gα(t ) − M−1 �V βA(t ). Fur-
thermore, since α(t ) and βA(t ) are, respectively, of order

√
n̄

(with n̄ the mean photon number) and unity, the condition
|�β(t )|2 � 1 of low population for spins B requires |�xT

j
�V | �

|λ j | and |�xT
j
�G|√n̄ � |λ j |. In the limit of small n̄ (vacuum-

Rabi couplings), the latter requirement reads |�xT
j
�G| � |λ j |.

The previous conditions are consistent with assuming a suffi-
ciently weak coupling between the B ensemble and subsystem
S , which justifies a perturbative treatment of the interaction
(as in Sec. III).

The solution �βret (t ) [Eq. (A3)] is associated with retarda-
tion effects and was neglected in Eq. (38) provided �βret (t ) �
�βad(t ). In order to justify this approximation, we now estimate
the contribution �βret (t ) in a self-consistent manner, which al-
lows us to obtain the leading-order correction to the adiabatic
solution. We start from Eq. (A3) with the definition of �S(t ) and
calculate the time derivatives ∂τ ′α(t − τ ′) and ∂τ ′βA(t − τ ′)
using Eqs. (35) and (36). This leads to
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�βret(t ) = −
∑

j

�x j

λ j

∫ ∞

0
dτ ′eλ jτ

′
{
�xT

j
�G
[
(�c − iκ )α(t − τ ′) + gAβA(t − τ ′) + �GT �β(t − τ ′)

]
+ �xT

j
�V
[
−iγAβA(t − τ ′) + gAα(t − τ ′) + �V T �β(t − τ ′)

]}
. (A4)

Now replacing �β(t − τ ′) with its adiabatic solution �β(t − τ ′) ≈ �βad(t − τ ′), the term �βret (t ) is estimated as

�βret(t ) ≈ −
∑

j

�x j

λ j

∫ ∞

0
dτ ′eλ jτ

′
{
�xT

j
�G
[
(�c − iκ )α(t ) + gAβA(t ) + �GT

(
− M−1 �Gα(t ) − M−1 �V βA(t )

)]
+ �xT

j
�V
[

− iγAβA(t ) + gAα(t ) + �V T
(

− M−1 �Gα(t ) − M−1 �V βA(t )
)]}

. (A5)

Here, we have also replaced α(t − τ ′) with α(t ) and βA(t − τ ′) with βA(t ) in the integrand, similarly to the approximations
ρgg(t − τ ) ≈ ρgg(t ) and exp[(LB + LS )τ ] ≈ exp[LBτ ] in Sec. III A, which hold when the time scales associated with the
dynamics of B and subsystem S are well separated. Using the definitions of the effective parameters in Eq. (31), the retarded
solution reads

�βret(t ) ≈
∑

j

�x j

λ2
j

{
�xT

j
�G[(�eff

c − iκeff
)
α(t ) + (

geff
A − iμ

)
βA(t )

]+ �xT
j
�V [(�eff

A − iγ eff
A

)
βA(t ) + (

geff
A − iμ

)
α(t )

]}
. (A6)

By comparing Eqs. (A2) and (A6), we find that |�eff
c −

iκeff| � |λ j |, |�eff
A − iγ eff

A | � |λ j |, and
√

n̄|geff
A − iμ| � |λ j |

are necessary conditions to neglect retardation effects (�βret �
�βad). These conditions correspond to a separation of the dif-
ferent time scales, namely, that the dynamics of subsystem S
is slow compared to that of B, consistent with the substitutions
α(t − τ ′) ≈ α(t ) and βA(t − τ ′) ≈ βA(t ).

In conclusion, the global condition for adiabatic elimina-
tion of B is that λ j are the largest parameters of the problem,
in agreement with the arguments in Sec. III used in the deriva-
tion of the effective master equation. Note that when B is
reduced to a single spin, this condition becomes |�B − iγB| �
{|	AB−iγAB|,|gB|√n̄,|�eff

c −iκeff |,|�eff
A −iγ eff

A |,√n̄|geff
A −iμ|}.
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Vučković, Phys. Rev. Lett. 122, 243602 (2019).

[24] M. Lukin, M. Fleischhauer, and A. Imamoğlu,
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