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Nonlocal dispersion cancellation for three or more photons
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The entanglement of quantum systems can produce a variety of nonclassical effects that have practical
applications in quantum information science. One example of this is nonlocal dispersion cancellation, in which
the effects of dispersion on one photon can be canceled out by the dispersion experienced by a second photon at a
distant location. In this paper, we extend the analysis of nonlocal dispersion cancellation to three or more photons.
We find that energy-time entanglement of three or more photons can lead to a complete or partial cancellation
of dispersion depending on the experimental conditions. These results may be useful in implementing quantum
key distribution in networks with three or more nodes.
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I. INTRODUCTION

A short classical pulse of light propagating through a
dispersive medium will become broadened, which can intro-
duce a significant uncertainty in the time at which it will be
detected. Two classical pulses traveling in two different media
will be broadened independently, with a resulting increase in
the uncertainty in their relative detection times. In contrast,
two photons that are entangled in energy and time [1,2] can
propagate through two different media in such a way that
the dispersion experienced in one medium is canceled out by
the dispersion in the other medium [3–23]. In this paper, we
extend the theory of nonlocal dispersion cancellation to three
or more photons and show that complete or partial cancella-
tion of dispersion can occur, depending on the experimental
arrangement.

Nonlocal dispersion cancellation has a number of potential
applications in quantum key distribution (QKD) or quantum
networks, where the data rate can be limited by the effective
pulse width. The reduced timing uncertainties are especially
important for QKD systems based on nonlocal interferometry
[1,2], where the difference in interferometer path lengths must
be larger than the effective width of the wave packets. In
addition, nonlocal dispersion cancellation itself can be used
as the basis for quantum key distribution [24–27]. Roughly
speaking, the presence of an eavesdropper will destroy the
dispersion cancellation, which can be detected by the system.
Nonlocal dispersion cancellation can also be employed for
clock synchronization in a protocol that is resistant to pulse
distortions caused in transit [28–30]. Biomedical imaging
applications have also made use of nonlocal dispersion can-
cellation to improve the quality of the images [31–34]. We
expect that the extension of nonlocal dispersion cancellation
to higher numbers of photons will also have potential appli-
cations, especially for quantum networks with three or more
nodes.

We will consider the tripartite entangled state created by
a χ (3) nonlinear crystal to study nonlocal dispersion cancel-
lation for the three-photon case. A similar approach allows

us to extend the results to larger photon numbers. Similar
results can also be obtained using two cascaded χ (2) crys-
tals [35]. Three-photon entanglement has previously been
used in other applications, such as nonlocal interferometry
[35–37].

The paper is organized as follows. Section II calculates
the effects of nonlocal dispersion cancellation for the three-
photon entangled state created from a single χ (3) down-
conversion process. Section III calculates the corresponding
dispersion for three classical pulses of light. The classical
and quantum-mechanical results are compared in Sec. IV.
Section V extends the previous results for the three-photon
case to higher photon numbers. Section VI provides a sum-
mary and conclusion. Additional details are provided in
the Appendix.

II. THREE-PHOTON DISPERSION CANCELLATION

The most straightforward method for creating tripartite
energy-time entangled photon states is through parametric
down-conversion [38,39]. In this section, we consider the
generation of three entangled photons using a single down-
conversion process in a χ (3) nonlinear crystal as illustrated
in Fig. 1. This process converts a high-energy pump photon
into three secondary photons with lower energies. From en-
ergy conservation, the sum of the frequencies of the three
secondary photons must equal that of the pump photon, but
in general their frequencies need not be equal. As is the case
for two photons, the resulting three-photon state is entangled
both in energy and time.

In the absence of any dispersion and in the limit of large
bandwidths, the three photons would be detected at the same
time if they travel equal distances to the detectors. That will no
longer be the case in general in the presence of dispersion, and
we calculate the probability distribution for the three photon
detection times. The dispersion coefficients in the three media
where the photons propagate will be denoted β1, β2, and β3,
while the propagation distances will be denoted x1, x2, and x3.
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FIG. 1. An entangled three-photon source using a χ (3) nonlinear
crystal pumped by a laser at a frequency of ω0. Each photon passes
through a filter with bandwidth σF before propagating through
separate media with dispersion coefficients given by β1, β2, and β3.

The most general form of the initial state of the three down-
converted photons is given by [35,38]

|ψ〉 =
∫

dω1dω2dω3g(ω1, ω2, ω3)â†
k1

b̂†
k2

ĉ†
k3
|0〉. (1)

Here ω1, ω2, and ω3 are the angular frequencies of the photons
while the corresponding photon creation operators will be
denoted by â†

k1
, b̂†

k2
, and ĉ†

k3
. The function g(ω1, ω2, ω3) is

determined by the nonlinear crystal and the phase match-
ing conditions. We will assume that the three photons pass
through Gaussian filters whose bandwidths are sufficiently
narrow that the function g(ω1, ω2, ω3) can be approximated
by the product of three Gaussians and a Dirac delta function
for energy conservation. The state of the system after the three
filters can then be written in the form

|ψ〉 = c
∫ ω0

0
dω1

∫ ω0−ω1

0
dω2 f1 f2 f3â†

k1
b̂†

k2
ĉ†

k3
|0〉, (2)

where c is a constant and

fi = 1√
2πσF

e−(ωi−ωF )2/2σ 2
F . (3)

Here σF represents the bandwidth of the filters, which are all
assumed to be the same with central frequencies ωF = ω0/3.
Equation (2) makes use of the fact that the sum of the three
frequencies must equal ω0.

It will be convenient to introduce three new variables, ε1,
ε2, and ε3, defined in such a way that

ω1 = ω0

3
+ ε1,

ω2 = ω0

3
+ ε2,

ω3 = ω0

3
+ ε3, (4)

where ε3 = −ε1 − ε2. This leaves two independent variables,
ε1 and ε2.

In the Heisenberg picture, the positive frequency compo-
nent of the electric field operator for each photon is given by

Ê+(xi, ti ) = i
∑
ωi

(
2π h̄ωi

V

)1/2

ei(kixi−ωiti )âki . (5)

The constant V is the volume corresponding to the use of
periodic boundary conditions while the wave numbers ki are a

function of ωi in a dispersive medium. The negative frequency
component of the field operator is the Hermitian conjugate of
the positive frequency component. We can define an effective
wave function ψ given by

ψ (x1, x2, x3, t1, t2, t3)

≡ 〈0|Ê+(x1, t1)Ê+(x2, t2)Ê+(x3, t3)|ψ〉. (6)

Inserting the change of variables in Eq. (4) into Eq. (2) and
converting the sums to integrals gives

ψ = c′
∫ 2ω0/3

−ω0/3
dε1

∫ 2ω0/3−ε

−ω0/3
dε2 f1 f2 f3

× ei[(k1x1+k2x2+k3x3 )−(ω1t1+ω2t2+ω3t3 )]. (7)

Here c′ is a constant and the factors of ωi in the electric
field operators have been approximated by the central filter
frequency ωF , which is valid when the width of the filters is
sufficiently narrow.

As usual, the wave numbers ki can be expanded in a Taylor
series around the central frequency ωF :

ki(ωi ) = kFi + αi(ωi − ωF ) + βi(ωi − ωF )2

= kFi + αiεi + βiεi
2. (8)

Here we have assumed that the filters are sufficiently narrow
that third- and higher-order terms can be neglected. The
coefficients αi of the first-order terms are related to the group
velocities whereas the coefficients βi of the second-order
terms give rise to dispersion.

Substituting Eq. (8) into Eq. (7) and extending the integrals
to infinity under the assumption that the filter bandwidths are
narrow compared to ω0/3 gives

ψ (t1, t2, t3) = c′ei[kF1 x1+kF2 x2+kF3 x3−(α1x1+α2x2+α3x3 )ω0/3]

×
∫ ∞

−∞
dε1

∫ ∞

−∞
dε2 f1 f2 f3

× e−i[ω1(t1−α1x1 )+ω2(t2−α2x2 )+ω3(t3−α3x3 )]

× ei[β1x1ε1
2+β2x2ε2

2+β3x3(−ε1−ε2 )2]. (9)

We introduce two new variables t and τ defined in such a way
that

t2 = t1 + t,
t3 = t1 + t + τ = t2 + τ.

(10)

Thus t is the delay between the detection of photon 2 and
photon 1, while τ is the delay between photons 3 and 2. All of
the Gaussian integrals can then be performed by substituting
Eqs. (4) and (10) into Eq. (9) and using the identity∫ ∞

−∞
dxe−(ax2+bx+c) =

√
π

a
e(b2−4ac)/4a. (11)

Evaluating the integrals gives a coincidence probability den-
sity P(t, τ ) = ψ∗ψ that can be written in the form

P(t, τ ) = c′′ exp

(
2σ 2

F

N ′
1 + N ′

2 + N ′
3

D

)
. (12)
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FIG. 2. The same entangled three-photon source shown in Fig. 1,
with the addition of a narrow-band filter and detector placed in the
path of photon 3. This allows postselection on the frequency of
photon 3.

Here

N ′
1 = −t2{3 + 4σ 4

F [(β2x2)2 + (β2x2)(β3x3) + (β3x3)2]
}
,

N ′
2 = −tτ

[
3 + 4σ 4

F {(β1x1)(β2x2) + 2(β2x2)2

+(β2x2)(β3x3) − (β1x1)(β3x3)
]
,

N ′
3 = −τ 2{3 + 4σ 4

F [(β1x1)2 + (β1x1)(β2x2) + (β2x2)2]
}
,

(13)

and

D = 9 + 8σ 4
F

{
2(β1x1)2 + 2(β2x2)2 + 2(β3x3)2

+ (β1x1)(β2x2) + (β1x1)(β3x3) + (β2x2)(β3x3)

+ 2σ 4
F [(β1x1)(β2x2) + (β1x1)(β3x3) + (β2x2)(β3x3)]2

}
(14)

We have simplified the form of the equations by making the
substitution ti → ti − αixi, which subtracts off the effects of
the group velocities. The calculations are discussed in more
detail in the Appendix. These results will be plotted and
discussed in Sec. III.

We have also considered the situation in which photon 3
is passed through a narrow-band filter before it is detected,
as illustrated in Fig. 2. Postselecting on a specific frequency
ω3 = ω̃3 collapses the state of the system and effectively
introduces a Dirac delta function δ(ω3 − ω̃3) into the inte-
grals. Following a similar process as before, we arrive at a
probability distribution for the detection times of photons 1
and 2 that is given by

P(t ) = c exp

[
−(t − t̄ )2

2σ ′2
T

]
, (15)

where

t̄ = (α2x2 − α1x1) + (β2x2 − β1x1)
(ω0

3
− ω3

)
, (16)

and

σ
′2
T = 1/σ 4

F + (β1x1 + β2x2)2

1/σ 2
F

. (17)

We note from Eq. (17) that the effects of dispersion on
photons 1 and 2 can be eliminated if we choose β1x1 =
−β2x2, as in Ref. [3]. In addition, it can be seen from Eq. (16)

that the choice of the postselected frequency ω̃3 can be used to
control the relative detection times of the other two photons.
All of these features are due to the entanglement of the third
photon with the other two.

III. CLASSICAL PULSES

We now calculate the analogous results for the case of
three classical pulses of light propagating in three separate
media, such as three optical fibers. The correlated intensity
distribution of the pulses after propagation will be compared
to the results for three entangled photons as given in Eq. (12).

The electric field Ei(0, ti ) of the classical pulses emitted at
the source will be assumed to be Gaussians described by

Ei(0, ti ) = E0

2π

∫ ∞

−∞
e−(ωi−ωF )2/2σ 2

F e−iωiti dωi. (18)

After the pulses propagate through their respective media, the
electric fields at the three detectors at xi become

Ei(xi, ti ) = E0

2π

∫ ∞

−∞
e−(ωi−ωF )2/2σ 2

F

× ei[kF +αi (ωi−ωF )+βi (ωi−ωF )2]xi e−iωiti dωi, (19)

where kF = ωF /c. Equation (19) can be integrated to give

Ei(xi, ti ) = E0

2π1/2ai
exp

(
− (ti − αixi )2

(
σ 2

0 + iβixi
)

4
[
σ 4

0 + (βixi )2
]

)
, (20)

where

a2
i = 1

2σ 2
F

− iβixi, (21)

and

σ 2
0 = 1

2σ 2
F

. (22)

An irrelevant phase factor has been dropped.
Multiplying the fields in Eq. (20) by their complex conju-

gates give the intensities

Ii(xi, ti ) = E2
0

4π |ai|2
exp

[−(ti − αixi )2

2σ 2
i

]
, (23)

where

σ 2
i ≡

(
σ 4

0 + βixi
)

σ 2
0

. (24)

If the intensities are sufficiently weak that single-photon
detectors (or their classical equivalent) can be used, the de-
tection probabilities at any given time will be proportional
to the respective local field intensities. Thus the probability
P(t1, t2, t3) of obtaining three detection events at times ti is

P(t1, t2, t3) = ηI1(x1, t1)I2(x2, t2)I3(x3, t3), (25)

where the constant η is related to the detection efficiencies.
The probability distribution P(t, τ ) that pulses 2 and 3 are
measured at time delays t and t + τ after pulse 1, respectively,
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FIG. 3. Probability distribution that detectors 2 and 3 will detect
a single photon with a time lag of t and t + τ (dimensionless)
after detector 1, respectively, for a relatively narrow-band filter with
σF = 0.10 (arbitrary units). Panels (a,b) correspond to the quantum-
mechanical and classical results, respectively, for no dispersion
(β1 = β2 = β3 = 0). The quantum and classical results are shown in
(c,d) for a set of parameters with ω0 = 1, β1x1 = 100, β2x2 = −50,
and β3x3 = −50. Panels (e,f) correspond to β1x1 = 200, β2x2 =
−100, and β3x3 = −100. It can be seen that the timing uncertainties
are significantly smaller for the quantum-mechanical results in (c,e)
due to nonlocal cancellation of dispersion.

is then given by integrating over t1, which gives

P(t, τ ) = η
E6

0

(4π )3|a1|2|a2|2|a3|2

×
∫

e
− 1

2 [ (t1−α1x1 )2

σ2
1

+ (t1+t−α2x2 )2

σ2
2

+ (t1+t+τ−α3x3 )2

σ2
3

]
dt1.

(26)

The effects of the group velocities can be ignored by making
a change of variables as in Eq. (10). This simplifies Eq. (26),

which can then be integrated to give

P(t, τ ) = c exp

(
2σ 2

F

N1 + N2 + N3

D

)
. (27)

Here

N1 = −t2
{
1 + 2σ 4

F [(β2x2)2 + (β3x3)2]
}
,

N2 = −tτ
[
1 + 4(β2x2)2σ 4

F

]
,

N3 = −τ 2{1 + 2σ 4
F [(β2x2)2 + (β1x1)2]

}
,

D = 3 + 8σ 4
F

{
(β1x1)2 + (β2x2)2 + (β3x3)2

+ 2σ 4
F [(β1x1)2(β2x2)2 + (β2x2)2(β3x3)2

+(β3x3)2(β1x1)2]
}
. (28)

These results will also be plotted and compared to the
entangled-photon case in the next section.

IV. COMPARISON OF THE CLASSICAL
AND QUANTUM RESULTS

Figure 3 compares the classical and quantum-mechanical
timing distributions as calculated in Secs. II and III for an
arbitrary choice of the relevant parameters where the filter
bandwidth was relatively narrow (σF = 0.10). It can be seen
that the effects of dispersion have not been completely can-
celed out in the quantum-mechanical results. Nevertheless, the
timing uncertainties are significantly less than in the classical
case due to dispersion cancellation.

Figure 4 shows similar timing distributions as in Fig. 3 but
with a relatively large filter bandwidth of σF = 0.50 and a dif-
ferent set of dispersion coefficients. The differences between
the quantum-mechanical and classical cases are significantly
larger than was the case for the smaller filter bandwidths in
Fig. 3. As one might expect, the effects of dispersion and
dispersion cancellation are larger for larger bandwidths.

The analytic calculations of Sec. II assumed that the
bandwidth σF of the filters was much smaller than ω0. This
condition is satisfied reasonably well in Fig. 3, where σF =
0.10 and ω0 = 1.0, but not as well in Fig. 4 where σF = 0.50.
In order to assess the validity of this approximation, the
analytic results based on the assumption that σF 
 ω0 were
compared with the results of a numerical calculation where the
range of integration was not extended to −∞. The numerical
results are shown in Fig. 5. It can be seen that the width
of the probability distribution is somewhat underestimated in
the analytic calculations, but that effect is much smaller than
the difference between the classical and quantum-mechanical
results in Fig. 4.

In the original case of two entangled photons [3],
the quantum-mechanical dispersion was proportional to
(β1x1 + β2x2)2 while the classical dispersion was proportional
to (β1x1)2 + (β2x2)2. This allowed the quantum-mechanical
dispersion to be canceled nonlocally by choosing β1x1 =
−β2x2, which has no effect on the classical dispersion. Com-
plete dispersion cancellation would be possible for three
entangled photons as well if the dispersion were simply
proportional to (β1x1 + β2x2 + β3x3)2, but it can be seen
from Eq. (13) that the quantum-mechanical dispersion also
depends on terms such as (β1x1)2, which makes it impossible
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FIG. 4. Probability distribution that detectors 2 and 3 will detect
a single photon with a time lag of t and t + τ (dimensionless) after
detector 1, respectively, for a broader filter bandwidth (σF = 0.50)
than in Fig. 3 (arbitrary units). The quantum-mechanical results are
once again shown on the left-hand side while the corresponding
classical results are on the right. Panels (a,b) correspond to no
dispersion as before, while (c,d) correspond to ω0 = 1, β1x1 = 12.5,
β2x2 = −25, and β3x3 = −37.5. Panels (e,f) correspond to β1x1 =
50, β2x2 = −100, and β3x3 = −150. The differences between the
quantum-mechanical and classical results are more pronounced for a
wider filter bandwidth.

to cancel out all of the effects of dispersion nonlocally for
three photons.

Some of the terms can still be made to cancel in such
a way that the quantum-mechanical dispersion is less than
the corresponding classical dispersion, as can be seen in
Figs. 3 and 4. This partial cancellation of dispersion may
have useful applications in QKD, where the presence of an
eavesdropper would increase the amount of dispersion. In
addition, complete cancellation of dispersion can be obtained
if we postselect on a specific value of the frequency of one

FIG. 5. Comparison of the analytic and numerical calculations of
the quantum-mechanical timing probability distribution as a function
of the time delays t and τ (dimensionless). (a) Analytic calculations
using the narrow-band-filter approximation. (b) Exact results from a
numerical calculation. Both of these results correspond to the same
parameters as in Fig. 4(c). It can be seen that the width is somewhat
larger in the numerical results but it is still much smaller than the
corresponding classical results in Fig. 4.

of the photons as in Fig. 2, which may also have useful
applications in quantum networks.

V. EXTENSION TO LARGER PHOTON NUMBERS

The previous results for three photons in a χ (3) medium
can be extended to N photons in a χ (N ) medium in a straight-
forward way, since the calculations are based on a sequence
of Gaussian integrals. To generalize from three photons to N ,
we define the frequencies in terms of a set of parameters εi

defined in such a way that

ωi = ω0

N
+ εi. (29)

The energy conservation condition then becomes

εN = −
N−1∑
i=1

εi. (30)

Choosing filter functions with identical widths and making
the approximation of narrow-band filters as before, we get an
effective wave function of the form

ψ = c
∫ ∞

−∞

⎛
⎝N−1∏

p=1

dεp

⎞
⎠

⎛
⎝ N∏

q=1

fq

⎞
⎠ei[

∑N
r=1 (kr xr−ωr tr )]. (31)

This can be simplified to give

ψ = c′
∫ ∞

−∞

⎛
⎝N−1∏

p=1

dεp

⎞
⎠

× e
i{ε2

q (βqxq+βN xN + i
σ2

F
)−εq[(tq−αqxq )−(tN −αN xN )]}

× e
i[(2

∑N−1
m<n εmεn )(βN xN + i

2σ2
F

)]
(32)

The integrals can all be performed but the results are
lengthy. Nevertheless, it can be seen from Eq. (32) that the
presence of the cross terms as before will prevent perfect
cancellation of dispersion for N > 2. The dispersion cannot
be completely canceled for more than two entangled photons
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unless we postselect on the frequencies of all but two of the
photons.

VI. SUMMARY AND CONCLUSIONS

In summary, we have investigated the effects of nonlocal
dispersion cancellation for three or more entangled photons.
The analysis was based on a tripartite energy-time entangled
state created directly by a single down-conversion process in
a nonlinear χ (3) crystal. It can be shown that the same results
can be obtained using two cascaded χ (2) crystals if we ignore
any dispersion between the first and second down-conversion
crystals. The equations are identical in that case for narrow-
band filters.

Our results show that nonlocal dispersion cancellation
can reduce the width of the probability distribution for the
coincidence events from a three-photon state as compared
to the corresponding classical pulses. However, in general,
complete dispersion cancellation cannot occur as it does for
the two-photon case. This is a result of the fact that the disper-
sion is not simply proportional to (β1x1 + β2x2 + β3x3)2. The
presence of other terms such as (β1x1)2 makes it impossible
to completely cancel out all of the effects of dispersion
nonlocally.

We also showed that postselecting on the frequency of one
of the three photons does allow complete nonlocal dispersion
cancellation for the remaining pair of photons. This effect is
similar to the original two-photon case [3], except that the
choice of the frequency in the postselection process can effec-
tively control the difference in arrival times of the remaining
pair of photons.

These effects may have practical applications in quantum
communication protocols. The reduction in the timing uncer-
tainties would allow the use of a smaller spacing between
time bin qubits, with a corresponding increase in the data
transmission rate. Quantum key distribution based on nonlocal
dispersion cancellation between pairs of photons has already
been proposed [24–27], and it may be possible to extend
these techniques to larger numbers of photons in a network
configuration. Dispersion cancellation has also been proposed
as a means of increasing the imaging quality in biomedical
applications [31–34] and for quantum clock synchronization
[28–30].

Nonlocal dispersion cancellation for three or more photons
is of fundamental scientific interest in addition to its potential
applications, and these results will allow for future experimen-
tal investigations.
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APPENDIX

The Gaussian integrals in Eq. (9) can be evaluated by
repeated use of Eq. (11). In order to simplify the results in
the text, the effects of the group velocities were removed by
making the substitution ti → ti − αixi. The more general re-
sults including the group velocity are given in this Appendix.

In that case the coincidence probability is given by

P(t, τ ) = c′′ exp

(
2σ 2

F

N1 + N2 + N3 + N4 + N5 + N6

D

)
.

(A1)
The value of D is the same as in the text, while

N1 = t2
[−3 − 4σ 4

F

(
B2

2 + B2B3 + B2
3

)]
,

N2 = tτ
[−3 − 4σ 4

F

(
B1B2 + 2B2

2 − B1B3 + B2B3
)]

,

N3 = τ 2
[−3 − 4σ 4

F

(
B2

1 + B1B2 + B2
2

)]
,

N4 = t
(
A3

{
3 + 4σ 4

F [B2(B1 + 2B2) + (−B1 + B2)B3]
}

− 2A1
[
3 + 4σ 4

F

(
B2

2 + B2B3 + B2
3

)]
+A2

{
3 + 4σ 4

F

[−B1B2 + (B1 + B2)B3 + 2B2
3

]})
,

N5 = τ
(
2A3

[
3 + 4σ 4

F

(
B2

1 + B1B2 + B2
2

)]
− A2

{
3 + 4σ 4

F

[
2B2

1 − B2B3 + B1(B2 + B3)
]}

−A1
{
3 + 4σ 4

F [B1(B2 − B3) + B2(2B2 + B3)]
})

,

N6 = −A2
3

[
3 + 4σ 4

F

(
B2

1 + B1B2 + B2
2

)]
+ A2A3

{
3 + 4σ 4

F [B1(2B1 + B2) + (B1 − B2)B3]
}

− A2
2

[
3 + 4σ 4

F

(
B2

1 + B1B3 + B2
3

)]
− A2

1

[
3 + 4σ 4

F

(
B2

2 + B2B3 + B2
3

)]
+ A1

(
A3

{
3 + 4σ 4

F [B2(B1 + 2B2) + (−B1 + B2)B3]
}

+A2
{
3 + 4σ 4

F

[−B1B2 + (B1 + B2)B3 + 2B2
3

]})
. (A2)

In order to shorten these expressions, we have used the
notation that Bi ≡ βixi and Ai ≡ αixi. These results include
the effects of the group velocities.
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