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Quantum-enhanced estimation of the optical phase gradient by use of image-inversion
interferometry
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We show that the quantum Cramér-Rao bound on the error of measurement of the optical phase gradient
with a beam of finite width (or the wavefront tilt within a finite aperture) is consistent with the Fourier-transform
uncertainty principle for the single-photon state, and is a factor of N lower for the maximally entangled N-photon
state. This fundamental bound therefore governs the tradeoff between quantum sensitivity and spatial resolution.
Error bounds for a structured configuration using binary projective-field measurements implemented by an
image-inversion (II) interferometer are higher, and the factor of N advantage attained by the N-photon maximally
entangled state is reduced and eventually washed out as the beam width or the phase gradient increases. This
reduction is more rapid for larger N , so that the quantum advantage is more vulnerable. The precision of the II
interferometer is greater than that based on a split detector placed in the focal plane of a lens.
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I. INTRODUCTION

The performance of classical optical metrology is limited
by standard classical limits on the precision of measurement
of optical phase and amplitude. Quantum metrology uses op-
tical probes in nonclassical states of light, enabling precision
superseding those classical limits; nonetheless, new superior
limits emerge as the ultimate quantum limits. For example,
the standard quantum limit for estimation of the optical phase
with an average of N photons is 1/

√
N [1], when the ultimate

precision limit for a fixed number of photons N (Heisenberg
quantum limit) is 1/N [2–6]. In this paper, we determine
the quantum limit on the precision of measurement of the
optical phase gradient, which is manifested by a local tilt of
the optical wavefront within a finite aperture, or the angle
of deflection of an optical beam of finite width introduced
upon transmission through a thin slab with a spatially varying
refractive index. We consider single-photon and multiphoton
entangled quantum states and determine quantum Cramér-
Rao (QCR) precision bounds based on the quantum Fisher
information (QFI) [3,7–13]. As expected, these limits are
inversely proportional to the beam width, in accord with the
Fourier-transform uncertainty principle [14] and its general-
ization to a spatially coded two-photon state [15–17] that
probes the phase slope in a manner similar to that of states
used in NOON-state interferometry [18–21].

Specific measurement configurations aim at reaching the
precision limits set by the QFI, but do not always attain
these ultimate limits. One evident configuration is to con-
vert the beam tilt into beam displacement by use of an
optical Fourier-transform imaging system [22], as is usually
done in the Shack-Hartmann system used in adaptive optics
[23]. Standard measurements of beam displacement employ
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a split detector measuring detected photons in each of its
two halves. Earlier studies of precision limits on estimates
of displacement show that such configuration falls short of
the quantum optimal precision by a factor of

√
π/2 ≈ 1.25

[24,25]. Although strategies that address this shortfall have
been demonstrated, their implementation involves heterodyn-
ing of the displaced beam with an independent local oscillator
in a specific spatial mode.

We consider here an alternative configuration: an image-
inversion (II) interferometer [26–29] that utilizes interference
between the phase-modulated beam and a spatially inverted
copy of itself, and detects projections of the even component
of the optical field distribution in one output port and that of
the odd component in the other port. The Fisher information
(FI) for this configuration is greater than that of the split
detector and attains the quantum optimal precision for small
phase gradients or narrow beam widths for both single-photon
and multiphoton state implementations. However, as we show
in this paper, the quantum advantage is reduced and even-
tually washed out as the phase-gradient beam-width product
increases, and this deterioration is more severe for larger N , so
that the greater the quantum advantage, the more vulnerable it
is to the beam width and tilt.

II. QUANTUM FISHER INFORMATION FOR SINGLE- AND
N-PHOTON STATES

An optical beam probes a phase object that introduces a
phase φ(x) in the plane orthogonal to the beam direction. The
beam width is assumed sufficiently narrow so that φ(x) ≈
φ0 + θx, where φ0 = φ(0) and θ = ∂φ/∂x |x=0. The phase
gradient θ is to be estimated by use of measurements on
the transmitted beam. This study is also applicable to mea-
surement of the direction of an optical wave within a finite
aperture.
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If the quantum state of the light transmitted through the
phase object is described by a pure state |ψ〉, then the QFI is
[30]

FQ(θ ) = 4(〈ψ ′|ψ ′〉 − |〈ψ |ψ ′〉|2), (1)

where ψ ′ refers to the derivative of ψ with respect to θ .
The QCR bound on the variance of the estimate of θ is
σ 2

θ � 1/FQ(θ ). In the context of repeating the measurement
process with M identically prepared illumination states, the
variance of estiamtes of θ becomes limited in principle by
σ 2

θ � 1/(MFQ(θ )).
In this section, we determine FQ(θ ) and the associated

error bound σθ for light in two cases: single-photon, which
corresponds to the limit imposed on any classical state of light,
and an N-photon pure quantum state, which corresponds to
the limit achievable by any state of light that seeks to use
entanglement to aid estimation.

A. Single-photon state

If the single-photon state is a pure quantum state |ψ0〉 =∫
dx ψ0(x)|x〉, where ψ0(x) is an arbitrary wave function nor-

malized such that
∫

dx |ψ0(x)|2 = 1, then upon transmission
through the phase object the state becomes

|ψ〉 =
∫

dx e−iθxψ0(x)|x〉. (2)

Based on Eq. (1), the QFI is

F (1)
Q (θ ) = 4

∫
dx x2|ψ0(x)|2

− 4

∣∣∣∣
∫

dx x|ψ0(x)|2
∣∣∣∣
2

. (3)

If ψ0(x) is an even function, then the second term in (3)
vanishes, and

F (1)
Q (θ ) = 4σ 2

x , (4)

where σ 2
x = ∫

dx x2|ψ0(x)|2 is the second moment of the
probability density function |ψ0(x)|2 and σx is a measure of
its width. The QCR bound on the variance of the estimate of
θ is σ 2

θ = 1/F (1)
Q (θ ), so that

σθσx = 1
2 . (5)

Because the phase gradient θ equals the transverse component
q of the wave vector, this is simply an expression of the bound
dictated by the Fourier-transform-based uncertainty principle
σxσq = 1

2 .

B. N-photon state

An N-photon pure quantum state is described by the inte-
gral |ψ0〉 = ∫

dx ψ0(x)|x〉, where x = x1, x2, . . . , xN , dx =
dx1dx2 . . . dxN , and ψ0(x) is an arbitrary N-photon wave
function normalized such that

∫
dx |ψ0(x)|2 = 1. Upon trans-

mission through the phase object, the state becomes

|ψ〉 =
∫

dx ψ0(x)e−iθ (�x )|x〉, (6)

where �x = ∑N
n=1 xn. Using Eq. (1), the QFI is

F (N )
Q (θ ) = 4

∫
dx(�x)2|ψ0(x)|2

− 4

∣∣∣∣
∫

dx(�x)|ψ0(x)|2
∣∣∣∣
2

. (7)

Assuming a maximally entangled state ψ0(x) =
f0(x1)	N

n=2δ(x1 − xn), i.e.,

|ψ〉 =
∫

dx f0(x)e−iNθx|x〉⊗N , (8)

and if f0(x) is an even function, then the second term of Eq. (7)
vanishes and the QFI for the N-photon state is

F (N )
Q (θ ) = 4N2σ 2

x = N2F (1)
Q , (9)

where σ 2
x = ∫

dx x2| f0(x)|2 is a measure of the width of
| f0(x)|2. Therefore, the minimum uncertainty σθ of estimates
of the phase-gradient satisfies the relation

σθσx = 1

2N
. (10)

The bound for the spatially entangled N-photon uncertainty
product is therefore smaller than that of the single-photon
case by a factor of N , assuming equal widths of the functions
|ψ0(x)|2 in the single-photon case and | f0(x)|2 in the N-
photon case.

III. FISHER INFORMATION FOR SPECIAL
MEASUREMENT CONFIGURATIONS

We now consider specific configurations for measuring the
phase gradient and assess their optimal precision in compar-
ison with the ultimate quantum bounds described by (9) and
(10). As with the QCRB, choosing a specific measurement
strategy leads to estimation variance that is bounded by σ 2

θ �
1/F (θ ), where the Fisher information

F (θ ) =
∑

i

1

Pi

(
dPi

dθ

)2

, (11)

and Pi is the probability of measuring experimental outcome
i. As before, repeating the measurement with M identi-
cally prepared illumination states provides sensitivity σ 2

θ �
1/(MF (θ )).

A. Split detector in focal plane

The split detector is a two-sided detector that measures
the lateral displacement of an optical beam by detecting the
optical power on each side. When a beam described by a
symmetric optical field ψ f (x) is centered on the detector, the
intensity |ψ f (x)|2 on each half will be equal and the difference
of the photon counts will be zero, on average. This changes,
however, if the beam is displaced by some distance s. The
powers in the two detectors are then

P+ =
∫ ∞

0
dx |ψ f (x − s)|2,

P− =
∫ 0

−∞
dx |ψ f (x − s)|2,

(12)

013712-2



QUANTUM-ENHANCED ESTIMATION OF THE OPTICAL … PHYSICAL REVIEW A 102, 013712 (2020)

FIG. 1. Fisher information for estimation of the phase gradient
θ using an optical beam of width σx in a single-photon state by use
of a split-detector configuration (green dotted line) and an image-
inversion (II) interferometer (solid blue line). For the II interferom-
eter, the Fisher information reaches the quantum Fisher information
(dashed lines) as θ → 0 (dashed line), while it is smaller by a factor
2/π for a configuration using a split detector in a lens’ focal plane.
The single-photon state corresponds to the maximum sensitivity of
any classical illumination.

and the power difference P+ − P− can be used to infer the
displacement s. For a monochromatic Gaussian beam ψ0(x)
with modulus |ψ0(x)|2 = (1/

√
2πσx ) exp(−x2/2σ 2

x ) modu-
lated by a linear phase factor e−iθx, a lens of focal length f
produces in the focal plane a Gaussian field ψ f (x) of width
σ f = λ f /(4πσx ) offset from the center by a distance sθ =
(λ f /2π )θ , where λ is the wavelength. The apparatus used
for measurement of beam displacement s can therefore be
readily adapted to measurement of the beam tilt θ . The Fisher
information (FI) for such an arrangement is

F (1)
SD (θ ) = 8

π
σ 2

x /ξ (θσx ) , (13)

where ξ (y) = e4y2
[1 − erf 2(

√
2y)] and erf(y) is the error func-

tion. As illustrated in Fig. 1, F (1)
SD (θ ) is a monotonic decreasing

function of θσx, It has its maximum value of 8
π
σ 2

x for θσx 
 1
2

(or sθ 
 σ f ). This is a factor of π/2 smaller than the standard
quantum limit F (1)

Q (θ ) = 4σ 2
x , corresponding to a sensitivity

lower by a factor of
√

π/2 ≈ 1.25, as also noted in Ref. [25].
This shortfall of the split detector, which is applicable

to the single-photon state (and hence the coherent state),
also extends to other implementations aimed at surpassing
the classical estimation limit by use of other nonclassical
states [24,31]. For example, for light in a squeezed state
with optimal mean photon number N , the FI is 8

π
σ 2

x N3/2, as
compared to the quantum Fisher information 4σ 2

x N2 for the
maximally entangled N-photon state [cf. Eq. (9)].

B. Image-inversion interferometer

In the image-inversion interferometer, the beam modulated
by the phase object is interrogated by an interferometer with
an image inversion element (i.e., a mirror) in one arm, as

FIG. 2. Measurement of the optical phase gradient by use of an
image-inversion interferometer.

illustrated conceptually in Fig. 2 [29,32]. For an optical
beam of amplitude ψ0(x) and width σx, the beam transmitted
through (or reflected from) the phase object has an amplitude
ψ (x) = ψ0(x)eiθx, which is mixed with an inverted copy of
itself ψ (−x) to generate amplitudes 1

2 [ψ (x) ± ψ (−x)] at the
output ports of the interferometer. The interferometer can be
made using spatially separated paths, as depicted in Fig. 2 or
implemented in another ancillary binary degree of freedom
such as polarization [26,29,33,34]. The corresponding intensi-
ties I±(x) = 1

2 |ψ (x) ± ψ (−x)|2 are measured with two detec-
tors of areas greater than the beam cross section σx. The result
is the two signals P± = 1

2 ± 1
2 Re

∫
dx ψ∗

0(x)ψ0(−x)ei2θx,

where we have assumed that
∫ |ψ0(x)|2dx = 1. In essence,

this binary measurement represents projections of the spatial
distribution onto its even (+) and odd (−) components. If
ψ0(x) is an even function, then

P+ =
∫

dx |ψ0(x)|2 cos2 (θx),

P− =
∫

dx |ψ0(x)|2 sin2 (θx). (14)

For a Gaussian function, the modulus
|ψ0(x)|2 = (1/

√
2πσx ) exp(−x2/2σ 2

x ),

P± = 1
2

(
1 ± e−2θ2σ 2

x
)
, (15)

and the difference P+ − P− = exp (−2θ2σ 2
x ) is a monotonic

decreasing function of θσx that can be readily used to calculate
the phase gradient θ .

Single-photon Fisher information. If the probe wave is
in a single-photon state, then the above classical analysis is
applicable with the signals P+ and P− interpreted as the prob-
abilities of the photon being detected in the + and − output
ports, respectively. The FI associated with such measurement
is

F (1)(θ ) = 1

P+

(
dP+
dθ

)2

+ 1

P−

(
dP−
dθ

)2

. (16)

Using the expressions in (15), it follows that the FI is

F (1)(θ ) = 4σ 2
x / ζ 2(θσx ), (17)

where ζ 2(y) = [exp(4y2) − 1]/4y2 is a monotonically in-
creasing function of y with value equal to 1 for y = 0 and
≈1.7 for y = 1

2 . Therefore, in the limit θσx 
 1, i.e., when
the phase varies slowly within the beam width, the factor
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ζ (σxθ ) = 1, so that F (1)(θ ) = F (1)
Q (θ ), i.e., the II interfer-

ometer provides the best possible precision for estimating
θ . For a fixed value of σx, as θ increases, F (1)(θ ) drops as
depicted in Fig. 1, reaching one-half of its maximum value at
θ ≈ 0.56/σx, so that the larger the beam width is, the faster
F (1)(θ ) drops as a function of θ . Based on Eq. (17), for a
given value of θ , the FI as a function of σx rises to a peak
value at σx ≈ 0.632/θ and drops with further increase of σx.
The Cramér-Rao estimation error σθ corresponding to F (1)(θ )
satisfies the relation

σxσθ = 1
2 ζ (θσx ) (18)

so that it rises above the minimum value of 1/2 as θ increases.
The FI for the II interferometer and the split detector

are compared in Fig. 1. For small θ the II interferometer is
superior to the split detector by the largest factor, but this
advantage diminishes as θ increases, and the split detector
becomes slightly more sensitive for θ > 0.74/σx.

N-photon Fisher information. A generalized image-
inversion interferometer acting on a phase modulated optical
beam in the maximally entangled N-photon state in Eq. (8) is
conceptualized to operate in three stages. In the first, the state
is converted into a generalized NOON state in the basis of the
two orthogonal modes of the interferometer |+〉 and |−〉 (e.g.,
the upper and lower paths):

|ψ1〉 =
∫

dx f0(x)e−iNθx 1√
2

[|+, x〉⊗N |−, x〉⊗0

+ |+, x〉⊗0|−, x〉⊗N ]. (19)

In the second stage, spatial inversion is introduced in the |−〉
mode, generating the state

|ψ2〉 =
∫

dx f0(x)
1√
2

[e−iNθx|+, x〉⊗N |−, x〉⊗0

+ eiNθx|+, x〉⊗0|−, x〉⊗N ], (20)

where f0(x) was assumed to be an even function. In the third
stage, the |+〉 and |−〉 modes are recombined at a beam splitter
and the photon-number parity is measured at either output
port [17,35–38], a measurement represented by the observable
operator

	 = iN
N∑

k=0

(−1)k|k, N − k〉〈N − k, k|. (21)

The result of a parity measurement is +1 if the photon number
detected in the measured mode is even, and −1 if it is odd,
and the associated probabilities are P+ and P−, with P+ +
P− = 1 and P+ − P− = 〈	〉, following the standard approach
for parity measurement [35]. Based on Eq. (16), the Fisher
information can be expressed in terms of 〈	〉 as

F (N )(θ ) =
∣∣ d〈	〉

dθ

∣∣2

1 − 〈	〉2
. (22)

To determine an expression of 〈	〉 = 〈ψ2|	|ψ2〉 for the
NOON state in (20) in terms of θ we note that the only terms
in the expression (21) of 	 that contribute to 〈	〉 are k = 0

FIG. 3. Fisher information for estimation of the phase gradient θ

using an optical beam of width σx in a state with N = 1, 2, 4 photons,
assuming measurements with an image inversion interferometer.
In each case, the Fisher information reaches the quantum Fisher
information (dashed lines) as θσx → 0 (dashed lines).

and k = N , and assuming that N is even,

〈	〉 =
∫

dx| f0(x)|2 cos(Nθx). (23)

Assuming a Gaussian function,

F (N )(θ ) = 4N2σ 2
x /ζ 2(Nθσx ) = F (N )

Q /ζ 2(Nθσx ), (24)

where, as before, ζ 2(y) = [exp(4y2) − 1]/4y2. Thus, in the
limit θσx → 0, F (N )(θ ) = F (N )

Q , i.e., the quantum Fisher in-
formation is attained at small phase-gradient beam-width
product.

Based on Eqs. (24) and (17), it follows that

F (N )(θ ) = N2F (1)(Nθ ). (25)

Hence, in comparison with the single-photon case, the max-
imum achievable Fisher information is greater by a factor of
N2, but drops from its maximal value with increase of θσx

at a rate N times greater. This remarkable scaling relation,
illustrated in Fig. 3, highlights both the precision enhancing
power of the quantum advantage and its vulnerability to large
beam width or aperture area.

Implementation of the II interferometer for an arbitrary
N-photon state requires replacing the first beam splitter with
a device that generates the generalized NOON state |ψ1〉
in Eq. (19) from the state |ψ〉 in Eq. (8). This may be
accomplished by use of a wavefront-division component as
depicted in Fig. 4. Here, the phase-modulated beam in the
state |ψ〉 of Eq. (8) is split into two spatial modes: the positive
spatial mode, which has all N photons in the region x > 0,
and the negative spatial mode, which has all N photons in the
x < 0 region. These modes are directed to the two arms of the
interferometer (using, e.g., prisms or a spatial light modulator)
so that the state is |ψ1〉. After image inversion, the negative
mode is converted into a positive mode, but with phase φ(−x),
so that the phase difference between the modes becomes
φ(x) − φ(−x) = θx. After recombination at the second beam
splitter, by measuring the parity of the detected photons, the
sensitivity described by Eq. (25) is achieved.
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FIG. 4. Wavefront-division image-inversion interferometer gen-
erating the generalized NOON state. The detectors measure photon-
number parity.

While methods for creating the N-photon spatial entan-
glement required is an ongoing field of research, for N =
2 the state may be readily created by use of a process of
collinear downconversion, which exhibits a high degree of
spatial entanglement [39]. We expect that higher-order and
cascaded nonlinearities will similarly be able to create the
characteristic entanglement needed for for N-photon protocol.
Also, for N = 2, the parity of the photon number may be
readily determined by use of a coincidence circuit. The II
interferometer itself may also be implemented in polarization
modes [26], rather than spatially separated path modes.

IV. CONCLUSION

We have shown that, for a single-photon quantum state, the
ultimate quantum bound on the precision of estimates of the
phase gradient introduced by an optical element probed by
a beam of finite width (or estimates of the tilt of an optical
wavefront within a finite aperture) reproduces the Fourier-
transform uncertainty principle. For an N-photon quantum
state that is maximally entangled in the spatial domain, the
quantum precision bound is superior by the familiar factor of
N and the uncertainty product is tighter by the same factor.

Here, uncertainty is defined as a bound on the statistical
accuracy—as dictated by the quantum Fisher information—
of estimating the phase gradient, which corresponds to the
transverse component of the optical field’s wave vector.

We have determined the sensitivity of a specific optical
configuration for measurement of the phase gradient, namely
the image-inversion (II) interferometer, and shown that it
meets the standard quantum limit for small phase-gradient
beam-width product and a single-photon state (or a coherent
state). It also attains the Heisenberg quantum precision limit
for an N-photon quantum state with maximum spatial entan-
glement. The II interferometer achieves this supersensitivity
by utilizing interference between the phase-modulated beam
and a spatially inverted copy of itself, along with binary
projective measurements similar to those used in other recent
applications [27,40–42]. For the N-photon state the system
is a NOON-like interferometer. Unfortunately, the precision
drops rapidly as the phase-gradient beam-width product in-
creases, and the rate of such drop is greater for larger N . This
is another manifestation of the fragility of quantum super-
sensitivity. While the regime of small beam width, which is
desirable since it enables greater spatial resolution in scanning
systems, preserves the quantum advantage, it corresponds to
lower quantum sensitivity since the QFI is proportional to
the squared beam width. An optimal beam width is inversely
proportional to the phase gradient.

In comparison with a measurement configuration using a
split detector placed in the focal plane of a Fourier-transform
imaging system, the sensitivity of the II interferometer is
superior by a factor of at least

√
π/2 ≈ 1.25 for the single-

photon state. Other nonclassical states have been considered
for use with the split-detector configuration, but their sensi-
tivity is also limited by the same factor. The performance of
the II interferometer is actually similar to that of a homodyne
detection system designed to measure beam displacement by
use of even and odd spatially distributed signal and local
oscillator beams [24].
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