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Quantum information preserving computational electromagnetics
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We present a computational framework for canonical quantization in arbitrary inhomogeneous dielectric media
by incorporating quantum electromagnetic effects into complex solutions of quantum Maxwell’s equations.
To do so, the proposed algorithm integrates and performs (1) numerical computation of normal modes and
(2) evaluation of arbitrary products of ladder operators acting on multimode Fock states. The former is associated
with Hermitian-Helmholtz linear systems using finite-element or finite-difference methods; consequently, the
complete set of numerical normal modes diagonalizes the Hamiltonian operators up to floating-point precision.
Its Hermiticity is retained, allowing its quantization. Then, we perform quantum numerical simulations of
two-photon interference occurring in a 50:50 beam splitter to observe the Hong-Ou-Mandel effect. Our prototype
model is useful for numerical analyses on various narrow-band quantum-optical multiphoton systems such as
quantum metasurfaces, quantum-optical filters, and quantum electrodynamics in open optical cavities.

DOI: 10.1103/PhysRevA.102.013711

I. INTRODUCTION

The recent advent of quantum computing spells the be-
ginning of an exciting era for quantum technologies. Math-
ematical modeling of physical phenomena and their numer-
ical simulations have transformed classical electromagnetics
technologies. But this knowledge base is still in its infancy
for quantum Maxwell’s equations and quantum technologies.
Quantum Maxwell’s equations [1–5], where the classical
Maxwell dynamic field and source variables are elevated to
infinite-dimensional quantum operators, are

∇×Ê(r, t ) = −∂B̂(r, t )

∂t
,

∇×Ĥ(r, t ) = Ĵ(r, t ) + ∂D̂(r, t )

∂t
,

∇ · D̂(r, t ) = ρ̂(r, t ),

∇ · B̂(r, t ) = 0. (1)

The above quantum electromagnetics (QEM) equations are
rigorously derived in the Heisenberg picture, in both coordi-
nate and mode Hilbert spaces, in [1,2] and extended to inho-
mogeneous media with impressed sources. But the spatial and
time (we shall call this coordinate) dependence of the field op-
erators is similar to that of the classical Maxwell’s equations.

The above quantum operator equations are meaningful
only when they operate on a quantum state. The correspond-
ing equation of motion for the quantum state is

Ĥ |ψ (t )〉 = ih̄
∂

∂t
|ψ (t )〉, (2)

*wcchew@purdue.edu

and the full description of the Hamiltonian Ĥ is given in [1,2].
The coordinate-space part of the Hamiltonian Ĥ is easily di-
agonalizable in the mode Hilbert space, making it mathemat-
ically homomorphic (analogous) to harmonic oscillators un-
coupled from each other. This is the popular approach in quan-
tum optics (QO). Then, using this QO approach, we charac-
terize how photons, transported in the form of electromagnetic
(EM) fields, interfere with each other. Together with quantum
theory, QO has spurred the development of various quantum
technologies [6–11] in which few-photon interference and
their granularity are important for their quantum effects.

Nevertheless, early pioneers have mathematically shown
that one can employ the macroscopic framework on quantum
electrodynamics (QED) which admits the partial use of the
macroscopic Maxwell’s theory. This theory uses the concept
of effective EM media [5,12,13] when the optical and mi-
crowave photon wavelengths are typically much larger than
the size of the atoms or molecules. Moreover, it is important
to find the normal modes in the form of traveling waves for
canonical quantization in these media [12,14,15].

More recently, quantization procedures in general
dispersive, dissipative, anisotropic, or reciprocal media
[1,2,5,16–21] were developed. A variety of quantum-optical
phenomena can be captured by macroscopic QED theory, such
as spontaneous emissions rates [22–24] in dielectric media
[17], Casimir forces [25], artificial atoms [26], few-photon
interference in passive and lossless quantum-optical
instruments [27], quantum-optical metamaterials [28], NOON
states in quantum metrology, and quantum sensing [29,30],
just to name a few.

In this work, we propose a numerical canonical quantiza-
tion methodology, which is useful for numerical experiments
on arbitrary passive and lossless quantum-optical systems for
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FIG. 1. Two-dimensional illustration of arbitrary passive and
lossless quantum-optical systems driven by multiple photons. The
systems can be modeled by inhomogeneous dielectric media. The
Bloch-periodic boundary condition can be used to extract traveling-
wave normal modes and retain the Hermiticity of quantum Maxwell’s
equations.

nondispersive media [31], as illustrated in Fig. 1. This is valid
over the bandwidth where the frequency dispersive effect can
be ignored. Based on the macroscopic QED theory, such sys-
tems can be modeled by linear, reciprocal, isotropic, nondis-
persive, and inhomogeneous dielectric media. But here, in-
stead of ad hoc analytic normal modes [4,10,32–39], we con-
struct complete and time-reversible numerical normal modes
in the form of traveling waves to diagonalize the coordinate-
space part of the Hamiltonian. In other words, borrowing
the concept of computational electromagnetics (CEM), we
directly solve the Helmholtz wave equations for the media by
using either the finite-element or finite-difference method on
a given mesh.

The present methodology provides a pathway to use new
macroscopic QED theory to mathematically model quantum-
optical systems with little physical restrictions in a real ex-
perimental setup. Eventually, as has happened in the classical
electromagnetic case, it would provide a numerical exper-
imental platform to explore a large variety of perplexing
QED and quantum-optical phenomena such as virtual pho-
tons, quantum-optical metamaterials, superluminal photons
by quantum tunneling, interaction-free measurement, quan-
tum metrology and quantum sensing, and time entanglement
[40]. This is increasingly important as quantum technologies
become increasingly complex.

The numerical canonical quantization here resembles the
analytical canonical quantization. The difference is that the
modes are found numerically and then quantized analytically.
Then quantum information can be injected into these modes,
displaying their quantum effects. The modes are formed into
wave packets, and we liken the photons to be “riding” on the
wave packet formed by these modes.

Beyond canonical quantization in free space, real-world
QEM-QO problems typically involve medium inhomogeneity,
anisotropy, dispersion, and loss. Our current work tackles the
problems related to the medium inhomogeneity and multipho-
ton interference for which the modal approach is best suited.
To do so, we conduct rigorous EM quantization in inhomoge-
neous dielectric media based on the principle of uncoupled
harmonic oscillators. In future work, we will explore the
incorporation of anisotropy, dispersion, and loss, as has been
expounded in the literature [1,2,12,14,16,17,19–21,41–49],
as well as the use of finite-difference time-domain methods to
solve these quantum Maxwell’s equations [50]. We will also
explore the use of Green’s function methods [19,44,45,51,52].
The Green’s function method has been used to study quantum
effects in the spontaneous emission rate [22,23] and Casimir
forces in arbitrary geometries [53–56]. Via the developed
algorithm, we perform quantum numerical simulations of
two-photon interference occurring in a 50:50 beam splitter to
observe the Hong-Ou-Mandel effect [57,58].

It should be noted that the quantum Maxwell’s equations
are Hermitian. To retain the Hermiticity of theses equations,
we solve these equations with the Bloch-periodic boundary
conditions using either the finite-difference (FDM) or finite-
element method (FEM).

It should be emphasized that this paper is not on devel-
oping advanced CEM algorithms but provides a guideline
to incorporate QEM-QO effects into complex solutions of
quantum Maxwell’s equations by utilizing conventional CEM
tools. Any existing commercial EM software does not have a
module or package that fully integrates classical and quantum
aspects of EM fields. The QED module that we are imagining
gets input parameters set by users and ultimately reproduces
results typically observed in quantum-optics experiments.
For example, for quantum scattering problems, important for
quantum biosensing and imaging technologies, users can set
up the dielectric property and geometry of media and carrier
frequency and bandwidths. Or users can set up entangled
photons such that the QEM module can simulate coincidence
counts. They can also evaluate higher-order correlations be-
tween different photon detectors or the time evolution of the
expectation value of the local energy density of photons. Be-
yond the present work, we are currently developing advanced
algorithms that can account for dispersion and dissipation
effects by media based on the Green’s function approach
as well as quantum finite-difference time-domain methods.
Furthermore, the incorporation of field-atom interactions into
these algorithms would allow one to perform various kinds of
virtual quantum-optics experiments to help with the maturing
of quantum technologies. To do so, one should rigorously
solve both the coordinate part of the quantum Maxwell’s
equations (1) and quantum state equation (2). Nevertheless,
to extract numerical normal modes, one may utilize eigen-
solvers provided by COMSOL, HFSS, FEKO, or CST MICROWAVE

STUDIO. But to incorporate the solutions to the quantum state
equation (2), one would have to write additional algorithms,
as expounded by this work.

Note that the time convention e−iωt is suppressed through-
out this work.
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II. CANONICAL QUANTIZATION FOR
INHOMOGENEOUS DIELECTRIC MEDIA

Consider a three-dimensional (3D) periodic vacuum box,
sized by V (m3), including an arbitrary inhomogeneous di-
electric medium (nondispersive and lossless), as illustrated
in Fig. 1. Then, the corresponding permittivity is a periodic
function as

ε(r) = ε(r + R), (3)

where R is a primitive lattice translation vector. In the modal
approach, the resulting vector potential operator can be ex-
panded by a countably infinite and complete set of normal
modes [1,2,12,14] as

Â(r, t ) = Â(+)(r, t ) + Â(−)(r, t ), (4)

where its positive and negative frequency components [59] are

Â(+)(r, t ) =
∑

p

√
h̄

2ωκp

Aκp (r)âκp (t ), (5)

Â(−)(r, t ) =
∑

p

√
h̄

2ωκp

A∗
κp

(r)â†
κp

(t ) (6)

and Aκp , ωκp , âκp , and â†
κp

are the pth normal mode, eigenfre-
quency, and annihilation and creation operators, respectively.
Note that the modal index κp implicitly incorporates the
vectorial wave number and polarization.

The equal-time commutator relations for ladder operators
is given by [

âκp (t ), â†
κp′

(t )
] = δκp,κp′ , (7)[

âκp (t ), âκp′ (t )
] = [

â†
κp

(t ), â†
κp′

(t )
] = 0. (8)

Obeying the equations of motion of a classical pendulum
expressed in the rotating-wave picture, the ladder operators
have the following time dependences:

âκp (t ) = e−iωκp t âκp, (9)

â†
κp

(t ) = eiωκp t â†
κp

. (10)

The completeness of normal modes yields the orthonormal
condition [1,2,60]∫

V
dr

[
ε(r)A∗

κp
(r) · Aκp′ (r)

] = δκ,κp′ . (11)

As a result, the corresponding Hamiltonian operator is diago-
nalized in coordinate space. Then the quantized Hamiltonian
in terms of the number operators is

Ĥ =
∑

p

h̄ωκp â
†
κp

(t )âκp (t ) =
∑

p

Ĥκp, (12)

where the zero-point energy is ignored. Thus, eigenstates
of number operators are multimode Fock (number) states
[38,61,62].

III. CLASSICAL COMPUTATION PART

A. Helmholtz wave equation

For relativistic invariance, classical vector potentials
should be associated with scalar potentials through the gen-
eralized Lorenz gauge [63]. When external sources are at
infinity, by letting 	 = 0, the generalized Lorenz gauge is
equivalent to the generalized Coulomb gauge [64]. Then,
normal modes are eigenfunctions of the following Helmholtz
wave equation:

∇×∇×Aκp (r) − ω2
κp

ε(r)μ0Aκp (r) = 0, (13)

with the 	 = 0 gauge, and as a result, (13) can be simplified
further as

∇2Aκp (r) + ω2
κp

ε(r)μ0Aκp (r) = 0. (14)

Our prototype model here is available for one dimension
(along the x direction) and two dimensions (on the xy plane)
with TMz polarization.

B. Numerical normal modes

To solve (14) for numerical normal modes. We consider a
one-dimensional (1D) scalar problem with a mesh (length L,
in meters) consisting of a number of nodes N (0), denoted by
ri = x̂xi = x̂(i
x) for i = 1, 2, . . . , N (0), where 
x is the grid
spacing. We discretize Aκp (r) = ẑφκp (x) on nodes of the mesh
by applying FEM or FDM with Bloch-periodic boundary
conditions (B-PBCs). Then Eq. (14) reduces to a generalized
linear eigenvalue problem,

S̄ · φ̄ + M̄ · φ̄ · λ̄ = 0, (15)

where S̄ and M̄ are (Hermitian and sparse) stiffness and mass
matrices, φ̄ is a matrix including all eigenvectors, and λ̄ is a
diagonal matrix with diagonal eigenvalues. Their elements are
given by

[φ̄]i,p = φκp (xi ), (16)

[λ̄]p,p = μ0ω
2
κp

(17)

for i = 1, 2, . . . , N (0) and p = 1, 2, . . . , Nκ = N0 − 1. Hence,
one can obtain the countably finite numerical normal modes.
The numerical modes are normalized to satisfy the orthonor-
mal condition [1,2,65]

φ̄
† · M̄ · φ̄ = (φ̄

† · C̄†) · (C̄ · φ̄) = Ī, (18)

where C̄ is the Cholesky decomposition of M̄, i.e., M̄ = C̄† ·
C̄, and Ī is the identity matrix. Note that C̄ · φ̄ is a unitary
matrix.

Eventually, the discrete representation of (5) and (6) for the
1D case can be written as

Â(+)(t ) = φ̄ · D̄(t ) · â, (19)

Â(−)(t ) = â† · D̄†(t ) · φ̄
†
, (20)

where

[Â(+)(t )]i = Â(+)(xi, t ), (21)

[D̄(t )]p,p =
√

h̄

2ωκp

eiωκp t , (22)

[â]p = âκp . (23)

In the above, D̄ is a diagonal matrix.
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C. Bloch-periodic boundary conditions

In order to retain the Hermiticity of the equations for quan-
tization in the numerical world, we use the Bloch-periodic
boundary condition. [Normally, in classical EM simulations,
one uses absorbing boundary conditions such as perfectly
matched layers or radiation boundary conditions. However,
their use gives rise to non-Hermitian equations, and the linear
system matrices (stiffness or mass matrices) become non-
Hermitian, and the orthogonality and completeness of the
system modes cannot be proved.] On the other hand, the
use of B-PBCs retains the Hermiticity of the system in (15),
implying that eigenfrequencies are always real and normal
modes are complete, and energy conserving as well [66].

The spatial length of photon wave packet here is assumed
to be much shorter than the size of primitive cell. Note that
B-PBCs always return traveling-wave normal modes except
for θ0 = 0 or ±π (edges of passbands) [67]. In addition, we
employ a partial solve of (15) to search only the subset of
numerical normal modes whose eigenfrequencies are close to
the carrier frequencies of photon wave packets. Although the
use of B-PBCs requires a proper time windowing to prevent
aliases of local dynamics of photon wave packets, we do this
in the quest for mathematical rigor and physical clarity. More
details can be found in [68].

IV. QUANTUM COMPUTATION PART

A. Initial quantum states for photons

Consider a nonentangled single photon riding on a wave
packet [4] that is localized around x0 with standard deviation
σ0 and center carrier wave number κ0. The corresponding
initial quantum state can be represented by the linear super-
position of multimode Fock states

|� (1)〉 =
Nκ∑

p=1

w̃κp |1〉κp =
Nκ∑

p=1

w̃κp â
†
κp

|0〉 = â† · w̃|0〉, (24)

where [w̃]p = w̃κp is the probability amplitude of |1〉κp that
incorporates the spectral amplitude of the wave packet. By
the normalization condition, w̃† · w̃ = 1. The above implies
that a single photon is “riding” on a localized wave packet
traveling through space. The above is the “mode-space” repre-
sentation of the wave packet, but it also has its corresponding
coordinate-space representation [69]. The probability ampli-
tude in mode space can be related to that in coordinate space
via the orthonormal relation (18) as

w̃ = (φ̄
† · C̄†) · w, (25)

where [w]i is the wave-packet value evaluated at the ith node.
For example, in coordinate space, Gaussian and Lorentzian
wave packets can be modeled as

[w(g)]i = wne
−( xi−x0√

2σ0
)2

eiκ0(xi−x0 ), (26)

[w(l )]i = wne− |xi−x0 |
σ0 eiκ0(xi−x0 ), (27)

where wn is a normalization factor for which w† · w = 1.
Hence, the photon does not have a definite momentum or
energy and becomes momentum or energy uncertain (see [4],
Chap. 12).

FIG. 2. Reflectivity (red solid line), transmittivity (red dashed
line), and relative phase difference (blue solid line) of the designed
beam splitter (BS). When κ = κ0 = 526 rad/m, the BS yields almost
equal amplitudes and a 90◦ relative phase difference in reflected and
transmission coefficients.

For two nonentangled photons, the corresponding initial
quantum state is given by the tensor product of two individual
single-photon quantum states as

|� (2)〉 = ∣∣� (1)
B

〉 ⊗ ∣∣� (1)
A

〉 = (â† · w̃(B) )(â† · w̃(A) )|0〉, (28)

where w̃(A) and w̃(B) are probability amplitudes of A and
B photons, respectively. Notice that the above remains un-
changed when the order of the two terms on the right-hand
side is swapped. This implies that these two photons are
indistinguishable.

B. Expectation value of arbitrary observables

In the classical regime, the EM apparatus can measure
deterministic voltages, currents, or fields. To account for the
quantum nature of electromagnetic fields, QEM-QO exper-
iments employ the (spatial or temporal) coincidence count
using photodetectors. The second-order correlation function
mathematically models the coincidence count. In quantum
numerical simulations with few physical restrictions, one can
observe various measurable quantities, such as the expec-
tation value of energy density and higher-order correlation
functions. For instance, the second-order correlation can be
evaluated via (29), and the expectation value of more general
observables can be modeled as (31). These quantities are
basically involved in the linear superposition of the arbitrary

TABLE I. Parameter setup for the 1D BS simulation where L
and Ls are Bloch period and slab thickness, respectively. N (0)

s is the
number of sample points in the slab.

Continuum Discrete Wave packet
parameters Value parameters Value information Value

L 6 m N (0) 16,001 x0 1.5 m
Ls 6 mm 
x 0.375 mm σ0 1.2 m
εs 7ε0 F/m N (0)

s 17 κ0 526 rad/m
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FIG. 3. Schematic of 1D quantum numerical simulations for two-photon incidence in a 50:50 beam splitter (BS). Two spatially localized
(nonentangled) photons are sent from different inputs to the BS when t = 0 s. After the destructive interference in the BS, we detect photons
at both outputs when t = t0 s to evaluate the second-order correlation functions. To observe the Hong-Ou-Mandel effect, we perturb the initial
localization position of the photon on the right side by δx0.

product of ladder operators acting on multimode Fock states.
Here, we develop an algorithm to deal with such pertinent
quantum calculations (see the Appendix).

V. QUANTUM NUMERICAL SIMULATIONS

A. Hong-Ou-Mandel effect in a 1D beam splitter

To observe the Hong-Ou-Mandel (HOM) effect [57,58],
we use a single dielectric slab for a 50:50 beam splitter
(BS) with a 90◦ relative phase difference. After a parametric
study of reflection and transmission [70] at the dielectric
slab, we set the relative permittivity of the slab εs = 7ε0

F/m and the thickness Ls = 6 mm. Figure 2 illustrates |R|2
and |T |2 (measured on the vertical left axis) and arg(R) −
arg(T ) (measured on the vertical right axis) over the operating
wave number κ . It should be noted that even though mate-

rial dispersion is ignored, geometrical dispersion is present
due to the finite thickness of the beam splitter. When κ =
526 rad/m, |R|2 ≈ 0.4987, |T |2 ≈ 0.5013, and arg(R) −
arg(T ) ≈ −89.16◦; hence, κ0 = 526 rad/m will be chosen for
a center carrier wave number of photon wave packets for later
use. All parameters used in 1D BS simulations are shown in
Table I.

Assume that two nonentangled photons are initially local-
ized at x = xA = x1 and x = xB = x2, respectively, as illus-
trated in Fig. 3. The corresponding initial quantum state can be
prepared as described in (28). Then, we perturb xB by δx0, viz.,
x′

B = xB + δx0, to observe the temporal delay effect. After
the interference, we place two photodetectors at x1 and x2

that detect photons at t = t0 and t = t0 + τ , respectively. Note
that t0 = 2x0/c and τ = δx0/c. The second-order correlation
function [71,72], denoted by g(2), can be written as

g(2)(τ ) = 〈� (2)|Â(−)(x1, t0)Â(−)(x2, t0 + τ )Â(+)(x2, t0 + τ )Â(+)(x1, t0)|� (2)〉
〈� (2)|Â(−)(x1, t0)Â(+)(x1, t0)|� (2)〉〈� (2)|Â(−)(x2, t0 + τ )Â(+)(x2, t0 + τ )|� (2)〉 = γ1

γ2γ3
, (29)

where τ is a free variable,

γ1 = 〈0|(w̃†
(A) · â)(w̃†

(B′ ) · â)(â† · α∗
(1) )(â

† · α∗
(2) )

(
αt

(2) · â
)(

αt
(1) · â

)
(â† · w̃(B′ ) )(â† · w̃(A) )|0〉,

γ2 = 〈0|(w̃†
(A) · â)(w̃†

(B′ ) · â)(â† · α∗
(1) )

(
αt

(1) · â
)
(â† · w̃(B) )(â† · w̃(A) )|0〉,

γ3 = 〈0|(w̃†
(A) · â)(w̃†

(B′ ) · â)(â† · α∗
(2) )

(
αt

(2) · â
)
(â† · w̃(B′ ) )(â† · w̃(A) )|0〉,

[α(1)]p=[φ̄]i1,p·[D̄(t0)]p,p, and [α(2)]p=[φ̄]i2,p · [D̄(t0+τ )]p,p.
Note that i1 and i2 are node indices for which xi1 =
x1 and xi2 = x2. One can refer to the Appendix to
evaluate (29).

Figure 4 depicts g(2)(τ ) versus τ for Gaussian and
Lorentzian wave packets. As expected, when τ = 0, both
cases produce HOM dips approaching almost zero since the
pair of photons experiences the destructive interference in the
BS. We compare our simulation (FEM or FDM) and analytic
results. The analytic normal modes for the ideal 50:50 BS

(zero length) are given by

φκp (x) =
{

eiκpx + R0e−iκpx for sgn(κp)x < 0,

T0eiκpx for sgn(κp)x > 0,
(30)

where R0 = i/
√

2 and T0 = 1/
√

2. There is excellent agree-
ment in all three methods for both cases. Furthermore, analytic
and numerically evaluated HOM curves are Gaussian and
Laplace distributions. This is also in agreement with the
theoretical explanation [73]; that is, the power spectrum of
wave packets determines the shapes of HOM curves. It should
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FIG. 4. The Hong-Ou-Mandel (HOM) effects are numerically
evaluated for Gaussian (black) and Lorentzian (blue) wave-packet
incidences. The resulting HOM curves have Gaussian and Laplace
distributions since the power spectrum of wave packets determines
the shapes of HOM curves. For each wave-packet incidence, we
compare FEM and FDM results, with analytic results showing good
agreement among them.

be mentioned that the HOM dip, shown in Fig. 4, is less
than one half, which is entirely a quantum effect unachievable
by classical Maxwell’s theory, which produces a dip that
is always greater than one half depending on the type of
incident fields such as coherent pulses and chaotic lights
[74,75].

Through the developed algorithm, one can easily evaluate
higher-order correlation functions for multiphoton interfer-
ence. Consider an arbitrary (Hermitian) observable Ô1 as

Ô1 =
No∏

i=1

(
â† · α∗

(i)

) No∏
i′=1

(
αt

(i′ ) · â
)

(31)

and an arbitrary initial quantum state for number of nonentan-
gled photons Np given by

|� (Np)〉 =
Np∏
i=1

(â† · w̃(i) )|0〉. (32)

Then, the expectation value of Ô1 becomes

〈� (Np)|Ô1|� (Np)〉 = 〈0|
Np∏

i′′′=1

(
w̃†

(i′′′ ) · â
) No∏

i′′=1

(
â† · α∗

(i′′ )
)

×
No∏

i′=1

(
αt

(i′ ) · â
) Np∏

i=1

(
â† · w̃(i)

)|0〉

= 〈0|Ô2|0〉, (33)

which corresponds to the Noth-order correlation function.
We evaluate the expectation value of Ô2 with respect to the
vacuum state. One can refer to the Appendix for details about
its algorithmic implementation.

VI. CONCLUSION

We have shown a computational framework for canoni-
cal quantization in arbitrary inhomogeneous dielectric me-
dia by incorporating quantum electromagnetics effects into
complex solutions of quantum Maxwell’s equations. To do
so, the proposed algorithm integrated and performed (1)
numerical computation of normal modes and (2) evaluation
of the linear superposition of arbitrary products of ladder
operators acting on multimode Fock states. The former was
associated with Hermitian-Helmholtz linear systems solved
by the finite-element or finite-difference method; conse-
quently, the complete set of numerical normal modes di-
agonalizes the Hamiltonian operators to floating-point pre-
cision [68]. Based on the developed algorithm, we have
performed quantum numerical simulations of two-photon
interference occurring in a 50:50 beam splitter to observe
the Hong-Ou-Mandel effect. Our prototype model is useful
for numerical analyses of various narrow-band quantum-
optical multiphoton systems such as quantum metasurfaces,
quantum-optical filters, and quantum electrodynamics in open
optical cavities.

There are many ways of quantizing electromagnetic fields.
The modal approach is simple and appropriate for narrow-
band and lossless quantum-optical applications involved in
multiphoton interference. And as shown in this work, it
rigorously retains the Hermiticity of quantum Maxwell’s
equations even in the numerical world. It also allows us
to solve the quantum state equation (2) easily [68]. In fu-
ture work, we will also explore various computational elec-
tromagnetic methods such as numerical Green’s functions
and finite-difference or finite-element time-domain methods
to develop quantum electromagnetic numerical solvers as
shown in [50] and investigate the pros and cons thereof. We
will also explore dispersion and dissipation as expounded
in [21].
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APPENDIX: CALCULATION OF THE DEGREE
OF QUANTUM COHERENCE

Here, we provide a specific numerical recipe for calculat-
ing arbitrary degrees of quantum coherence that eventually
takes the form

〈0|Ô|0〉, (A1)

where a Hermitian operator Ô consists of arbitrary products
of the weighted sum of annihilation or creation operators.
For example, the first-order correlation for a single-photon
quantum state vector, which is related to the detection prob-
ability of the photon at a specific position and time in-
stant or the expectation value of the energy density, can be
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written as

Ô=
⎛
⎝ Nκ∑

p′′′=1

β∗
p′′′ âκp′′′

⎞
⎠

⎛
⎝ Nκ∑

p′′=1

α∗
p′′ â†

κp′′

⎞
⎠

⎛
⎝ Nκ∑

p′=1

αp′ âκp′

⎞
⎠

⎛
⎝ Nκ∑

p=1

βpâ†
κp

⎞
⎠,

(A2)

where α and β are constants associated with the vector
potential operator and quantum state vector.

The principles of the present method are based on (1) the
reordering process and (2) the constantization process, which
are equivalent to extracting the full contraction terms based on
Wick’s theorem [76].

1. Reordering process

Consider two operators Â and B̂ which are given by

Â =
Nκ∑

p=1

αpâκp = (αt · â), (A3)

B̂ =
Nκ∑

p=1

βpâ†
κp

= (â† · β), (A4)

where [â]p = âκp , [â†]p = â†
κp

, [α]p = αp, and [β]p = βp.

Then, their product ÂB̂ is

ÂB̂ =
⎛
⎝ Nκ∑

p′=1

αp′ âκp′

⎞
⎠

⎛
⎝ Nκ∑

p=1

βpâ†
κp

⎞
⎠ =

Nκ∑
p′=1

Nκ∑
p=1

αp′βpâκp′ â
†
κp

.

(A5)

By using the commutator relation, (A5) can also be expressed
as

ÂB̂ =
Nκ∑

p′=1

Nκ∑
p=1

αp′βp
(
â†

κp
âκp′ + δp′,pÎ

)

=
⎛
⎝ Nκ∑

p=1

βpâ†
κp

⎞
⎠

⎛
⎝ Nκ∑

p′=1

αp′ âκp′

⎞
⎠ +

Nκ∑
p=1

αpβpÎ

= B̂Â +
Nκ∑

p=1

αpβpÎ. (A6)

One can also rewrite (A5) and (A6) in the equivalent matrix
representation as

ÂB̂ = (αt · â)(â† · β)

= (â† · β)(αt · â) + (αt · β)Î

= B̂Â + (αt · β)Î. (A7)

2. Constantization process

Any successive action of a set of creation and annihilation
operators to the vacuum state can be replaced by a constant.
Consider the product of operators ÂB̂ acting on the vacuum;
then,

ÂB̂|0〉 = B̂Â|0〉 + (αt · β)Î|0〉 = (αt · β)|0〉. (A8)

Note that B̂Â can be thought of as a number operator; hence,
B̂Â|0〉 always yields zero since the photon occupation number
of the ground state is zero, or, mathematically, âκp |0〉 = 0.
However, ÂB̂ is the Hermitian conjugate of the number op-
erator. Thus, mathematically, the constant αt · β should be
interpreted as an eigenvalue of ÂB̂ with respect to the ground
state. In addition, if we take 〈0| on both sides of (A8), the
constant is equal to the vacuum expectation value of ÂB̂.
For given Â and B̂, one can award a more specific physical
meaning to the constant.

3. First- and second-order correlations for the two-photon quantum state vector

For example, the first-order correlation for two photons is calculated by

A = 〈� (2)|Â(−)(xi, t )Â(+)(xi, t )|� (2)〉 = 〈0|(β†
1 · â) (β†

2 · â)(â† · α∗
i )︸ ︷︷ ︸

use (A7)

(αt
i · â)(â† · β2)︸ ︷︷ ︸

use (A7)

(â† · β1)|0〉

= 〈0|(β†
1 · â)[(â† · α∗

i )(β†
2 · â) + (β†

2 · α∗
i )Î][(â† · β2)(αt

i · â) + (αt
i · β2)Î](â† · β1)|0〉

= (β†
2 · α∗

i )(αt
i · β2)〈0|(β†

1 · â)(â† · β1)|0〉 + (β†
2 · α∗

i )〈0|(β†
1 · â)(â† · β2)(αt

i · â)(â† · β1)|0〉

+ (αt
i · β2)〈0|(β†

1 · â)(â† · α∗
i )(β†

2 · â)(â† · β1)|0〉 + 〈0|(β†
1 · â)(â† · α∗

i )(β†
2 · â)(â† · β2)(αt

i · â)(â† · β1)|0〉

=︸︷︷︸
use (A8)

(β†
2 · α∗

i )(αt
i · β2)(β†

1 · β1)〈0|0〉 + (β†
2 · α∗

i )(β†
1 · β2)(αt

i · β1)〈0|0〉 + (αt
i · β2)(β†

1 · α∗
i )(β†

2 · β1)〈0|0〉

+ (β†
1 · α∗

i )(β†
2 · β2)(αt

i · β1)〈0|0〉. (A9)
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Due to the normalization condition, β†
1 · β1 = β†

2 · β2 = 1.
Furthermore, assuming that photons do not share their spec-
trum, β†

2 · β1 = β†
1 · β2 = 0. Since 〈0|0〉 = 1 by the orthogo-

nal property of Fock states, one can finally obtain

A = (β†
2 · α∗

i )
(
αt

i · β2

) + (β†
1 · α∗

i )
(
αt

i · β1

)
, (A10)

which is proportional to the expectation value of the energy
density of EM fields carried by two photons. Note that the
inner product αt · β (β† · α∗), which is the linear superposition
of normal mode values and their weighting factors, describes
the positive (negative) frequency component of the resulting
EM field values. The above algebra simplifies because of
the second-stage diagonalization: The photon-number state,
in this case, the vacuum state, is the eigenstate of the photon-
number operators. It should be mentioned that the present
numerical approach does not deal with quantum states nu-
merically but still uses multimode Fock states for which
analytic solutions are available. This is again because of the
high quality of the orthonormal property of numerical normal
modes (see Fig. 10 in [68]), which permits the second-stage
diagonalization of the Hamiltonian operator.

An expectation value of an operator with respect to an
arbitrary quantum state, which is basically a scalar value, is of
the primary interest in quantum physics. To this end, as shown
in (A9), one ends up evaluating the bracket operation of Fock
states multiplied by scalar factors. We utilize the orthogonal
property of multimode Fock states that converts the bracket

operation into a scalar number. As such, the expectation
finally becomes a scalar number, for example, the numerator
and denominator of g(2) as in (A10) and (A12).

And the second-order correlation for two photons is B =
〈B′|B′〉, where

|B′〉 = Â(+)(x j, t )Â(+)(xi, t )|� (2)〉
= (

αt
j · â

) (
αt

i · â
)
(â† · β2)︸ ︷︷ ︸

use (A7)

(â† · β1)|0〉

= (
αt

j · â
)[

(â† · β2)
(
αt

i · â
) + (

αt
i · β2

)
Î
]
(â† · β1)|0〉

=︸︷︷︸
use (A8)

[(
αt

j · β2

)(
αt

i · β1

) + (
αt

i · β2

)(
αt

j · β1

)]|0〉.

(A11)

In a fashion similar to (A9), one can derive

B = [(
αt

j · β2

)(
αt

i · β1

) + (
αt

i · β2

)(
αt

j · β1

)]∗

× [(
αt

j · β2

)(
αt

i · β1

) + (
αt

i · β2

)(
αt

j · β1

)]
, (A12)

which is a scalar value. The above result describes two possi-
ble indistinguishable interferences or paths for two photons to
experience in a 50:50 quantum beam splitter with a quadrature
phase shift. Only when two photons exit through either output
while being bunched are probability amplitudes nonzero;
otherwise, they are zero.
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