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Theory of all-optical switching based on the Kerr nonlinearity in metallic nanohybrids
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We have developed a theory for the Kerr nonlinearity in nanohybrids made of an ensemble of metallic
nanoshells and low concentration of quantum emitters. A metallic nanoshell is made of a metallic core sphere
and dielectric shell. We consider that quantum emitters are four-level quantum systems. When a probe laser light
falls in the metallic nanoshells, the surface plasmon polariton electric field is produced at the interface between
the metal sphere and dielectric shell. This electric field along with the probe field induces dipoles in metallic
nanoshells. These dipoles interact with each other via the dipole-dipole interaction. The Kerr nonlinearity has
been calculated by using the quantum density matrix method in the presence of the dipole-dipole interaction
(coupling). We found that in the weak-coupling limit there is an enhancement in the Kerr nonlinearity. On the
other hand, in the strong-coupling limit, the peaks in the Kerr coefficient split from two peaks to four peaks
when the frequency of the dipole electric field is in the resonance with the exciton frequency. The splitting in the
spectrum is due to the presence of the dressed sates created in the system. We showed that heights and locations
of peaks are very sensitive to the strength of the dipole-dipole interaction. Physics of the enhancement can be
used fabricate Kerr nanosensors. On the other hand, physics of the splitting from two peaks (ON) to four peaks
(OFF) can be used to fabricate Kerr nanoswitches.

DOI: 10.1103/PhysRevA.102.013708

I. INTRODUCTION

Considerable interest has been devoted to study linear and
nonlinear plasmonic properties of nanohybrids and nanocom-
posites made of metallic nanoparticles (MNPs) and quan-
tum emitters (QEs) [1–19]. It is well known that nonlinear
optics play an important role in various applications such
as frequency conversion [11], ultrafast lasers and amplifiers
[12], ultrafast all-optical switching [13], and nonlinear mi-
croscopy [14]. Strong laser intensities are required in various
nonlinear optical applications. Recently it has been found
that surface plasmon polaritons (SPPs) in metallic nanopar-
ticles create huge electric fields near the surfaces of MNPs
[1–10]. Therefore, SSP fields instead of strong laser intensities
can be used for various nonlinear optical applications. The
nonlinear optical properties of quantum emitters near the
MNPs has been studies by several authors [7,15–19]. For
example, plasmonic excitations have been studied for ultrafast
processing of optical signals which depend on the size and
the shape of the MNPs along with dielectric properties of the
surrounding medium [18]. Singh [19] studied the nonlinear
second-harmonic generation in nanohybrids made of the MNP
and quantum dot (QD). It is found that second-harmonic
signals produced by the QD near the MNP are enhanced due
to the exciton-SPP interaction.

Nonlinear optical phenomena called the Kerr nonlinearity
has been studied widely in the research area of quantum
optics using three-level and four-level atoms [20–29]. For
example, Schmidt and Imamoglu [20] have obtained giant
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Kerr nonlinearities in atoms by electromagnetically induced
transparency. Wang et al. [21] found that the Kerr nonlinear
refractive index of a three-level �-type atom is greatly en-
hanced inside an optical ring cavity near resonance for both
probe and control fields. On the other hand, Yan et al. [22]
investigated the enhancement of the Kerr nonlinearity in a
four-level atomic system in which spontaneously generated
coherence is present. Wang et al. [23] studied experimentally
the enhancement of the Kerr-nonlinear coefficient in a three-
level atomic system such as Rb atom for various coupling
beam powers.

Some effort has also been devoted to investigating ex-
perimentally the Kerr nonlinearity in metallic nanohybrids
[28,29]. For example, Torres-Torres et al. [28] have studied
the third-order optical nonlinearity a nanohybrid containing
gold nanoparticles and silicon quantum dots nucleated by ion
implantation in a high-purity silica matrix. On the other hand,
López-Suárez et al. [29] studied nonlinear refractive index for
three different systems made of high-purity silica substrates
with silicon quantum dots (QDs), silver metallic nanoparticles
(Ag MNPs). They used a femtosecond optical Kerr gate with
80-fs pulses at 830 nm to investigate the magnitude and
response time of their nonlinear response. They found that
the inclusion of Ag-MNP enhances the nonlinearity of the
nanohybrid by a factor of around 3. They also found that
the confinement effect of the Si QDs in the sample plays an
important role for the excitation of the SPP resonance related
to the Ag MNPs.

In this paper, we developed a theory of the Kerr nonlin-
earity in nanohybrids made of an ensemble of QEs doped
in an ensemble of metallic nanoshells (MNSs). The MNS
is made of a metallic core sphere and dielectric shell. The
concentration of QEs is small so that they do not interact with
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each other. On the other hand, the concentration of MNSs is
large and they interact with each other via the dipole-dipole
interaction (DDI). A probe field is applied to study the Kerr
nonlinearity. The probe field and the SPP field induce dipoles
in the ensemble of MNSs and they interact with each other via
DDI.

Recently, Singh and Black [30] have studied the effect of
the DDI on the one-photon photoluminescence in a core-shell
nanohybrid where the core is made of a metallic nanopar-
ticle and the shell is made of an ensemble of QEs. They
found that this DDI between QEs plays a dominant role in
the phenomenon of the one-photon photoluminescence and
scattering cross section. Later, Singh and co-workers [31,32]
have discovered the anomalous one-photon photolumines-
cence quenching in metallic nanohybrids due to the DDI.
They found that their theory is consistent with the experiments
of metallic nanohybrids made from the CdSe-ZnS quantum
dot embedded in the ensemble of Au nanoparticles.

Here we consider four energy levels of QEs in the nanohy-
brid. This means that each QE has three excitation and four
energy levels. The excitons in QEs interact with the SPP
field and DDI field produced by the ensemble of MNSs.
A theory of the Kerr nonlinearity has been developed by
using the quantum density-matrix method in the presence
of the exciton-SPP and exciton-DDI interactions (coupling).
Analytical expressions of the Kerr refractive index coefficient
have been evaluated in the weak- and strong-coupling limits
of the exciton-SPP and exciton-DDI interactions.

We found that in the weak-coupling limit, there is en-
hancement in the Kerr nonlinearity coefficient. On the other
hand, in the strong-coupling limit, the peaks in the Kerr
coefficient splits from two peak to four peaks. The splitting in
the spectrum is due to the presence of the dressed states in the
nanohybrid due the strong interaction when the frequencies of
the SSP and field are resonant with the exciton’s energies. On
the hand when the frequencies of the SSP and DDI fields are
not resonant with the exciton’s frequencies, two peaks of the
Kerr coefficient split into more than four peaks. We showed
that the height and locations of these peaks are very sensitive
to the DDI coupling.

II. DIPOLE-DIPOLE INTERACTION HAMILTONIAN

The nanohybrid is made of interacting MNSs and nonin-
teracting QEs. We consider only four levels of QEs and they
are called four-level systems in the literature [20–24]. Four
levels are denoted as |1〉, |2〉, |3〉, and |4〉 and the frequency
difference between levels |i〉 and | j〉 is expressed as ωij where
i and j stand for 1, 2, 3, and 4. A schematic diagram of the
QEs and MNSs hybrid is depicted in Fig. 1. To study the
Kerr nonlinearity, we apply a probe field with amplitude EP

and frequency ω between the transitions |1〉 ↔ |2〉. The MNS
emits the surface plasmon polaritons electric fields ESPP. The
induced dipoles are created due to the probe field and SPP
field in MNSs and they interact with each other via the DDI.
The induced dipole also creates the DDI electric field which
is denoted as Em

DDI.
To study the nonlinear optical properties of QEs, we must

calculate how many electric fields are falling on the QE. The
answer is that there are three electric fields falling on the QE.

FIG. 1. Schematic diagram of a hybrid which consists of an
ensemble of interacting MNSs and noninteracting QEs. The MNS
is made of a dielectric shell and a metallic core. The hybrid is doped
into a chemical, dielectric, or biological material.

They are (i) probe electric field EP, (ii) the SPP field ESPP,
and (3) the DDI field Em

DDI. Therefore, the total electric field
falling on the QE is found as

ET
q = (

EP + ESPP + Em
DDI

)
. (1)

Let us calculate the SPP field and the DDI field appearing
in Eq. (1).

SPP field. A MNS is made from a metallic core and a
metallic core. The SPP field is calculated as follows. The
dielectric constant of the metallic core and dielectric shell are
denoted as εm and εs, respectively. The radius of the metallic
core is taken as Rm and the radius of the dielectric shell is Rs.
The nanohybrid is deposited on a substrate (i.e., background
material) with dielectric constant εb. The background material
can be the chemical, biological dielectric materials or solu-
tions or solids. We applied a probe field with frequency ωp and
amplitude EP in the nanohybrid. Induced dipoles are created
in MNSs and QEs.

The dipole of the MNS is denoted as Pm which produces
the SPP electric field ESPP. Two electric fields are falling
on the MNS, namely the probe field and the electric field
produced by induced dipole in the QE (EQE). Then, the total
electric field falling on the MNS is found as Em

T = EP + EQE.
Using this total field and solving the Maxwell’s equation in the
quasistatic approximation [33,34] one can find the following
expressions ESPP as

ESPP = Pm

4π∈0∈br3
, Pm = 4π∈0∈bR3

s glζs(EP + EQE),

ςs =
[ ∈mc − ∈b

∈mc + 2∈b

]
, ∈mc = ∈m

[
R3

s + R3
m

( ∈m−∈s
∈m+2∈s

)
R3

s − 2R3
m

( ∈m−∈s
∈m+2∈s

)
]
,

(2)
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where ςs is called the polarizability factor. Similarly, one
can calculate the electric fields EQE produced by the induced
dipole Pq in the QE. Three electric fields are falling on the QE,
namely the probe field, the SPP field, and the DDI electric
field produced by the MNPs. Then, the total electric field
falling on the QE is found as in Eq. (1). Solving the Maxwell’s
equations in the quasistatic approximation [33,34] one can
find the following expressions EQE as

EQE = Pq

4π∈0∈br3
,

Pq = 4π∈0∈bR3
qglζq

(
EP + ESPP + Em

DDI

)
,

ςq =
[ ∈q − ∈b

∈q + 2∈b

]
. (3)

In Eqs. (2) and (3), the constant gl is called the polarization
parameter and it has values gl = 1 and gl = −2 for Pi ‖ EP

and Pi⊥EP where i = m, q.
Equations (2) and (3) can be rewritten in the simple form

as follows:

ESPP = R3
s βm

r3
(EP + EQE), βm = glζs, (4)

EQE = R3
qβq

r3

(
EP + ESPP + Em

DDI

)
βq = glζq. (5)

Note that both electric fields depend on r−3 and parameters
βs and βq.

DDI field. Let us calculate the DDI field produced by the
ensemble of MNSs in the nanohybrid. Each dipole in the
ensemble interacts with other dipoles. A theory of the DDI has
been developed in Refs. [30–32] and the DDI electric field is
found as

Em
DDI = λPm

(3 × 4π∈0∈b)R3
s

, (6)

where λ is a constant and Pm is the polarization which has
been calculated in Eq. (2). Putting the expression of Pm

from Eq. (2) into Eq. (6) and performing some mathematical
manipulations, one can calculate the DDI field as

Em
DDI = ηm

DDIEP + ηm
DDI

(
R3

qβq

r3
EP + R3

s βmβq

r6
EP

)
, (7)

where ηm
DDI is the DDI strength and is found as

ηm
DDI = λglςs

3
= λβm

3
. (8)

Note that the second term in Eq. (7) depends on r−3 and
r−6.

Putting Eqs. (5) and (7) into Eq. (4), we can calculate the
SPP field as follows:

ESPP = R3
s βm

r3

(
EP + ηm

DDIEP + R3
qβq

r3
EP

)
. (9)

Note that the SPP and DDI fields depend on r−3 and r−6.
The higher-order terms (r−9) has been neglected.

The SSP resonance frequencies are calculate from Eq. (4).
Note that SSP field in Eq. (4) depends on the ςs function which

has a maximum which corresponds to the SPP resonance
frequency. The SPP resonance frequency is located at the
interface between the core and metallic shell and is denoted
by ωs.

III. KERR NONLINEAR PLASMONICS
AND DENSITY-MATRIX METHOD

In this section we calculate the nonlinear Kerr coeffi-
cient using the density-matrix method. Using the quantum-
mechanical density-matrix method, nonlinear optical proper-
ties in quantum optics been have studied in Refs. [35,36].
To study the nonlinear properties in the QE, we applied
a probe electric field (EP) with frequency ωp between the
transition |1〉 ↔ |2〉. Following the method of Refs. [35,36],
the expression of the polarization PQE is given as

PQE(ωp) = P(2)
QE (ωp) + P(2)

QE (ωp, ωp) + P(3)
QE (ωp, ωp, ωp),

(10)

where

P(1)
QE (ωp) = ∈0χ

(1)
QE (ωp)Ep(ωp),

P(2)
QE (ωp, ωp) = ∈0χ

(2)
QE (ωp, ωp)Ep(ωp)Ep(ωp),

P(3)
QE (ωp, ωp, ωp) = ∈0χ

(3)
QE (ωp, ωp, ωp)Ep(ωp)Ep(ωp)Ep(ωp),

(11)

where χ (1), χ (2), and χ (3) are the first-, second-, and third-
order expressions of the susceptibility χ . We know that the
first-order susceptibility is responsible for the one-photon
phenomena, whereas the second-order susceptibility is re-
sponsible for the two-photon phenomena. Finally, the third-
order susceptibility is responsible for the Kerr nonlinearity.

Following the method of Refs. [35–38], the polarization of
the QE can also be expressed in terms of the quantum density-
matrix operator (ρ) as follows:

PQE(ωp) = 2μ21[ρ21(ωp) + H.c.], (12)

where μ21 is the matrix elements of the dipole moment
between the transition |1〉 ↔ |2〉 and ρ21 is the nonlinear
density-matrix operator (ρ) between the transition |1〉 ↔ |2〉.
We express the nonlinear density matrix as follows:

ρ21 = ρ
(1)
21 (ωp) + ρ

(2)
21 (ωp, ωp) + ρ

(3)
21 (ωp, ωp, ωp), (13)

where ρ
(1)
21 , ρ

(2)
21 , and ρ

(3)
21 are the first-, second-, and third-

order density-matrix elements in the probe field, respectively.
Putting Eq. (13) into Eq. (12), we get

PQE(ωp) = 2μ21
[
ρ

(1)
21 (ωp) + ρ

(2)
21 (ωp, ωp)

+ ρ
(3)
21 (ωp, ωp, ωp) + H.c.

]
. (14)

We compared Eqs. (10) and (14) and we found the relation
between the susceptibility and the density-matrix elements as
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follows:

χ (1)(ωp) = 2μ21ρ
(1)
21 (ωp) + H.c.

∈0Ep(ωp)
,

χ (2)(ωp, ωp) = 2μ21ρ
(2)
21 (ωp, ωp) + H.c.

∈0Ep(ωp)Ep(ωp)
,

χ (3)(ωp, ωp, ωp) = 2μ21ρ
(3)
21 (ωp, ωp, ωp) + H.c.

∈0Ep(ωp)Ep(ωp)Ep(ωp)
. (15)

The above expression can be expressed in terms of the Rabi
frequency as

χ (1)(ωp) = 2μ2
21ρ

(1)
21 (ωp) + H.c.

∈0 h̄
p

,

χ (2)(ωp, ωp) = 2μ3
21ρ

(2)
21 (ωp, ωp) + H.c.

∈0 h̄2
2
p

,

χ (3)(ωp, ωp, ωp) = 2μ4
21ρ

(3)
21 (ωp, ωp, ωp) + H.c.

∈0 h̄3
3
p

. (16)

In this paper, we are interested to study the effect of
Kerr effect on plasmonic properties of metallic nanohybrids.
Therefore, here we consider only the third-order susceptibility
χ (3) which is responsible for the Kerr effect.

Next, we calculate the Kerr refractive index coefficent
(i.e., Kerr cofficient). It can be calculated from the following
formula [35,36]:

n2 = 12π2Re(χ (3) )

n2
bc

, (17)

where nb is the refractive index of the background material
and c is the speed of the light. Putting in the expression of the
third-order susceptibility χ (3) from Eq. (16) into Eq. (17), we
get

n2 = n0
2Re

(
ρ

(3)
21

)
, n0

2 = 12π22μ4
21

n2
bc∈bh̄3
3

p

. (18)

Note that the Kerr nonlinearity coefficent depends on the
third-order density-matrix element ρ

(3)
21 . Next using the quan-

tum density-matrix method, we evaluate these density-matrix
elements.

IV. KERR COEFFICIENT AND
DENSITY-MATRIX METHOD

Let us evaluate an expression of density-matrix element
ρ

(3)
21 appearing in Eq. (18). To evaluate this density matrix,

we need to calculate the interaction Hamiltonian between
excitons in the QE and the ensemble of MNSs. To calculate
the interaction Hamiltonian, first we must calculate the total
electric field falling on the QE. We applied a probe electric
field (EP) between the transition |1〉 ↔ |2〉. We consider that
the ωs lies near exciton energy ω23. Hence the SPP field
is acting between the transition |2〉 ↔ |3〉. The DDI field is
acting between the transition |3〉 ↔ |4〉. See the schematic
diagram of the QE in Fig. 2. The total electric field falling
on the QE is obtained by putting Eqs. (7) and (9) into Eq. (1)

FIG. 2. A schematic diagram of a four-level QE is plotted. En-
ergy levels are denoted as |1〉, |2〉, |3〉, and |4〉. The probe field is
applied between transitions |1〉 ↔ |2〉. The SPP field and DDI field
are acting between |2〉 ↔ |3〉 and |3〉 ↔ |4〉, respectively.

as follows:

ET
q =

⎡
⎢⎢⎣

(
EP + ηm

DDIEP

)
+(R3

s βm

r3 + R3
s βmηm

DDI
r3 + R3

qβqη
m
DDI

r3

)
EP

+(R3
qR3

s βmβq

r6 + R3
qR3

s βmβqη
m
DDI

r6

)
EP

⎤
⎥⎥⎦. (19)

These electric fields induce the dipole in the QE and this
dipole in turn interacts with these fields. With the help of
Eq. (19) and using the dipole and rotating wave approximation
[35–38], the interaction Hamiltonian is found as follows:

Hin =
[

h̄
pσ21 + h̄
p
(
ηm

DDI + �
q
DDI + �

qm
DDI

)
Eσ34

+h̄
p
(
�

p
SPP + �ddi

SPP + �
qe
SPP

)
σ23 + H.c.

]
, (20)

where

�DDI = (
ηm

DDI + �
q
DDI + �

qm
DDI

)
,

�SPP = (
�

p
SPP + �ddi

SPP + �
q
SPP

)
,

ηm
DDI = λβm

3
, �

q
DDI = R3

qβqη
m
DDI

r3
, (21)

�
qm
DDI = R3

qR3
s βmβqη

m
DDI

r6
, �

p
SPP = R3

s βm

r3
,

�ddi
SPP = R3

s βmηm
DDI

r3
, �

q
SPP = R3

qR3
s βmβq

r6
,

where H.c. stands for the Hermitian conjugate. Here
σij = |i〉〈 j| is the exciton creation operator for |i〉 ↔ | j〉.
The parameter 
p is called the Rabi frequency. The first term
in the Hamiltonian is the exciton-probe field interaction due to
the transitions |2〉 ↔ |1〉. The second term is the exciton-DDI
field interactions due to the transitions |3〉 ↔ |4〉. The third
term is the exciton interaction with SPP field. The last term
is the exciton-SPP field interaction due to the transitions
|2〉 ↔ |3〉.

Note that the DDI term (�DDI) in Eq. (21) is made of three
terms. The first term is the exciton-DDI field interaction term.
On the other hand, the second and third terms are the exciton
interaction with the DDI field induced by the QE electric field.
Similarly, the SPP term (�SPP) in Eq. (21) is made of three
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terms. The first term is the exciton interaction with SPP field
induced by the probe field. However, the second term is the
exciton interaction with the SPP field induced by the DDI
electric field. On the other hand, the third term is the exciton
interaction with the SPP field induced by the QE electric
field.

Following the method of Refs. [35–38] and with the help of
Hamiltonian Eq. (21), equations of motion for density-matrix
elements are evaluated. We solve density-matrix element
equations in in the steady state. After some mathematical
manipulations, the density-matrix element ρ

(3)
12 is calculated

as follows:

ρ
(3)
12 = ρ

(2)
23 
2

p�SPPd14 + iρ (2)
24 
2

p�DDI�SPP

d21
(
d13d14 − d21
2

p�
2
DDI

) + 
2
p�

2
SPPd14

+ i
(
ρ

(2)
22 − ρ

(2)
11

)

p

(
d13d14 − d21


2
p�

2
SPP

)
d21

(
d13d14 − d21
2

p�
2
DDI

) + 
2
p�

2
SPPd14

, (22)

where

d31 = δp + iγ31, d32 = δs + iγ32, d21 = δ21 + iγ21,

d43 = δ43 + iγ43, d41 = δ41 + iγ41, d42 = δ42 + iγ42,

δp = ωp − ω31, δs = ωsp − ω32, δd = ωsp − ω43,

δ41 = δp + δd , δ12 = δs − δp, δ42 = δd + δs,

where δp, δs, and δd are the probe, SPP, and DDI detunings, respectively. In Eq. (22) ρ
(2)
23 , ρ

(2)
23 , ρ

(2)
22 , ρ

(1)
12 , ρ

(1)
13 , and ρ

(2)
23 are the

matrix elements of the density-matrix operator ρ. They are found as

ρ
(2)
24 = − iρ (2)

23 
p�SPPd34

d24d34 + 
2
p�

2
DDI

,

ρ
(2)
22 = 
pIm

(
ρ

(1)
12

)
γ21

,

(23)

ρ
(1)
13 = −

(
d14�DDI


2
p

d21
(
d13d14 − 
2

p�
2
SPP

) + d14
2
p�

2
DDI

)
,

ρ
(2)
23 =

(
iρ (2)

33 
p�DDI − iρ (2)
22 
p�DDI + iρ (1)

13 
P
)(

d24d34 + 
2
p�

2
DDI

)
(
d24d34 + 
2

p�
2
DDI

) + 
2
p�

2
SPPd34

.

If we consider that the population of the ground state is higher
than the population all excited states. In other words, we can
put ρ11 > ρ22, ρ11 > ρ22, ρ11 > ρ33, and ρ11 > ρ44. In this
case the expression of ρ

(3)
12 reduces to

ρ
(3)
12 = ρ

(2)
23 
2

p�SPPd14 + iρ (2)
24 
3

p�DDI�SPP

d21
(
d13d14 − d21
2

p�
2
DDI

) + 
2
p�

2
SPPd14

, (24)

where

ρ
(2)
24 = − iρ (2)

23 �DDId34

d24d34 + �2
SPP

,

ρ
(2)
23 =

(
iρ (1)

13 
p

)(
d24d34 + �2

SPP

)
d23

(
d24d34 + �2

SPP

) + �2
DDId34

. (25)

The Kerr coefficient appearing in Eq. (18) can be calcu-
lated with the help of ρ

(3)
12 which is calculated in this section.

V. RESULTS AND DISCUSSIONS

In this section, we calculate the Kerr coefficinet using our
theory. We consider that a nanohybrid is made of an ensemble
of interacting MNSs and noninteracting QEs. The MNS is
made of the SiO2 shell and a gold (Au) core. Cadmium-
selenium quantum dots are considered as QEs. This type of
nanohybrids are fabricated by Xiao et al. [39]. We consider
the following expression of the dielectric constant of the

metal εm:

∈m = ∈∞

(
1 − ω2

p

ω2 + iγcω

)
, (26)

where ε∞ is the dielectric constant of metal when the light
frequency is very large, ωp is the plasmon frequency (wave-
length), and γm is the decay constant responsible for the heat
loss in metals. The experimental paramters for the Au are
taken as ωp = 8.7 eV, γm = 0.1 eV, and ε∞ = 10. Other
physical parameters are measured with respect to the decay
rate γ0 in the vacuum. The parameters used are γ23 = γ34 =
γ0, γ12 = 0.2γ0, and 
P = 0.2γ0.

Now, we study the influence of the DDI on Kerr nonlin-
earity in the weak SPP coupling limit. Physical parameters
such as probe Rabi frequency, probe detuning, and decay rates
are measured with respect to the decay rate γ0. In the weak
limit we take �SPP = 0.1. The variation of Kerr nonlinear
coefficient n2 is plotted in Fig. 3(a) versus probe detuning
δp. The probe field is taken as 
P = 0.1. Here we consider
that the DDI and SPP resonance frequencies are in resonance
with the exciton transition energies ω34 and ω23, respectively.
The solid line is plotted when the DDI is absent (�DDI = 0.0).
The dash and dash-dotted lines are plotted in the presence of
the DDI for �DDI = 0.3, and �DDI = 0.6, respectively. It is
clear from the figure that the shape of the Kerr coefficient
changes in the presence of the DDI. Note that there is a huge
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FIG. 3. (a) In the weak-coupling limit (�SPP = 0.1), the Kerr nonlinear coefficient n2 is plotted as a function of the probe detuning δp. The
solid line is plotted when the DDI is absent (�DDI = 0.0). The dash and dash-dotted lines are plotted in the presence of the DDI for �DDI = 0.3,
and �DDI = 0.6, respectively. (b) In the strong-coupling limit (�SPP = 2.0), the Kerr nonlinear coefficient n2 is plotted as a function of the
probe detuning δp. The solid line is plotted in the absence of the DDI. The dash and dash-dotted lines are plotted for the DDI when the
anomalous DDI has values �DDI = 0.5, and �DDI = 0.8, respectively.

enhancement of the Kerr coefficient under the presence of the
anomalous DDI effect. The Kerr coefficient changes from the
negative to positive value at zero detuning, i.e., δp = 0. The
positions of the left peak and the right peak located on both
sides of the zero detuning do not change. The distance of the
left peak and the right peak from the zero detuning is the same.

We study the effect of the DDI on the Kerr coefficient in the
strong-coupling limit (�SPP = 2.0). The results are presented
in Fig. 3(b) for n2 as a function of the probe detuning δp. The
solid line is plotted in the absence the DDI. The dash and
dash-dotted lines are plotted for the DDI when the anomalous
DDI has values �DDI = 0.5, and �DDI = 0.8, respectively.
The Kerr coefficient changes from positive to negative at δp =
−2.0. It also changes from negative to positive value at δp =
0.0 and from positive to negative at δp = +2.0. This means
that the transition point at δp = 0.0 splits into two transition
points located at δp = −2.0 and δp = +2.0. In other words,
the left minimum peak in the Kerr coefficient in the absence
of the SSP coupling splits into two minima which are located
on the left and right side of zero detuning. Similarly, the right
maximum peak splits into two peaks which are located on the
left and right side of zero detuning.

Note that in Fig 3(b), the splitting distance between δp =
0.0 and δp = ∓2.0 is equal to the SSP coupling value which
is �SPP = 2.0. The height of the left peak is the same as the
height of the right peak. However, the height of the left and
right peaks located at δp = ∓2.0 are not the same. There is
again a huge enhancement of the Kerr coefficient under the
presence of the SSP field and a small enhancement in the
presence of the DDI. In summary, we can say that two peaks
in the Kerr coefficient split into four peaks in the strong SPP
coupling limit.

We want to explain the physic of the splitting in Fig. 3(b).
In the weak SPP coupling limit, the Kerr coefficient has two
peaks at the right side and the left side of the zero detuning.
This peak is associated with the transition |2〉 ↔ |1〉. On
the other hand, in the strong SPP coupling limit, the Kerr
coefficient has two peaks at the right side and two peaks at the
left side of the zero detuning. In this case, dressed states are

created in the QEs. The excited state |2〉 splits into two dressed
states called |2−〉 and |2+〉 due to the strong SPP coupling.
Therefore, two transitions occur, |2−〉 ↔ |1〉 and |2+〉 ↔ |1〉.
Due to transition |2−〉 ↔ |1〉, we get the first set of two left
and right peaks. Similarly, due to the transition |2+〉 ↔ |1〉,
we get the second set of the two left and right peaks. That is
why we get four peaks in the strong-coupling limit.

The effect of DDI is studied in Fig. 4 on the left and right
peaks of the Kerr effect. We know that the left and right
peaks in the absence of the DDI are located at δp = −0.1
and δp = +0.1, respectively [see Fig. 3(a)]. In Fig 4, the peak
heights are plotted as a function of the DDI coupling. The
solid line is plotted for the right peak at δp = +0.1 and the
dash-dotted line is plotted for the left peak at δp = −0.1.
Note that the enhancement in the Kerr coefficient in the both
peaks increases then reaches the maximum value at about
�DDI = 0.90. After that both peaks have zero values about
�DDI = 0.95 and after this value both peaks change their sign.

FIG. 4. The Kerr coefficient (n2) as function of the amanous DDI
(�DDI) is plotted. The solid and dotted lines correspond to δp = +0.1
and δp = −0.1, respectively.
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FIG. 5. The Kerr coefficient (n2) peaks heights are plotted as a
function of the SPP coupling (�SPP). The solid line (δp = +0.1) and
the dashed line (δp = −0.1) are plotted for �DDI = 0.99. The dash-
dotted line (δp = +0.1) and the dotted line (δp = −0.1) are plotted
for �DDI = 1.0.

The right peak changes sign from positive to negative (see the
solid curve) and the left peak changes sign from negative to
positive (see the dash-dotted curve).

The value of the DDI at which the Kerr coefficient changes
sign is called the critical DDI value and it is denoted as �Crit

DDI.
For Fig. 4, the critical DDI value is �Crit

DDI = 0.95. It is found
that the DDI critical value depends on the intensity of the
DDI and SSP couplings. One can say that with small variation
of the DDI the Kerr coefficient can be switched from the
positive to negative value (ON) to the negative to positive
value (OFF). This means that the present hybrid can be used
for the fabrication of all-switch nanodevices.

In Fig 5, we study the effect of the DDI when the
SSP strength is varied. The Kerr coefficient is plotted as a
function of the SPP coupling. The solid line is for the right
(δp = +0.1) and the dashed line for the left peak (δp = −0.1).
We consider the value of the DDI coupling as �DDI = 0.99.
Now we increase the value of the DDI coupling slightly to
�DDI = 1.0. In this case the dash-dotted line is for the right
peak and the dotted line is for the left peak. One can see that
heights of peaks for the solid and dashed curves increase
with the SSP coupling until about �SPP = 1.0 and then they
decrease. On the other hand, the dotted and dash-dotted
curves have similar behaviour as Fig. 4(a) except that the
right peak and the left peak have opposite sign. In summary,
we conclude that one can switch the magnitude of the Kerr
nonlinear coefficient from positive (ON) to negative value
(OFF) by tuning the intensity of the anomalous DDI. This
means one can fabricate the all-optical nanoswitching devices
using these nanohybrids.

Here, we study the DDI effect on the Kerr coefficient by
varying the SPP detuning (δp). We plot the Kerr coefficient
as a function of the SSP detuning in Fig. 6. The solid, dash,
and dash-dotted lines correspond to �DDI = 0.44, �DDI =
0.5, and �DDI = 0.54, respectively. The value of the SSP
coupling is taken as �SPP = 0.99. Note that for these values of
parameters, the Kerr coefficient changes sign three times (see

FIG. 6. The Kerr coefficient (n2) is plotted as a function of the
SSP detuning (δs). The solid, dash, dash-dotted lines correspond to
�DDI = 0.44, �DDI = 0.5, and �DDI = 0.54, respectively. The value
of the SSP coupling is taken as �SPP = 0.99.

solid curve) when the DDI coupling is �DDI = 0.44. When
we change slightly the DDI coupling to �DDI = 0.5, the Kerr
coefficient changes sign five times (see dotted curve). Finally,
when we change slightly the DDI coupling to �DDI = 0.54,
the Kerr effect changes sign only one time (see dash-dotted
curve). Similarly, by fixing the DDI coupling and varying
the SSP coupling, we found a similar effect as found in
Fig. 5. This means by choosing the suitable values of the SSP
coupling and varying the DDI coupling the Kerr coefficient
changes sign from one to three to five times. This mechanism
can be used to fabricate all-optical nanoswitches.

Further, in Fig. 7, the effect of the DDI detuning (δd)
on the Kerr coefficient has been investigated. The Kerr co-
efficient is plotted as a function of the DDI detuning. The
solid and dash-dotted lines correspond to �SPP = 0.2 and
�SPP = 0.8, respectively. The value of the DDI coupling is
taken as �DDI = 0.5. Note that in the weak SPP coupling limit
(�SPP = 0.2) the Kerr effect changes sign one time (see solid
curve). On the other hand, in the strong SPP coupling limit
(�SPP = 0.8) the Kerr effect changes sign three times (see

FIG. 7. The Kerr coefficient (n2) is plotted as a function of the
DDI detuning (δd). The solid and dash-dotted lines correspond to
�SPP = 0.2 and �SPP = 0.8, respectively. The value of the DDI
coupling is taken as �DDI = 0.5.
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FIG. 8. The Kerr coefficient (n2) is plotted as a function of the
SPP coupling (�SPP). The solid and dotted lines are plotted for δp =
0.50 and δp = 0.55, respectively.

dash-dotted curve). The change of sign from one time to three
times is due to the dressed states created in the system as we
explained in Fig. 3(b).

We also found that if we keep the SSP coupling in the weak
limit (i.e., �SPP = 0.2) and the DDI coupling in the strong
limit (i.e., �DDI = 2.0), the Kerr effect does not change sign
from one to three times, but changes sign only one time. The
figure is not included here. This is because the Kerr coefficient
is due to the transition |2〉 ↔ |1〉. The strong DDI coupling
is acting in the transition |3〉 ↔ |4〉. Therefore, strong DDI
coupling does not create dressed states in the transition |2〉 ↔
|1〉 since it is acting in the transition |3〉 ↔ |4〉. There is no
splitting in the right and left peaks of the Kerr coefficient as
we found Fig. 3(b) and that is why the curve changes one time.

Next, we investigated the effect of the SPP coupling on
the Kerr effect. Recently Tohari et al. [16] have done very
interesting work to study the effect of the Kerr nonlinearity
on a nanohybrid made of a metallic nanosphere, a quantum
dot, and a graphene nanorod. They have investigated the effect
of the SPP coupling on the Kerr nonlinearity. In their paper
they called the SPP coupling the local field effect. They found
an enhancement in the Kerr absorption spectrum due to the
presence of SPP field created by the metallic nanosphere and
the graphene nanorod. It is important to note that their model
is very different than our model. We have plotted the effect of
the SPP coupling in Fig. 8. In this figure, the Kerr coefficient is
plotted as a function of the SPP coupling for varying the probe
field. The DDI coupling is taken as �DDI = 0.1. The solid line
is plotted for the probe detuning δp = 0.50 and the dash line
is plotted for the probe detuning δp = 0.55. One can see from
Fig. 8 that in the weak SPP coupling limit (i.e., �SPP < 1.0)
the Kerr coefficient increases. After a certain value of the SPP
coupling it reaches maximum value and then it decreases in
the strong SPP coupling limit (i.e., �SPP > 1.0). This behav-
ior can be understood from the density matrix ρ

(3)
21 given by

Eq. (24). Note that SPP coupling appears in the numerator and
denominator in Eq. (24). In the weak SPP coupling (�SPP <

1.0) the numerator plays a dominating role and that is why
we have an enhancement. On the other hand, in the strong
SPP coupling limit (�SPP > 1.0) the denominator plays the
dominating role and that is why the Kerr coefficient decreases.

We study the effect of the size and shape of MNS on
the Kerr coefficient. The shape and size of MNS depends
on the two quantities Rs and Rm, where Rs is the radius of

FIG. 9. The imaginary part of the polarizability factor (ςs) as
a function of probe energy (eV) is plotted for a general nanohy-
brid. The solid, dotted, dash, and dash-dotted lines are plotted for
the shape ration Rm/Rs = 0.85, Rm/Rs = 0.90, and Rm/Rs = 0.95,
respectively.

the dielectric shell and Rm is the radius of the metallic core.
In our theory, the SPP field and DDI field depend on the
polarizability factor (ςs) as shown by Eq. (4) and Eqs. (7) and
(8), respectively. The polarizability factor depends on Rs and
Rm as shown in Eq. (2). Therefore, to show the effect of the Rs

and Rm on the SPP field and the DDI field, we have calculated
the polarizability factor for the MNS. The MNS is made
of the SiO2 shell and a gold (Au) core. Cadmium-selenium
quantum dots are considered as QEs. This type of nanohybrid
is fabricated by Xiao et al. [39]. The effect of the shape
ratio (Rm/Rs) on the polarizability is plotted in Fig. 9. Here
we have kept Rs as constant. In this figure, the imaginary
part of the polarizability factor is plotted as a function of
probe field energy (eV) for different values of the shape
ratio. The solid, dotted, and dash lines are plotted for the
shape ratio Rm/Rs = 0.85, Rm/Rs = 0.90, and Rm/Rs = 0.95,
respectively. One can see from the figure that as the shape
ratio increases the height of the peak also increases. Note
that the location of the peak of the polarizability factor also
changes with the variation of the shape ratio. The location of
the peak is nothing but the SPP resonance energy (ωsp). It is
important to note that we found the SPP resonance frequency
changes with the change of the shape ratio.

We have established in Fig. 9 that the SPP resonance
frequency (ωsp) changes with the change of the shape ratio
(Rm/Rs). Therefore, the effect of the size and shape on the
Kerr coefficient can be investigated via the SPP resonance fre-
quency. The effect of the resonance frequency is included in
the Kerr effect via the SPP detuning parameter δs = ωsp–ω23.
The results are shown in Fig. 10 where the Kerr coefficient is
plotted as a function of the probe detuning for different SPP
detunings. The solid and dotted lines are plotted for δs = 0,
and δs = 0.5 respectively. Here δs = 0 means that the SPP
resonance frequency ωsp is in resonance with the exciton fre-
quency ω23 of the QE (i.e., ωsp = ω23). Note that the location
of the crossing point shifts to the left when the SPP resonance
frequency is not in resonance with the exciton energy (i.e.,
see the dotted line). This is consistent with the findings of
Fig. 9 where we showed that as the shape ratio increases
the peak of the polarizability shifts to the left. On the other
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FIG. 10. The Kerr coefficient (n2) is plotted as a function of the
probe detuning (δp). The solid and dotted lines are plotted for δs =
0.0 and δs = 0.5, respectively.

hand, one can see that the height of both maxima decrease
as the SPP resonance frequency is not in resonance with the
exciton energy (i.e., see the dotted line). This is because the
SPP coupling depends on the SPP resonance frequency via
the polarizability factor. It is found that SPP coupling has the
highest values when the SPP resonance frequency is in reso-
nance with the exciton frequency. However, the SPP coupling
is weak when they are not in resonance. That is why the peak
height decreases in the case of the nonresonance condition.

VI. CONCLUSIONS

In conclusion, we have developed a theory for the Kerr
coefficient in nanohybrids made of an ensemble of metallic
nanoshells and low concentration of quantum emitters. When
the probe laser light falls in the metallic nanoshells, the
surface plasmon polariton electric field is produced. This
electric field along with the probe field induces dipoles in
metallic nanoshells. These dipoles interact with each other via
the dipole-dipole interaction. We found that in the weak SPP
coupling limit, there is enhancement in the Kerr coefficient.
On the other hand, in the strong SPP coupling limit, the peaks
in the Kerr coefficient splits from two peaks to four peaks.
The splitting in the Kerr spectrum is due to the presence of
the dressed states created in the system due to the strong
SPP interaction. These results are found when the SSP field
frequency is in resonance with exciton frequency. We showed
that when the SPP frequency is not in resonance, the Kerr
spectrum changes sign for one time to three times to five
times.

ACKNOWLEDGMENT

The author is thankful to the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) for a research
grant.

[1] M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and
T. Shegai, Nano Lett. 17, 551 (2016).

[2] J. D. Cox, M. R. Singh, G. Gumbs, M. A. Anton, and F. Carreno,
Phys. Rev. B 86, 125452 (2012).

[3] R. D. Artuso and G. W. Bryant, Phys. Rev. B 82, 195419
(2010).

[4] B. D. Fainberg, N. N. Rosanov, and N. A. Veretenov, Appl.
Phys. Lett. 110, 203301 (2017).

[5] Y. Suganuma, P. E. Trudeau, B. Leathem, B. Shieh, and
A. Dhirani, J. Chem. Phys. 118, 9769 (2003).

[6] X. Han, K. Wang, P. P. X. Xing, W. Liu, H. Long, F. Li,
B. Wang, M. R. Singh, and P. Lu, ACS Photon. 7, 562
(2020).

[7] A. Terzis, S. Kosionis, J. Boviatsis, and E. Paspalakis, J. Mod.
Opt. 63, 451 (2016).

[8] M. R. Singh, C. M. Sekhar, S. Balakrishnan, and S. Masood,
J. Appl. Phys. 122, 034306 (2017).

[9] M. R. Singh, K. Davieau, and J. Carson, J. Phys. D: Appl. Phys.
49, 445103 (2016).

[10] M. R. Singh, D. Schindel, and A. Hatef, Appl. Phys. Lett. 99,
181106 (2011).

[11] M. M. Fejer, Phys. Today 47(5), 25 (1994).
[12] G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1

(2003).
[13] K. Sugioka, Nanophotonics 6, 393 (2017).
[14] E. O. Potma, W. P. De Boeij, and D. A. Wiersma, J. Opt. Soc.

Am. B 17, 1678 (2000).
[15] V. Yannopapas and E. Paspalakis, Phys. Rev. B 97, 205433

(2018).
[16] M. M. Tohari, A. Lyras, and M. S. AlSalhi, Nanomaterials 8,

521 (2018).

[17] Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang et al., J.
Nanopart. Res. 13, 3693 (2011).

[18] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys.
Chem. B 107, 668 (2003).

[19] M. R. Singh, Nanotechnology 30, 205203 (2013).
[20] H. Schmidt and A. Imamoglu, Opt. Lett. 21, 1936 (1996).
[21] H. Wang, D. Goorskey, and M. Xiao, Phys. Rev. Lett. 87,

073601 (2001).
[22] X. Yan et al., Phys. Lett. A 372, 6456 (2008).
[23] H. Wang et al., Opt. Lett. 27, 258 (2002).
[24] D. X. Khoa et al., J. Opt. Soc. Am. 31, 1330 (2014).
[25] J. Ren et al., Nanotechnology 27, 425205 (2016).
[26] L. V. Doal, D. X. Khoa, and N. H. Bang, Phys. Scr. 90, 045502

(2015).
[27] J. Sheng, X. Yang, H. Wu, and M. Xiao, Phys. Rev. A 84,

053820 (2011).
[28] C. Torres-Torres, A. López-Suárez, B. Can-Uc, R. Rangel-Rojo,

L. Tamayo-Rivera, and A. Oliver, Nanotechnology 26, 295701
(2015).

[29] A. López-Suárez, R. Rangel-Rojo, C. Torres-Torres, A. Benami,
L. Tamayo-Rivera, J. A. Reyes-Esqueda1, J. C. Cheang-
Wong, L. Rodríguez-Fernández, A. Crespo-Sosa, and A. Oliver,
J. Phys.: Conf. Ser. 274, 012145 (2011).

[30] M. R. Singh and K. Black, J. Phys. Chem. C 122, 26584
(2018).

[31] M. R. Singh, J. Guo, E. Fanizza, and M. Dubey, J. Phys. Chem.
C 123, 10013 (2019).

[32] M. R Singh, J. Guo, and J. Chen, J. Phys. Chem. C 123, 17483
(2019).

[33] L. Novotny and B. Hecht, Principle of Nano-optics (Cambridge
University Press, Cambridge, UK, 2006), p.266, Sec. 8.3.3.

013708-9

https://doi.org/10.1021/acs.nanolett.6b04659
https://doi.org/10.1103/PhysRevB.86.125452
https://doi.org/10.1103/PhysRevB.82.195419
https://doi.org/10.1063/1.4983561
https://doi.org/10.1063/1.1571514
https://doi.org/10.1021/acsphotonics.9b01499
https://doi.org/10.1080/09500340.2015.1079655
https://doi.org/10.1063/1.4994308
https://doi.org/10.1088/0022-3727/49/44/445103
https://doi.org/10.1063/1.3658395
https://doi.org/10.1063/1.881430
https://doi.org/10.1063/1.1523642
https://doi.org/10.1515/nanoph-2016-0004
https://doi.org/10.1364/JOSAB.17.001678
https://doi.org/10.1103/PhysRevB.97.205433
https://doi.org/10.3390/nano8070521
https://doi.org/10.1007/s11051-011-0290-6
https://doi.org/10.1021/jp026731y
https://doi.org/10.1364/OL.21.001936
https://doi.org/10.1103/PhysRevLett.87.073601
https://doi.org/10.1016/j.physleta.2008.08.056
https://doi.org/10.1364/OL.27.000258
https://doi.org/10.1364/JOSAB.31.001330
https://doi.org/10.1088/0957-4484/27/42/425205
https://doi.org/10.1088/0031-8949/90/4/045502
https://doi.org/10.1103/PhysRevA.84.053820
https://doi.org/10.1088/0957-4484/26/29/295701
https://doi.org/10.1088/1742-6596/274/1/012145
https://doi.org/10.1021/acs.jpcc.8b06352
https://doi.org/10.1021/acs.jpcc.9b00352
https://doi.org/10.1021/acs.jpcc.9b03104


MAHI R. SINGH PHYSICAL REVIEW A 102, 013708 (2020)

[34] D. Sarid and W. A. Challener, Modern Introduction to Surface
Plasmons: Theory, Mathematica Modeling, and Applications
(Cambridge University Press, New York, 2010).

[35] E. Hamura, Y. Kawabe, and A. Yamanaka, Quantum Nonlinear
Optics (Springer, Tokyo, 2007), Chap. 6.

[36] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, New York,
2008), Chap. 2.

[37] M. R. Singh, Electronic, Photonic, Polaritonic
and Plasmonic Materials (Wiley Custom, Toronto,
2014).

[38] M. O. Scully and M S Zubairy, Quantum Optics (Cambridge
University Press, London, 1997).

[39] S. Xiao, H. Gong, X. Su, J. Han, Y. Han, M. Chen, and Q. Wang,
J. Phys. Chem. C 111, 10185 (2007).

013708-10

https://doi.org/10.1021/jp070806m

