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Light dressing of a diatomic superconducting artificial molecule
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In this work, we irradiate a superconducting artificial molecule composed of two coupled tunable trans-
mons with microwave light while monitoring its state via joint dispersive readout. Performing high-power
spectroscopy, we observe and identify a variety of single- and multiphoton transitions. We also find that at
certain fluxes, the measured spectrum of the system deviates significantly from the solution of the stationary
Schrödinger equation with no driving. We reproduce these unusual spectral features by solving numerically
the full master equation for a steady state and attribute them to an Autler-Townes-like effect in which a single
tone is simultaneously dressing the system and probing the transitions between new eigenstates. We show that
it is possible to find analytically the exact frequencies at which the satellite spectral lines appear by solving
self-consistent equations in the rotating frame. Our approach agrees well with both the experiment and the
numerical simulation.
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I. INTRODUCTION

Over the past 20 years, superconducting artificial atoms
(SAAs) were used in numerous experiments in a compelling
demonstration of the validity of fundamental quantum me-
chanical laws [1,2]. Their Hamiltonians can be predesigned
and engineered, which makes them a particularly versatile tool
for studies in quantum optics, and high controllability of their
parameters allows direct observation of novel physical effects
previously inaccessible for natural systems.

One of the most prominent milestones that superconduct-
ing quantum circuits have reached so far is the strong coupling
with light in circuit QED [3,4] when the relaxation and
decoherence rates appear smaller than the Rabi frequency.
Currently, they are surpassing all other implementations of
strong coupling in terms of coherence [5]. However, in sharp
contrast with natural atoms and molecules, SAAs do not even
require confined radiation to implement strong coupling with
light: they may be coupled unprecedently strongly to free-
propagating electromagnetic waves in on-chip waveguides [6]
without using cavities at all. In this case, the Rabi frequency
may reach 50% of the driven transition frequency [7] which is
even beyond strong coupling regime [5]. To correctly describe
the atomic behavior in these conditions, the so-called dressed
atom approach [8] is employed: the radiation has to be directly
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included in the Hamiltonian of the system and affects its level
structure.

Thus far, there have been many experiments with intense
driving fields revealing dressing effects in on-chip quantum
optics with artificial atoms [6,9–16]. In all these works, light
dressing of the atom manifests itself through Mollow triplets
or Autler-Townes (AT) splittings of different kinds. However,
despite the recent successes in control of large arrays of inter-
acting SAAs [17–19], there were no experiments concerning
the behavior of similar composite structures under a strong
drive. While there were studies on dressing of multiatomic
systems in a cavity [20–23], dressing by an external free field
is no less attractive since its frequency may be easily tuned
into resonance with any transition of the system. Moreover,
the drive amplitude is also easier to tune than the coupling
strength for cavity-dressed systems.

In this work, we study a pair of strongly coupled artificial
atoms: a superconducting artificial molecule (SAM) [24]. We
use two Xmon-type transmons [25,26] interacting with each
other both through a cavity bus [27] and a direct capacitance.
Microwave radiation is applied to this system through an
on-chip coplanar waveguide antenna while its state can be
monitored by joint dispersive readout using the same cavity
[28]. Examining our high-resolution spectroscopic data, we
find that strong interaction with microwaves not only results
in a rich variety of multiphoton transitions of various orders
between SAM states, but also significantly modifies its level
structure. Even in a simple diatomic molecule, this leads to
complex AT-like effects involving single- and multiphoton
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transitions that can be explained only in the dressed picture.
Even though the AT splittings have been investigated before in
a wide range of quantum systems (including natural molecules
[29,30]), we find qualitatively new spectral manifestations of
light dressing when SAAs are irradiated unequally. We could
not find any reports of similar effects in the previous studies of
SAAs under a strong driving field. Prior works either involved
just a single atom [6,9–11,13–16] or demonstrated only the
standard spectral signatures known from the quantum optics
[12] (see Appendix B). Moreover, previous spectroscopic
experiments with coupled transmons were either done at low
powers and resolved only the most prominent single-photon
transitions [27,31], or used simultaneous excitation at two
distinct frequencies to reach higher energy levels [32], or did
not study the spectral data with necessary resolution [33],
or used nontunable transmons [34]. In contrast, we now put
a tunable system in a new regime of intense driving which
allows us to discover and quantify both experimentally and
theoretically its novel unexplored behaviors. Likewise, we
could not find reports of such effects in natural molecules,
which could in principle be observed there; most probably,
this is caused by reduced controllability and coherence com-
pared to superconducting quantum devices.

We believe that our results are valuable to the domain
of molecular physics and quantum optics beyond just super-
conducting Josephson systems since the reported effects are
possible to find in any kind of light-matter interaction. In sim-
ilar conditions, they will emerge for any diatomic molecule
regardless of its nature, and modification of the molecular
spectra using light is now a topic of active research [35].
In this regard, we note that our theoretical framework can
be employed in the analysis of similar effects in the future.
Besides, we consider this experiment important for supercon-
ducting quantum computing: one should take the observed
behaviors into account and control carefully the drive power
(for instance, as we will show, the bSWAP gate [34] may be
directly affected by light dressing). Finally, the high-power
excitation may be applied to directly obtain information about
higher energy levels of the system using minimum equipment;
this approach can facilitate the scaling of control electronics
for superconducting quantum processors (see, e.g., Ref. [36]).

The paper consists of four main parts and Appendixes.
Section I is this introduction; Sec. II is devoted to the ap-
proaches used in our study; Sec. III contains the results of our
experimental and theoretical research, including numerical
simulations and analytical analysis; finally, in Sec. IV we
make a conclusion of our work and discuss future prospects.
The Appendixes contain the details of the theory that we
use and additional information about the sample and the
measurement techniques.

II. METHODS

A. Device design and control

We have designed the SAM as a pair of tunable Xmon
SAAs with asymmetric SQUIDs [37]. They are coupled to a
single notch-type λ/4 resonator [38] ( fr = 7.34 GHz, Qe ≈
1900, Ql ≈ 1100) which serves for the dispersive readout of
their states [28]. In Fig. 1(a) the optical image of the device
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FIG. 1. (a) Optical image of the device (false colored). Two
transmons (orange, 1 and blue, 2) are coupled capacitively to a λ/4
coplanar resonator. Frequency control lines come from both sides,
and from below a waveguide for microwave excitation is connected
(green). (b) The equivalent electrical circuit. Tunable Josephson
junctions are SQUIDs with magnetic flux control. (c) A sketch of the
transmon frequencies ω1(I ) and ω2(I ) depending on the current I in
an external coil when correctly aligned by the individual flux control
lines. In this work we focus on the area inside the dashed rectangle.

is shown, presenting the physical layout of the components.
The resonator is connected to a coplanar waveguide through
which the readout is performed. At its open end, it is coupled
to the transmons by a dual “claw” coupler [26]. Flux lines
allowing independent control of the transmon frequencies are
coming from the sides, and the excitation waveguide from
below directs the microwave signal towards the SAM (green).
In Fig. 1(b) the equivalent electrical circuit of the device is
shown. The resonator is inductively and capacitively coupled
to the transmission line. Here we simplify the distributed
coupling down to lumped elements, as in Ref. [39], even
though there is a more rigorous approach for this case [40].
The transmons 1 and 2 are false-colored orange and blue,
respectively, and their SQUIDs are represented as tunable
Josephson junctions. One can note that our design gives
rise to two types of coupling in the SAM. The first is the
dispersive virtual photon exchange through the multimode
cavity [27,31], and the second is the direct coupling via a
mutual capacitance. We find that both contribute noticeably
to the observed effective coupling strength, but with opposite
signs (details can be found in Appendix A). In Fig. 1(c)
we show schematically the transmon frequencies versus the
electric current I , which we apply to an external coil wound
around the sample holder. Since the effective junction of the
transmon 1 is larger, its main transition (orange) lies higher in
frequency than the one of the second transmon (blue). Using
individual flux-control lines, it is possible to align the SAAs
so that the lower sweet spot of the transmon 1 is just below the
upper sweet spot of the transmon 2 [see the dashed rectangle,
Fig. 1(c)]. As we will show in the following, this configuration
is convenient to track the energies of highly excited levels
via multiphoton transitions in a single spectroscopic scan.
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Additionally, the transmons are better protected from the flux
noise near their sweet spots.

B. Quantum-mechanical description

A single transmon SAA can be regarded as an oscillator
with a quartic perturbation describing the leading-order an-
harmonicity [25,41]. Therefore, in the main text we do not use
the charge and the phase operators and write its Hamiltonian
using only the annihilation operator b̂:

Ĥtr/h̄ = ωb̂†b̂ + 1
2αb̂†b̂(b̂†b̂ − 1), (1)

where ω is the |0〉 → |1〉, or fundamental, transition frequency
and α is the anharmonicity. By applying a magnetic flux to the
SQUID (either via an individual on-chip line or via an external
coil) it is possible to directly control ω [25]. In our modeling,
we take into account the three lowest states of the transmon
(|0〉, |1〉, and |2〉).

Equation (1) describes the SAA without driving. To model
a monochromatic microwave signal of frequency ωd applied
through a capacitively coupled transmission line, the follow-
ing driving term should be included in the Hamiltonian:

Ĥd = h̄�(b̂ + b̂†) cos ωdt, (2)

where � is the driving amplitude coinciding with the fre-
quency of the Rabi oscillations between |0〉 and |1〉.

Next, we assemble the model for two coupled transmons
with the corresponding annihilation operators b̂ and ĉ, the
fundamental frequencies ω1,2 and anharmonicities α1,2. The
corresponding Hamiltonian of the SAM contains two terms
representing each transmon, two terms representing the inter-
action of the transmons with the driving fields at ω

(1,2)
d , and

the transmon-transmon interaction term:

Ĥ = Ĥ (1)
tr + Ĥ (2)

tr + Ĥ (1)
d + Ĥ (2)

d + Ĥint, (3)

where the superscripts numerate the transmons and Ĥint =
h̄J (b̂ + b̂†)(ĉ + ĉ†). Strictly speaking, J = J (ω1, ω2) depends
on the transmon frequencies [25], but we take J to be a
constant due to its negligible variation for our range of fre-
quencies (see also Appendix A for details).

For brevity, the SAM Hamiltonian without driving terms
and the corresponding eigenenergies will be referred below as
“unperturbed.” Since we use three levels for each transmon,
there is a total of nine basis states of the SAM |i〉 ⊗ | j〉 = |i j〉,
where i and j show the number of excitations in the first and
the second transmon, respectively.

In the following, we will also transform Eq. (3) into the
frame rotating with both drives by an operator

R̂ = exp
[ − it

(
ω

(1)
d b†b + ω

(2)
d c†c

)]
, (4)

arriving at

ĤR = R̂†Ĥ R̂ − iR̂†∂t R̂. (5)

After the transformation and application of the RWA,

ω1,2 → �1,2 = ω1,2 − ω
(1,2)
d ,

Ĥint → h̄J
[
b̂†ĉeit (ω(1)

d −ω
(2)
d ) + b̂ĉ†e−it (ω(1)

d −ω
(2)
d )

]
,

Ĥ (1)
d → h̄�1

2
(b̂ + b̂†), Ĥ (2)

d → h̄�2

2
(ĉ + ĉ†).

(6)

TABLE I. SAM model parameters. Transmons are different only
in the frequency tuning range and coherence times measured in
the lower sweet spot for the first one and in the higher sweet spot
for the second. The coupling strength J depends on the transmon
frequencies and is specified here for ω1/2π = ω2/2π = 5.32 GHz.

Parameter Transmon 1 Transmon 2

ω/2π 5.12–6.30 GHz 4.00–5.45 GHz
α/2π −220 MHz −220 MHz
T1 6.82 μs 4.41 μs
T ∗

2 5.14 μs 3.33 μs
J/2π 8.69 MHz

Note that if the transmons are driven at the same frequency,
the RWA Hamiltonian is time independent. Below we will
use the symbol ωd = ω

(1)
d = ω

(2)
d to denote that common

frequency of both drives.
Besides the unitary evolution, we also model the incoherent

processes of relaxation and dephasing for each transmon using
the Lindblad equation with the following collapse operators
[42]:

Ô(1)
γ =

√
γ (1) b̂, Ô(1)

φ =
√

γ
(1)
φ b̂†b̂,

Ô(2)
γ =

√
γ (2) ĉ, Ô(2)

φ =
√

γ
(2)
φ ĉ†ĉ,

(7)

where γ (1,2) are the individual relaxation rates, and γ
(1,2)
φ

are the pure dephasing rates. As one can see, the collapse
operators are in a separable form, i.e., acting only upon a
single transmon each, which is a valid approach as long as
the coupling strength J � ω1,2 [43]. Therefore, the complete
evolution equation for the system density matrix ρ̂ is

∂t ρ̂(R) = i

h̄
[ρ̂, Ĥ(R)] +

∑
α = γ , φ,

i = 1, 2

D
[
Ô(i)

α

]
ρ̂(R) = Lρ̂(R), (8)

where D[Ô]ρ̂ = Ôρ̂Ô† − 1
2 {Ô†Ô, ρ̂} and L is the Liouville

superoperator, or the Liouvillian; (R) denotes if the Hamilto-
nian and the corresponding solution density matrix are in the
rotating frame with RWA. In this work, we do not alter the
dissipator terms when changing the reference frame despite
that it may not be correct in general [44].

We summarize the parameters of the SAM model in Ta-
ble I. The coherence times T1 = 1/γ , T ∗

2 = 1/(γ /2 + γφ )
were measured independently in the lower and the upper
sweet spots for transmons 1 and 2, respectively. The remain-
ing parameters were extracted from the fits of the unperturbed
model to the observed spectral lines; this procedure will
be discussed in more detail in Sec. III A. The underlying
electrical parameters of the transmons are the Josephson ener-
gies E (1)

J,
∑/h = 24.3 GHz, E (2)

J,
∑/h = 18.3 GHz, the charging

energies E (1,2)
C /h = 220 MHz, and the SQUID asymmetries

d (1,2) = 0.7 (all these parameters are defined as in Ref. [25])
The readout resonator is not included explicitly in the

above model since it does not affect the dynamics of the SAM
in the dispersive regime. To model the readout, we use an ad
hoc measurement operator M̂( fp) that can be obtained by find-
ing the transmission S(i j)

21 ( fp) ( fp is the probe frequency near
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the resonator frequency) through the sample after preparing
various states |i j〉 of the SAM. However, in this work we use
a simpler method which is to calculate S(i j)

21 ( fp) via offsetting
the experimental resonance curve S(00)

21 ( fp) measured while
the SAM is in the ground state by the corresponding dispersive
shifts χi j [28,45]. We calculate χi j with the parameters that
can be found in Appendix A according to Ref. [25], Eq. (D3).
Finally, the observable value for any state ρ̂ is calculated as
Ssim

21 ( fp) = Tr[M̂( fp)ρ̂].

C. Numerical solution in qutip

Numerical simulations are necessary for studying Eq. (8)
since it does not have an analytical solution. We have been
using the qutip [46] package to simulate the dynamics and
to find the steady state of the system for various parameter
combinations of the Liouvillian. The source code for the
simulations can be found on GitHub [47].

Two distinct modes of simulation were used. The first
one is for the Liouvillians that do not explicitly depend on
time. In this case, the steady state ρ̂ss of the system should
be calculated from the set of linear equations obtained from
Eq. (8):

∂t ρ̂ = 0 ⇒ Lρ̂ = 0. (9)

This equation is solved with the qutip’s steadystate function
[48]. This method is applicable when the driving frequency
for both transmons is the same.

The second mode is required when it is not possible
to avoid the time dependence of the Liouvillian or if one
wants to solve the master equation in the laboratory frame.
For example, when the transmons are excited at different
frequencies (ω(1)

d − ω
(2)
d = δ 	= 0), from Eq. (6) we find that

even in the doubly rotating frame, Ĥint is oscillating, and it
is not possible to simply drop this term in RWA because
it is inherent for the SAM. In this case, to find the steady
state of the system one can employ the functions propagator
and propagator_steadystate of qutip. The propagator is a
completely positive map �(t1, t0):ρ̂(t0) → ρ̂(t1) describing
the time evolution of the system density matrix; for Eq. (8),
it is defined as

�(t1, t0) = T exp

[∫ t1

t0

L(τ )dτ

]
, (10)

where T is the time-ordering superoperator. Since the Li-
ouvillian is periodic with a period T = 2π/δ, it is possible
to calculate the steady state as the eigenvector ρ̂ss of the
single-period propagator �(T, 0) corresponding to its largest
eigenvalue [49,50]. Upon infinitely many applications of �:

lim
n→∞ [�(T, 0)]nρ̂ = �(nT, 0)ρ̂ → ρ̂ss.

III. RESULTS

A. Spectroscopy: Experiment and numerical simulation

The experiment was conducted as described in Appendix
E. We use high-power spectroscopy to probe transitions be-
tween the eigenstates of the SAM; the experimental data are
shown in Fig. 2(a). As one can see, besides the fundamental
lines that were shown in Fig. 1(c), some new spectral ones

are visible. Their frequency also depends on the applied
current, and at several points they become resonant with each
other. At three pairs of such resonant points, we observe
distinct features shown in insets and marked with Roman
numbers I, II, and III. Some secondary details are shown with
Arabic-numbered markers. To avoid any possible confusion,
we emphasize that by feature I we mean not the usual avoided
crossing between ω1(I ) and ω2(I ), studied extensively in the
past at lower powers. Instead, we call feature I its apparent
disappearance and the noticeable change in the shape of
the two-photon spectral line that would usually pass straight
through it [31].

To check whether the standard theoretical model summa-
rized in Eq. (8) can reproduce the experimental spectrum, we
have solved the master equation (8) finding the steady states
of the system ρ̂ss(I, ωd ) and the corresponding expected mea-
surement outcomes Tr[M̂ρ̂ss(I, ωd )] depending on the exter-
nal coil current, and the excitation frequency ωd . The results
are shown in Fig. 2(b) where all the experimental details are
immediately reproduced with just nine SAM states. We have
solved Eq. (8) in the rotating frame with RWA using Eq. (9)
and in the laboratory frame [using the propagator approach,
Eq. (10)] and did not find any noticeable difference in the
results; though, the runtime of a 401 × 401 point simulation
is 9 hours without RWA versus 3 minutes with RWA. The
driving amplitudes �1,2 were 20 and 10 MHz, respectively.
The parameters of the unperturbed Hamiltonian summarized
in Table I were established by fitting the system transition
frequencies obtained from numerical diagonalization to the
observed spectral lines in Fig. 2(a). The transmon interaction
strength J is usually determined from the size of the avoided
crossing between ω1 and ω2. However, in Fig. 2(a) it is smaller
than the linewidths and is not resolved due to the strong drive.
By fitting separately measured data at lower power we have
obtained J = 8.69 MHz. Alternatively, J can be determined
from the size of the splitting located at 5.3 GHz and 2.9 ×
10−4 A (or 5.4 × 10−4 A). It is a well-known effect [32]
widely used for implementing cPhase gates on transmons; its
size is (2 × Jeff )/2, where Jeff = √

2J is the corresponding
matrix element of Ĥint and division by two is required as
we observe an intersection between two-photon processes in
our data. As can be seen from three slices of Figs. 2(a) and
2(b) shown in Fig. 2(c), the numerical results are in a good
agreement with the experiment (the spurious resonance is
softened).

When modeling the dispersive readout, we noticed that
upon SAM excitation the resonance dip was reduced slightly
in the experiment. Therefore, the actual observed response
was higher than that predicted by only the dispersive shifts.
Due to this fact, in Figs. 2(b) and 2(c) we had to artificially
scale the theoretical data up approximately by 30% to obtain
the best match with the experiment. We believe that this
problem is connected with the very low observed internal Q
factor of the readout resonator which was 100 times lower
than the corresponding Q factors of the test resonators and
the transmons located on the same chip. We have observed
this suppression of the readout resonator internal Q factor
for several similar devices, but so far we could not find an
explanation for that. However, this problem does not affect our
main results, which concern only the behavior of the SAM.
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(a) (b)

(c)

I

II
III

(d)

FIG. 2. (a) Measured spectroscopic data. Color shows the absolute deviation |�S21|(I, ωd ) of the complex transmission through the sample
from its value in the lower left corner. Two transmons are aligned as in Fig. 1(c) and form a symmetric picture. Experimental data contain
an additional horizontal line from a parasitic resonance interacting with the readout resonator. Three effects not predicted by the unperturbed
model are shown in insets I, II, and III; other pronounced features reproduced by the modeling are shown with Arabic markers (see text for
description). (b) Numerical simulation reproducing experimental results with labeled transitions (see Sec. III B for notation). The simulated
|�S21|(I, ωd ) is multiplied by 1.3 to match with the experiment. (c) Slices of (a) and (b) at various currents: 0.333 mA (feature I), 0.365
mA (feature III), 0.411 mA (sweet spot); experiment is gray, simulation is black. Individual Rabi frequencies �1,2 may be extracted as
FWHM of the spectral lines 10 and 01, respectively. (d) Simulated steady-state population of the state |10〉 vs I and ωd . Lines show various
transition frequencies predicted by the unperturbed Hamiltonian. In the legend, the main transitions are labeled near the sweet spot current;
if elsewhere any two lines form an avoided crossing, the labels should be swapped after the intersection. Under label “others” we put all the
remaining secondary transitions (single- and multiphoton) between each pair levels of the system that fall into the relevant frequency range of
the plot.

Returning to the spectral data, we note that features I, II,
and III shown in the insets turn out to be impossible to explain
using only the unperturbed Hamiltonian; we demonstrate this
by numerical diagonalization of the unperturbed Hamiltonian
used in the full simulation. In Fig. 2(d) we show all possible
single and multiphoton transitions between all resulting pairs
of the unperturbed eigenlevels that fall into the relevant fre-
quency range. While correctly reproducing, for instance, the
avoided crossing labeled as feature 3, the unperturbed model
does not produce any transitions following the spectral lines
observed in the Roman-numbered areas. For example, one
can see that the unperturbed transition 11/2 passes straight
in the middle of the avoided crossing between 01 and 10. The

experiment and the full simulation demonstrate that the strong
drive may change the observed shape of this line.

So far, we have established the fact that the same model
SAM yields different spectra depending on the presence of
the driving, and that the full model (8) agrees well with
experimental data. To understand the nature of features I, II,
and III, we describe Fig. 2 in more detail in a separate section
below.

B. Analysis of the spectra

1. Identification of the spectral lines

Though it is not possible to describe all of the experimental
features with the unperturbed model, we can still use it
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to identify most of the observed transitions as follows. By
numerical diagonalization, we calculate the unperturbed fre-
quencies of the undriven SAM as ωmn = (En − Em)/h where
n > m, n, m = 0.8. In Fig. 2(d) we place them over the
heat-map data optionally dividing ωmn by some integer n for
n-photon processes. Since the number of SAM states is finite,
we can quickly find all matches between the heat map and the
calculated eigenlevels.

Next, at the sweet spot, we label the found lines as i j/n.
Here i, j denote the occupation numbers of the transmons 1
and 2, respectively, in the destination state |i j〉 of the tran-
sition; /n is optional for an n-photon process. Such labeling
is meaningful because at the sweet spot the transmons are
detuned from each other, and thus SAM eigenstates are nearly
factorized. Using this notation, we label lines in Figs. 2(b) and
2(c) as well. The notation is valid only near the sweet spot
current before any two lines form an avoided crossing; when
they do, their names should be swapped.

As one can see, various multiphoton transitions besides
the main lines at ω1,2(I )/2π (or 01 and 10 lines) are visible.
The 02/2 and 20/2 are very commonly found for transmons
and lie |α1,2|/2 lower than the main lines ω1,2(I ). Another
two-photon process is the 11/2 line when two SAAs are
excited simultaneously. This process is used, for example,
for the bSWAP gate [34]; in this work, it is taking part in
the formation of feature I. A three-photon process 12/3 is
also clearly visible just below the 02/2 line. As we will see,
processes 12/3 and 21/3 are involved in forming features III
and II, respectively. Notably, transitions 11/2, 21/3, and 12/3
are forbidden when there is no interaction between transmons
(J = 0). Therefore, it is expected that all Roman-numbered
features should appear only with nonvanishing Ĥint.

There are also some avoided crossings predicted by the
unperturbed model. For a two-transmon SAM they occur ar
the intersection between lines 01, 10 or 11, 02 (20) visible
clearly in Fig. 2(d). Additionally, marked as feature 3 in Fig. 2,
we see an avoided crossing between 12/3, 21/3 at the same
current where 01, 10 intersect.

2. Analyzing features I, II, and III

First, we have reproduced the avoided crossing of feature
III in an additional numerical simulation taking only two
levels for the transmon 1 and three levels for the transmon
2. Upon this, it has become clear that features II and III are
actually of the same nature and differ only by the ordering of
the transmons: for feature II, they appear when the transition
01 intersects 20/2, and for feature III when 10 intersects 02/2;
one can see this clearly in Fig. 2(b).

From Fig. 2(d) we conclude that avoided crossing in
III is between two transitions: 12/3 (three-photon transition
|00〉 → |12〉) and 10 − 02 (single-photon |10〉 → |02〉) which
are of the same frequency when ω1 = ω2 + α2/2. The latter
process is depopulating 10, and it is better discernible in
Fig. 2(d) than in Figs. 2(a) and 2(b). For II, the opposite is
true: 21/3 and 01 − 20 are crossing when ω2 = ω1 + α1/2.
From additional measurements and simulations, we find that
the splitting depends on the driving power; the experimental
and simulated results for feature II are shown in color in
Figs. 3(a) and 3(b), respectively. As one can see, the growth

of the splitting with increasing power is linear: it is roughly
equal to the FWHM of the 01 spectral line. To fully quantify
the shape of this splitting, in Sec. III C we derive analytical
expressions for the dashed curves fitting the spectral lines.
In Fig. 3(c) blue points, we present splitting sizes extracted
by fitting that analytical model to the data as in Fig. 3(a) for
various power values of the microwave generator connected
to the excitation waveguide. As one can see from the linear
approximation of the points, the splitting indeed is simply
proportional to the Vrms of the signal. From the model, we
expect that the minimal distance between the branches of the
avoided crossing is equal to 2

√
3

3 �2; using this relation, we
extract the proportionality coefficient between �2 and Vrms of
around 2π × 0.23 MHz/mV.

In Fig. 4 we demonstrate a simulated power dependence
of feature I: increasing the drive amplitude on one of the
transmons while keeping the other one small and constant
again result in a certain splitting of the line 11/2. We show
only the calculation as long as an experiment is not possible
with our sample since we have only a single excitation line
and there is no way for us to control the driving amplitudes
�1,2 independently. We note that two qualitatively different
patterns arise depending on which of the transmons is driven
stronger than the other. From this and from the shape of the
splitting in feature I of Fig. 2(a), we can infer that �1/�2 ≈ 2
there [also consistent with the 01, 10 linewidths in Fig. 2(c)].
If in contrast both transmons are driven with equal amplitudes,
the splitting of 11/2 vanishes. As can be seen from the black
dashed lines in Fig. 4, all these cases are explained well by our
analytical model described in detail in Secs. III C and III D.

From all presented observations, we conclude that effects
I–III are caused by light dressing. In case III, the first transmon
is dressed by a strong resonant field; in case II, the second one;
finally, in case I, both transmons may be dressed at the same
time. We will discuss these effects in greater detail in Secs.
III C and III D.

3. Secondary features

Using Fig. 2(d), we can get an insight into the features 1–5
as well.

Feature 1 is a small avoided crossing between 02/2 and
21/3. It is missing in the unperturbed solution and thus is
caused by the light dressing just as I–III. Feature 2 is its
twin: 12/3 and 20/2 intersect there, but the anticrossing is
smaller due to the asymmetry of the driving strengths and is
not resolved.

Feature 3 is a large avoided crossing between three-photon
processes 12/3 and 21/3. It is predicted by the unperturbed
model, and direct diagonalization yields the splitting of 4

3 J . A
remarkable detail here is that the dim lower branch implies the
presence of a dark state with respect to the driving operator in
the third order.

Feature 4 is also explained by the unperturbed model and is
caused by several spectral lines and a pair of avoided crossings
near a single point [dotted lines in Fig. 2(d)]. It appears at the
point where 02/2 intersects 20/2 and is just barely visible in
the experimental data because of the noise.

Feature 5 is located at the intersection between 20/2 and
10 − 02, and can be found in the experimental data too.
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(a) (b)

(c)

FIG. 3. Power dependence of feature II: experiment, simulation and analytical model. Dashed are the model curves turning to dotted when
the model is not expected to be valid (see Secs. III C and III D); model values for �1,2 are the same for both (a) and (b): �1,2/2π = 4.5,
11.25, 22.5, and 45 MHz. (a) Experiment (second cooldown; the system parameters are slightly different to those in Fig. 1). The power of
the microwave source is increased from −20 to 0 dBm, and the corresponding growth of the splitting and the widths of the spectral lines is
observed. (b) Simulation with amplitudes of the driving �1,2 equal to the model values; other parameters as in Fig. 2. Note that now colors
show the steady-state population of the ground state. (c) Linear dependence of the splitting size on the driving voltage of the microwave source
Vrms, �2/Vrms = 2π × 0.23 MHz/mV. From Sec. III C, the splitting size is 2

√
3

3 �2.

In conclusion to this section, we note that when the cou-
pling is turned off (J = 0) in the simulation, the system does
not demonstrate any of the described details. This means that
all these effects can be attributed only to the SAM as a whole.

C. Explaining Roman-numbered effects

Since we had already connected the additional spectral
features with light dressing, it is natural to expect an AT-like
effect to be at the root of the additional spectral lines. For
a three-level system, the standard AT effect is revised in
Appendix B. However, in our case the level structure and the
effect itself are more complicated.

First of all, since during the spectroscopy we apply only
a single microwave tone (ωd = ω

(1)
d = ω

(2)
d ), it has to be

simultaneously the coupler and the probe in the terminol-
ogy of the standard AT effect; moreover, the probe must
be much weaker than the coupler. It turns out that these
conditions become satisfied around feature II (III) when
ω2(1) = ω1(2) + α1(2)/2 where we can simultaneously excite
transitions 01(10) and 20/2(02/2). Since the two-photon Rabi
frequency is much smaller than the single-photon one, it
is natural to view the two-photon excitation as the probing
process which does not affect the level structure. In contrast,
the single-photon excitation is strong enough to dress the
system. In other words, for the feature III, the AT coupling
operator is Ĥ (1)

d , and the probing operator is Ĥ (2)
d . However,

their separation now is not in frequency, but in the Hilbert
subspaces they act upon and in the number of participating
photons.
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FIG. 4. Simulated power dependence of feature I. With color we show the steady-state population of the ground state when the transmons
are driven at the same frequency but at different amplitudes �1,2. In the top row (middle row), �1(2) is increased while �2(1) = const, �2(1) <

�1(2); two topologically different types of splittings arise depending on which transmon is driven stronger. In the bottom row, we show how
the splittings vanish when the weaker drive is increased to match with the stronger one. Gray dashed lines show the unperturbed solution; in
black are the model curves based on Secs. III C and III D.

For the feature I, the simultaneously excited transitions are
01, 10 and the two-photon 11/2. In this case, the weak two-
photon process is probing transitions in the doubly dressed
SAM. We find that if SAAs are dressed equally, 11/2 does
not split, and for it to be distinguishable it is required that
�1(2) � �2(1).

Below, we give a detailed explanation of features II and III
and, finally, I.

1. Features II and III

In Fig. 5 we fully identify the transitions between dressed
states that are involved in the AT-like effect for feature III. For
simplicity, we will temporarily assume that the transmons are
driven at different frequencies ω

(1)
d and ω

(2)
d (this assumption

will be lifted in the following section). For convenience, in
Fig. 5(a) we schematically reproduce the transitions partici-
pating near III where the first transmon is below the second
one, and the current of the resonance point where ω1 = ω2 +
α2/2 is shown with a dashed gray line. Next, in Fig. 5(b) we
plot the level structure of the SAM at the resonance point. The
single-photon drive by Ĥ (1)

d detuned by �1 from ω1 is shown
with orange ellipses. The much weaker two-photon drive by
Ĥ (2)

d is not shown yet because it does not alter the structure
of the energy levels. Since we know from the numerical
simulations that the third level of the first transmon is not
necessary to observe the splitting, |20〉 is shown transparent,
and states |21〉, |22〉 are not shown.

The next step is to view the system in the frame rotating
with the first transmon and then move to the dressed picture

similarly to Appendix B. Now, the first transmon splitting

equals �R
1 =

√
�2

1 + �2
1, and its new eigenstates (dressed

states) are denoted as |a〉 and |b〉. Meanwhile, the second
transmon subspace is not altered. The corresponding level
system in the rotating frame before and after modification by
the drive is shown in Fig. 5(c).

Finally, in Fig. 5(d) we demonstrate possible two-photon
transitions between the dressed states induced by the second
transmon driving Ĥ (2)

d . In the left part of the panel, one can
find the unmodified two-photon transition 02/2 at ω1 and
two sidebands at ω1 ± �R

1 /2. This picture finally explains the
observed triplet transition of feature III. The right part de-
scribes the mechanism of these two-photon processes through
virtual excitations of the intermediate states. From here it
becomes obvious that without the transmon-transmon inter-
action the sideband transitions are forbidden due the selection
rule: 〈a, j|1̂ ⊗ Ĥ (2)

d |b, j + 1〉 = 0 since 〈a|b〉 = 0. However,
we will show that they become allowed in the second order in
J when the coupling is turned on.

Now, we will repeat this reasoning quantitatively. We start
from the initial Hamiltonian (3). To move to the rotating
frame with Eq. (5) and apply the RWA, we use the following
operator:

R = exp
[ − itω(1)

d (b†b + c†c)
]
. (11)

Note that now we rotate both transmon subspaces simultane-
ously in contrast to what is shown in Fig. 5 because below it
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III

(a) (b)

(c) (d)
0.36 mA I

FIG. 5. (a) Schematic of the transition frequencies near III (not
to scale). Resonant point is marked by a dashed gray line. Here we
assume that each transmon is driven at its own frequency. (b) System
energy levels at the resonant point; the first transmon drive at a small
detuning �1 from ω1 is shown as orange ellipses. The second trans-
mon driving is not shown here. Action of Ĥint in RWA is depicted
as orange-blue circles. (c) In the frame rotating with Ĥ (1)

d , states
|0 j〉, |1 j〉 become nearly degenerate (ω1 → �1). Dressing increases
this splitting to �R

1 . (d) Transitions in the dressed system induced
by Ĥ (2)

d (coupled level subspaces are shown with blue ellipses). In
the left part of the panel, all possible two-photon transitions near ω1

are depicted: the blue transitions are not shifted in frequency, the
light blue ones are shifted by ±�R

1 /2. In the right part, some of the
contributing trajectories are depicted; gray crosses show transitions
that are forbidden without the coupling J .

will be convenient to have time-independent Ĥint. Now,

ω1,2 → �1,2 = ω1,2 − ω
(1)
d ,

Ĥint → h̄J[σ̂+ĉ + σ̂−ĉ†],

Ĥ (1)
d → h̄�1

2
σ̂x, Ĥ (2)

d → h̄�2

2
(ĉeiδt + ĉ†e−iδt ),

(12)

where δ = ω
(2)
d − ω

(1)
d .

Since Ĥ (1)
d is now time-independent, we can move to the

dressed basis by applying a transformation Ŝ which diagonal-
izes the first transmon. After that, the Hamiltonian may be
split into three parts:

ĤD/h̄ =
[
�1

2
1̂ − �R

1

2
σ̂z

]
+ �2b̂†b̂ + 1

2
α2b̂†b̂(b̂†b̂ − 1),

V̂J = Ŝ†ĤintŜ,

V̂t (t ) = Ŝ†Ĥ (2)
d Ŝ ≡ Ĥ (2)

d .

(13)

(a) (b)

1 2

1

2

I

FIG. 6. Feature I for the case of �2 � �1. (a) Schematic of the
spectral lines near I (the avoided crossing between 01 and 10 is not
shown). Compare to Fig. 4, middle row. (b) Transitions between
dressed states in the frame rotating with the second transmon. Two
sideband transitions (light blue) appear at frequencies ω1 ± �R

2 ;
however, only one of them may be observed at each side of the
intersection for a monochromatic signal (see Sec. III D).

The first part is diagonal, and the remaining two will be
treated as perturbations. To simplify further calculations, we
consider the point where �1 = 0 and �2 = |α2|/2. In these
conditions, HD becomes degenerate as can be seen in Eq. (C6)
of Appendix C. Using the degenerate perturbation theory
for V̂J summarized therein, we find the first-order corrected
wave functions of ĤD + V̂J , labeled |k〉, k = 1..6. We find
the mean relative elementwise error of around 3% between
numerically obtained eigenvectors and perturbative ones for
our experimental parameters.

The time-dependent perturbation theory that we use to
calculate the transition rates of the two-photon processes stim-
ulated by V̂t is reviewed in Appendix D. Using the corrected
eigenstates |k〉 and neglecting small terms, we obtain the
following expressions for the transition rates per unit time
[51]:

R(2)
2→5 ≈ π�4

2

16J4
(
3α2 + 7�2

1

)2

α10
,

R(2)
1→6 ≈ π�4

2
4J4(5α − 3�1)2

α8
,

(14)

when |α2| � �1,�2, J which is a good approximation for
our setup. Taylor expansion here leads to errors of less than
0.5%. From Eq. (14) follows that the sideband transitions are
prohibited without the interaction in the SAM (J = 0), and
the extra avoided crossings will not be observed.

The above reasoning can be repeated for feature II without
modification because it is different from feature III only in the
ordering of the transmons.

2. Feature I

Finally, we discuss the remaining Roman-numbered effect.
In the case when �2 � �1 (the second transmon is dressed)
the splitting has the shape shown in Fig. 6(a). For the opposite
case (�1 � �2), the logic is similar.

As one can see from Fig. 4, near the 01, 10 intersection
only the two-photon transition 11/2 is affected and deviates
from the unperturbed spectrum while the spectral lines 01,
10 do not shift (even though the avoided crossing between
them vanishes). Similarly to features II and III, in the frame
rotating with the second transmon it turns into two different
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single-photon transitions for Ĥ (1)
d located at ω1 ± �R

2 ; see
Fig. 6(b). We will show below that in the experiment with a
single excitation frequency, it is not possible to observe both
transitions simultaneously. This is also clear from Fig. 4 where
only one spectral line is present to the left and one to the right
from the 01, 10 intersection.

D. Self-consistent equations for features I, II, and III

In the previous section, we have assumed that the trans-
mons are driven independently at two different frequencies.
In this section, we will discuss the realistic case when only a
single frequency ωd is sent at the SAM.

1. Features II and III

We start again with feature III. As before, from Fig. 5(d)
we know that at the intersection the sideband transitions are
formed by the two two-photon processes with Ĥ (2)

d . But,
on the other hand, from the unperturbed solution we know
that in the laboratory frame these two sideband transitions
beyond the avoided crossing in feature III become 10 − 02
(one-photon) and 12/3 (three-photon). This means that there
should be a smooth transformation between these one-, two-,
and three-photon processes when the system approaches the
resonant point where α2 + 2ω2 = 2ω1. Let us consider hypo-
thetical two-photon transitions (10 − 02)/2 and 12/2. In the
frame rotating with the first transmon like in Fig. 5(c) when
�1 = 0, their frequencies are

ω(10−02)/2 = (α2 + 2ω2 − �1)/2, (15)

ω12/2 = (α2 + 2ω2 + �1)/2. (16)

When the first transmon becomes dressed by �1 	= 0, its

splitting �1 changes to �R
1 =

√
�2

1 + (ω1 − ωd )2. Substitut-

ing �R
1 instead of �1 into the equations above we note that

ω(10−02)/2 and ω12/2 are now exactly equal to the two-photon
sideband frequencies ω1 ± �R

1 /2 established in the previous
section. Therefore, it is logical to use them to model the
splitting behavior beyond the resonant point.

Since we are dressing the energy levels by Ĥ (1)
d and probing

two-photon transitions between them with Ĥ (2)
d both at ωd ,

self-consistent equations have to be solved to find at which
detuning the sideband spectral lines will appear:

ω(10−02)/2 = ωd ,

ω12/2 = ωd ,
(17)

where the left-hand side for each equation is calculated ac-
cording to Eqs. (15) and (16), respectively.

First, we analyze the solution of Eq. (17) in the case of no
driving, �1 = 0. Both equations yield two identical answers
for ωd due to the fact that �R

1 = |ω1 − ωd | this case. One can
identify them as the frequencies of the three-photon 12/3 and
the single-photon 10 − 02 transitions in the laboratory frame:

ω
(III,0)
d =

{
(α2 + 2ω2 + ω1)/3,

α2 + 2ω2 − ω1.
(18)

Thus is a correct solution for the edge case since with no
dressing, these transitions just intersect without an avoided
crossing.

Next, for the general case of nonzero driving, �1 	= 0, we
obtain again two identical pairs of solutions:

ω
(III,±)
d = 2α2

3
+ 4ω2

3
− ω1

3
±

√
3�2

1 + [α2 + 2(ω2 − ω1)]2

3
.

(19)
These new curves do not intersect at any point, correctly re-
producing the behavior observed in the experiment and in the
numerical data and forming two branches of an anticrossing.
The minimal splitting is found at the resonant point and equals
2
√

3
3 �1. A similar result can be produced for the feature II just

by swapping the transmons; in that case, the splitting will be
2
√

3
3 �2.

We find excellent agreement between the self-consistent
solution (19) and both the experimental and simulated data
as can be seen in Fig. 3. To plot the model curves, we have
approximated the ω1,2(�e) transitions by linear functions and
substituted them in Eq. (19). α1 is known from spectroscopy
leaving only �2 to be found by fitting. We have repeated this
approximation for a range of microwave powers to confirm the
linear dependence of the splitting on the excitation amplitude
[see Fig. 3(c)].

The deviation of the upper branch from the data (see Fig. 3,
dotted lines) is expected and caused by the avoided crossing
marked as the secondary feature 3; it could be taken into
account by modifying correspondingly Eq. (16). The small
discrepancy between the experimental and simulated data in
the upper branch is caused by a slight elevation of the lower
sweet spot of the first transmon moving the avoided crossing
3 closer to the feature II in the second cooldown.

2. Feature I

Feature I may be explained using the same dressing model.
Looking at Fig. 6 for the case �2 � �1, we can write another
pair of self-consistent equations:

ω1 ± �R
2 = ω

(I,−)
d . (20)

Substituting �R
2 =

√
�2

2 + (ω2 − ω
(I,−)
d )

2
, one can find that

this system has a single solution,

ω
(I,−)
d = ω1 + ω2

2
− �2

2

2(ω1 − ω2)
, (21)

which turns into the frequency of 11/2 in the laboratory frame
when �2 is zero. When �2 is nonzero, the solution near
the point ω1 ≈ ω2 is a hyperbolic curve. However, in reality
we do not observe the asymptotically vertical parts since
the model becomes invalid when |ω1 − ω2| � J due to the
finite coupling between the transmons, and thus the avoided
crossing between 01 and 10. Since ω1 and ω2 never reach each
other, the denominator in (21) is limited from below and there
is no actual divergence.

When �1 � �2, besides replacing �2 → �1, one have
to change the sign before the hyperbolic part to obtain the
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corresponding solution:

ω
(I,+)
d = ω1 + ω2

2
+ �2

1

2(ω1 − ω2)
, (22)

yielding the reversed shape of the splitting.
Continuing this logic, we can write down the resonance

condition in the doubly-rotating frame when both transmons
are dressed simultaneously:

�R
1 ± �R

2 = 0. (23)

Solving it for ωd , we obtain the generalization of Eqs. (21)
and (22):

ωI
d = ω1 + ω2

2
+ �2

1 − �2
2

2(ω1 − ω2)
. (24)

Equation (24) is used to plot the black dashed curves in
Fig. 4 taking the �1,2 values from the known simulation
parameters shown therein. The frequencies ω1,2 are extracted
from the fits of the spectral lines 01 and 10. We again find
good agreement between the model and the simulated data.

IV. DISCUSSION

We have performed spectroscopic measurements of an
isolated diatomic superconducting artificial molecule in the
regime of strong interaction with classical light. Using joint
dispersive readout to directly access the population of the
SAM eigenstates, we have located several anomalies in
the spectrum not explained by the unperturbed model of the
system. Finding numerically the steady state of the SAM
interacting with the classical drive, we have reproduced the
experimentally discovered effects and attributed them to an
altered version of the well-known Autler-Townes effect.

In contrast to the standard AT effect, where there are
two laser beams of different frequencies and powers, in our
case, there is only a single tone interacting with the system.
Therefore, it has to be both the coupler tone and the probe
tone at the same time. However, since there are two com-
ponents in the driving operator (one for each transmon), the
separation between the coupler and the probe is still possible
and occurs both in the Hilbert space and in the number of
photons involved rather than in frequency and amplitude. The
effectively weak driving limit for the probe part is achieved
when it stimulates a two-photon transition while the cou-
pler part is resonant with a single-photon one being strong
enough to dress the system. To predict the frequencies of
the sideband transitions that can appear for such AT-like
processes and to model the experimentally observed splittings
induced by the same field that probes them, we have built
several self-consistent models in rotating frame and found
a good agreement between the model, the experiment, and
the numerical simulation. Interestingly, no new spectral lines
appear when the system is tuned to the parameters where these
AT-like processes can occur. Instead, for example, one can
see how the already present spectral lines 12/3 (three-photon)
and 10 − 02 (single photon) smoothly morph to an additional
avoided crossing of a nonstandard size of 2

√
3

3 �1.
Another AT-like effect may occur when both components

of the driving operator are in the single-photon regime. Now,
both transmons are dressed and probed simultaneously. We

find that in this case the 11/2 transition frequency is altered.
When the SAAs are being tuned into resonance, this spectral
line is being split into two hyperbolic curves. However, unlike
the case of a standard avoided crossing, the doublet transition
is never observed. The shape of this apparent splitting and
its visibility depends qualitatively on the relation between the
driving amplitudes; for instance, if they are equal, the splitting
does not appear at all. For our sample, we have a fixed ratio of
approximately two between �1 and �2 which still allows us to
distinguish this effect experimentally. Notably, light dressing
affects the frequency of the 11/2 transition even far from
the 01, 10 intersection. This means that a fast bSWAP gate
should be performed at a different frequency than predicted
by the unperturbed Hamiltonian if there is an asymmetry in
the driving amplitudes �1,2.

Interestingly, the self-consistent models for the observed
effects imply that multiphoton processes may smoothly
change their order. For example, for features II and III, we
observe a continuous transformation of a three-photon and a
single-photon processes to the second order in Eq. (17) and
of a two-photon transition to a zero-photon one in Eq. (23).
One could quantify this effect by evaluating the transition
linewidths and measuring their power dependence for differ-
ent coil currents.

Overall, irradiating an individual diatomic artificial
molecule with intense light calls forth a plethora of effects
that may be used to extend the validity of the well-known
light-dressing models. These effects are much easier to find
in human-made quantum devices than in natural coupled sys-
tems due to higher overall controllability and addressability
of their parts. The relative ease in attaining the excitation
powers that cause multiphoton transitions promises even more
complex dynamics in multiatom systems. We are looking
forward to investigating strong interaction with light in larger
artificial structures such as one- and two-dimensional arrays
of SAA.

The source code of our measurement script can be found at
GitHub [52].
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APPENDIX A: FULL CIRCUIT MODEL

In this Appendix, we substantiate our use of the simplified
model in Eq. (3) and compare our experiment with previous
works. From the scheme in Fig. 1(b) and from Ref. [41] we
can conclude that we have two types of interaction between
SAAs and that our choice for Ĥint is valid. The only difference
is in the representation of the charge operator n̂ which we
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choose to be proportional to b̂† + b̂ instead of i(b̂† − b̂) which
is a question of the basis choice (the linear oscillator basis or
the transmon eigenbasis). The flipped sign before the counter-
RWA terms is important only for the coupling to the resonator.
However, it can be corrected by an altered Schrieffer-Wolff
transformation leading to identical final results. The symme-
tries of the drive and the coupling operator stay unchanged
with this approach. Having established the correctness of our
simplified model, we can proceed and calculate the coupling
strengths.

The first one, J12, is caused by the direct capacitive cou-
pling, and following Ref. [41] we see that

J12 = 1

2
(1 + η)

C12√
C1C2

√
ω1ω2,

where C12 is the mutual capacitance between the transmon
islands, C1,2 are their capacitances to the ground, and ω1,2

are defined as in the main text. The coefficient η is around
6 × 10−2 for our parameters as will be shown later.

The second coupling mechanism is via the multimode
quantum bus, similar to Refs. [27,31]. However, the mod-
els used in these papers can now be improved using
Ref. [41] (counter-RWA terms must be taken into account for
higher modes that are in the strong dispersive regime) and
Refs. [53,54] that have solved the divergence problems and
found rigorously the effective cutoff frequency fmax that we
will employ. For our case, fmax can be calculated using the
equivalent capacitance of the network at the open end of the
λ/4 resonator:

Ceff ≈ Cclaw + (
C−1

g1 + C−1
1

)−1 + (
C−1

g2 + C−1
2

)−1
,

where Cg1,g2 are the capacitances between the transmons and
the resonator, Cclaw is the direct capacitance of the claw
coupler to the ground plane, and C12 and capacitances to the
drive antenna are neglected. Now, to find fmax we need to solve
the equation ∣∣∣∣ 1

i2π fmaxCeff

∣∣∣∣ = |Zres| ≈ 50 �,

which marks the frequency above which the capacitive
impedance at the end of the resonator will become small
enough (comparable to its wave impedance Zres) to effectively
change the boundary condition there to a short, turning off the
electric field and thus the capacitive coupling of the higher-
frequency modes to the transmons.

Next, we use the expression for the coupling through the
jth mode with the frequency ωr

j based on [41] with the
counter-RWA terms:

J ( j)
bus ≈ g( j)

1 g( j)
2

2

(
1

�
( j)
1

+ 1

�
( j)
2

− 1

�
( j)
1

− 1

�
( j)
2

)
, (A1)

where �
( j)
1,2 = ω1,2 − ωr

j < 0 ∀ j, �
( j)
1,2 = ω1,2 + ωr

j , and

g( j)
1,2 = 1

2

Cg1,g2√
C1,2Cr

√
ω1,2ω

r
j, (A2)

where the effective mode capacitance Cr = C′
r lr/2 + Cclaw

does not depend on j [41,55]. C′
r = 160 fF/mm being the

per-unit-length capacitance may be calculated for a CPW
(center width of 7 μm, gap of 4 μm) with standard means
(here and below we take the substrate ε to be 11.45 [56]);
lr = 3.477 mm is the resonator length without the claw. Cclaw

may be found from EM simulations or from the equation
determining the observed resonator frequency:

ω0 = 1√
L(0)

r (1 + α)(C′
r lr/2 + Cclaw)

, (A3)

where α = 0.14 is the kinetic inductance contribution deter-
mined using two test resonators without claws and L(0)

r =
8L′

r lr/π2 is the geometric equivalent inductance of the fun-
damental mode, L′

r = 0.4 nH/mm. From EM simulation, we
find Cclaw = 64 fF; however, from Eq. (A3) we obtain Cclaw =
53 fF. We are unable to explain why the difference is so
significant, even though we could successfully describe the
frequencies of all four different resonators on the chip (two
with transmon pairs and claws, at 6.840 and 7.340 GHz, and
two test ones, at 7.700 and 7.800 GHz) up to MHz accuracy
with Eq. (A3) while fitting only α and Cclaw. Below we will use
the smaller value for Cclaw determined from the experimental
data.

Knowing Cr = 337 fF, the capacitances Cg1,g2 may be
determined with high accuracy by fitting the fundamental
mode frequency dependence on the flux using Eq. (A2) when
the transmon parameters are known (see also Ref. [57]). C1,2

can be extracted from the experimental anharmonicity using
the equation

−h̄α = E1,2
C = e2

2C1,2
,

which yields C1,2 ≈ 88 fF [we use here the renormalized
E1,2

C from Ref. [54], Eq. (6)]. The fit is shown in Fig. 7,
which yields the capacitances Cg1,g2 of 2.5 fF each, which
agrees reasonably well with the value of 2.3 fF that we have
obtained from EM simulation. We have checked that the sweet
spots found this way agree with an independent direct SAM
spectroscopy similar to Fig. 2(a). The discrepancy in Cg1,g2

probably arises from the real configuration of the ground
electrode enclosing the chip in the sample holder which we do
not include in the simulation. Similarly, we obtain simulated
C1,2 to be only 80 fF. This problem also hampers the accuracy
of the calculated C12 which unfortunately cannot be found
independently in this experiment.

In overall, the total interaction

J = J12 +
jmax∑
j=0

J ( j)
bus,

where jmax:ωr
j ≈ 2π fmax. For our configuration, the first term

is positive, and the second is negative. Note that in contrast to
Ref. [31], the contribution from every mode is of the same
negative sign since the transmons are located at the same
resonator end and are below all modes in frequency. Below,
we calculate the value of J at ω1,2 ≈ 5.3 GHz where we
can determine its value experimentally from the size of the
avoided crossing.
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FIG. 7. Determining the coupling strength via the resonator
spectroscopy (external coil current is swept, flux bias lines turned
off, transmission amplitude is shown). The transmon parameters
E (1,2)

J,� , E (1,2)
C , d (1,2) are fixed to the values from Sec. II A, and

the bare cavity frequency, current sweet spots, current periods, and
coupling capacitance Cg = Cg1 = Cg2 are the fitting parameters. The
orange curve shows the theoretical prediction for the optimal values:
ω0/2π = 7.340 GHz, sweet spots at −1.2 and 0.45 mA, periods of
1.15 and 0.74 mA, Cg = 2.5 fF.

For the parameters C1,2 = 88 fF, Cg1,g2 = 2.5 fF, Cclaw =
53 fF we find that Ceff ≈ 59 fF and fmax ≈ 55 GHz.
Since ωr

j = (2 j + 1)ωr
0, ωr

0/2π ≈ 7.3 GHz, and ωr
3/2π ≈

51 GHz ≈ fmax, we only need to include four terms for the
multimode virtual interaction between the transmon. We note
that this very low cutoff is due to the large direct capacitance
of the claw to the ground.

Having established the required cutoff, we can evaluate
the multimode contribution. In Fig. 8 we show its value
depending on the number of included modes with and without
RWA. As one can see, the cumulative value at the cutoff is
approximately −3 MHz for the non-RWA case and −2 MHz
within RWA. For higher cutoff frequencies, the ratio between
RWA and full solution tends to 2, since �

( j)
1,2 ≈ −�

( j)
1,2 there.

Next, we find the direct coupling constant. As we have al-
ready mentioned, the capacitance C12 can be determined only
in a FEM simulation; however, it depends on the configuration
of the ground plane stronger than Cg1,g2 and C1,2 and thus is

FIG. 8. Multimode coupling vs ω jmax . Blue points show the RWA
result (without the �

( j)
1,2 terms) and orange show the full calculation.

Gray dashed line shows the calculated cutoff frequency of 55 GHz.
The parameters for the calculation: ω1,2/2π = 5.3 GHz, ω0/2π =
7.3 GHz, C1,2 = 88 fF, Cr = 337 fF, Cg1,g2 = 2.5 fF giving g(0)

1,2/2π =
45 MHz.

less accurately determined. The root of this is in the large size
of the transmon island electrodes comparable to the substrate
thickness of 0.4 mm. We use a sample holder with a machined
cavity under the chip, and for a realistic FEM model, we
obtain C12 = 0.34 fF. This yields η = Cg1Cg2/C12Cr = .059,
and the resulting direct coupling J12 ≈ 11 MHz.

Finally, adding both contributions, we find J ≈ 8 MHz
which agrees reasonably well with the experimental value of
8.69 MHz. The positive sign of the coupling is consistent
with the location of the dark state in the lower branch of the
avoided crossing between 01 and 10 in the experimental data
which we have established in a separate measurement [31].
Despite the uncertainty in J12, this result confirms that the
cutoff frequency for cQED with a transmission line resonator
should be calculated regarding the effective capacitance at
its end and may be quite low. However, our accuracy is
not enough to demonstrate confidently the necessity of the
counter-RWA terms. It is notable that, in contrast to this work,
[31] describes the experimental data within RWA, but does
not adopt a possibly lower cutoff for their capacitances, so a
separate study may be required to clarify the importance of the
counter-rotating terms. Additionally, it would be interesting
to compare the results with Ref. [58], presenting a classi-
cal approach to the problem, suitable for low-anharmonicity
circuits.

To end this subsection, we would like to comment on the
possible error sources in our reasoning. First, a more rigorous
cutoff free analysis similar to Ref. [54] should be conducted
for our circuit to substantiate the use of the cutoff and find
the renormalized Hamiltonian parameters. It would be possi-
ble if it is possible to find analytically the inverse capacitance
matrix of the system, as was done in Ref. [54]. Second, the
use of the (b̂† + b̂)(ĉ† + ĉ) form for the coupling via the bus
is not absolutely rigorous, because for higher transmon levels
Eq. (A1) will include slightly different �

( j)
1,2 and �

( j)
1,2 due to

the nonzero α [59].

APPENDIX B: STANDARD AUTLER-TOWNES EFFECT
FOR A THREE-LEVEL � ATOM

The underlying cause of the AT effect is the dressing of
the atomic levels by strong EM radiation. There are two
equivalent mathematical models to describe it depending on
whether the light is classical or quantized [8].

1. Classical derivation

In the classical case, the mathematical description goes
as follows. The |0〉 → |1〉 transition of frequency ω01 in a
three-level system is driven strongly with an amplitude �c at a
detuning � (the coupler tone). Additionally, weak radiation at
ωp and of amplitude �p is sent at the |1〉 → |2〉, transition, of
frequency ω12 (the probe tone). This is illustrated in Fig. 9(a).
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The Hamiltonian for this driven system reads

Ĥ0/h̄ =
⎡
⎣ 0 �c cos (ω01 − �)t 0

�c cos (ω01 − �)t ω01 �p cos ωpt

0 �p cos �pt ω02

⎤
⎦,

where ω02 = ω01 + ω12.
Next, we move to the rotating frame by using an operator,

R̂ =

⎡
⎢⎣

1 0 0

0 e−it (ω01−�) 0

0 0 e−it (ω01−�)

⎤
⎥⎦.

Note here that the state |2〉 is also rotated: this is convenient
to preserve the frequency of the probe field. The new Hamil-
tonian is calculated as follows: Ĥ1 = R̂†Ĥ0R̂ − iR̂†∂t R̂. The
level structure without driving is shown in the left part of
Fig. 9(b). Applying the RWA, we obtain

Ĥ1/h̄ =
⎡
⎣ 0 �c/2 0

�c/2 � �peitωp/2

0 �pe−itωp/2 ω02 − ω01 + �

⎤
⎦.

Next, moving to the basis where the upper left 2 × 2 corner
is diagonal [the right part of Fig. 9(b)], we obtain

Ĥ3/h̄ =

⎡
⎢⎢⎢⎣

�
2 −

√
�2+�2

c

2 0 �peitωp

2 sin(θ )

0 �
2 +

√
�2+�2

c

2
�peitωp

2 cos(θ )
�pe−itωp

2 sin(θ ) �pe−itωp

2 cos(θ ) ω12 + �

⎤
⎥⎥⎥⎦.

One may see that the resonant conditions for the
probe drive are now ωp = ω12 + (� ± �R)/2, where �R =√

�2
c + �2, ω12 = ω02 − ω01, and its amplitude is renormal-

ized by an angle θ, tan 2θ = −�c/�.

(a) (b)

FIG. 9. Illustrating the AT splitting by the classical driving in
the rotating frame. (a) A three-level system is driven strongly by
the coupler tone of amplitude �c at frequency ωc = ω01 − �. (b) In
the frame rotating with the drive, the |0〉 → |1〉 transition frequency
changes to �. However, when the RWA is applied and the Hamil-
tonian is rediagonalized, the splitting between two lowest levels
(dressed states |a〉 and |b〉) becomes h̄�R. Now, a doublet transition
from these levels to the state |2〉 at frequencies ω12 + (� ± �R )/2
may be observed.

2. Quantum derivation

For a fully quantum interpretation, the incident radiation
at ω01 − � is modeled as a single-mode quantum oscillator
which is then coupled to the |0〉 → |1〉 transition. The Hamil-
tonian for the compound system reads

Ĥ0/h̄ = ω01|1〉〈1| + ω02|2〉〈2| + (ω01 − �)â†â

+ g(â† + â) ⊗ (|1〉〈0| + |0〉〈1|),
where g is the coupling strength and a is the photon
annihilation operator. After moving to the rotating frame
with R̂ = exp[it (ω01 − �)(â†â + |1〉〈1| + |2〉〈2|)] and apply-
ing the RWA, the Hamiltonian transforms into

Ĥ1/h̄ = �|1〉〈1| + (ω12 + �)|2〉〈2|
+ g[â† ⊗ |0〉〈1| + â ⊗ |1〉〈0|]. (B1)

Now, presume that the resonator is in a coherent state |α〉
with 〈N〉 = α2 photons (it is time-independent in the rotating
frame). Therefore, after tracing out the resonator subspace,
from the interaction term we will obtain again the classical
driving term �c(|0〉〈1| + |1〉〈0|), where �c = 2g

√〈N〉 in cor-
respondence with the previous approach. The following steps
completely reproduce the classical case if we add the probe
tone �p to the last equation.

APPENDIX C: DEGENERATE PERTURBATION THEORY

Since the Hamiltonian in the dressed basis is a useful
illustration for Fig. 5, we provide it below in Eq. (C6) for
the case �1 = 0, δ = ω

(2)
d − ω

(1)
d = ω

(2)
d − ω1. In the resonant

case 2�2 + α2 = 0, i.e., when the frame of the second trans-
mon is rotated at its two-photon transition frequency (as in
feature III), there is a degeneracy between states |a, 0〉, |a, 2〉
and |b, 0〉, |b, 2〉, while |a, 1〉, |b, 1〉 are detuned from them by
|α2|/2.

Note that in the dressed basis Ĥint that we treat as a
perturbation has a sub- and superdiagonal block form and
couples all the states |a, j〉, |a, j + 1〉 and |b, j〉, |b, j + 1〉.

The degenerate perturbation theory requires first of all to
choose zero-order state vectors |N0〉 from a degenerate sub-
space. The choice is arbitrary at the first glance because any
linear combination of basis vectors |n〉 from this subspace will
satisfy the unperturbed Schrödinger equation. However, if we
demand the change of |N0〉 to be small under the perturbation
V̂ , they become determined and are given by diagonalization
of V̂ in the degenerate subspace. Unfortunately, all matrix
elements of V̂ = V̂J are zero in both our degenerate subspaces,
so technically any choice of zero-order states will diagonalize
it. In other words, the degeneracy is not lifted in the first-order,
and thus we have [60] to diagonalize the matrix

Mnn′ =
∑

m

VnmVmn′

En − Em
. (C1)
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Here |n〉 and |n′〉 are the basis states from the degenerate
subspace with energy En, and Vmn = 〈m|V̂ |n〉. The sum is
over all other zero-order states |m〉 outside the degenerate
subspace.

For example, in our case for one of the degenerate sub-
spaces (E0

n = −�1/2, V̂ = V̂J ) we obtain the following ma-
trix:

M15 = |a, 0〉
|a, 2〉

|a, 0〉 |a, 2〉[
J2(�1−α2 )
α2(2�1−α2 )

√
2J2�1

α2(2�1−α2 )√
2J2�1

α2(2�1−α2 )
2J2(�1−α2 )
α2(2�1−α2 )

]
. (C2)

The normalized eigenvectors

|N〉 = Cn|n〉 + Cn′ |n′〉, |N ′〉 = C′
n|n〉 + C′

n′ |n′〉 (C3)

of the matrix are the desired zero-order superpositions. Next,
we first-order correct them as usual:

|N〉 + |N1〉 =
∑

j=n,n′
Cj | j〉 +

∑
j 	=n,n′

| j〉 〈 j|V̂ |N〉
En − Ej

. (C4)

Similarly, the first-order correction for a nondegenerate
state is

|m1〉 =
∑
j 	=m

|m〉 〈 j|V̂ |m〉
Em − Ej

, (C5)

ĤD + V̂J + V̂t (t ) =

|a, 0〉
|b, 0〉
|a, 1〉
|b, 1〉
|a, 2〉
|b, 2〉

|a, 0〉 |b, 0〉 |a, 1〉 |b, 1〉 |a, 2〉 |b, 2〉⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−�1
2 0 �2eiδt

2 − J
2

J
2 0 0

0 �1
2 − J

2
�2eiδt

2 + J
2 0 0

�2e−iδt

2 − J
2 − J

2 −α2
2 − �1

2 0 �2eiδt√
2

− J√
2

J√
2

J
2

�2e−iδt

2 + J
2 0 −α2

2 + �1
2 − J√

2
�2eiδt√

2
+ J√

2

0 0 �2e−iδt√
2

− J√
2

− J√
2

−�1
2 0

0 0 J√
2

�2e−iδt√
2

+ J√
2

0 �1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(C6)

APPENDIX D: TRANSITION RATES OF THE
TWO-PHOTON PROCESS

To quantify the visibility of the sideband transitions de-
pending on the coupling strengths, we will employ the time-
dependent perturbation theory that gives analytical expres-
sions for the transition rates for single and multiphoton pro-
cesses following Ref. [51].

Let us consider a time-dependent perturbation V̂ (t ) =
h̄�2

2 (ĉeiωd t + ĉ†e−iωd t ) to an unperturbed Hamiltonian Ĥ . In
the interaction picture, the Schrödinger equation reads

ih̄∂tψ (t ) = V̂I (t )ψ (t ),

where

V̂I (t ) = e
it
h̄ ĤV̂ (t )e− it

h̄ Ĥ .

The eigenstate of Ĥ at energy Ej will be denoted as | j〉
whence it follows that

〈 j|V̂I (t )|i〉 = eiωi j t 〈 j|V̂ (t )|i〉,

where h̄ωi j = Ej − Ei. Formally, we can write the solu-
tion of the Schrödinger equation in the interaction picture

corresponding to the initial state |i〉 as

|ψi(t )〉 = |i〉 − i

h̄

∫ t

−∞
dτ1V̂I (τ1)|ψi(τ1)〉. (D1)

Solving Eq. (D1) by simple iterations gives the series solution
for it:

U (t,−∞) = 1 +
∑

n

U (n)(t,−∞), (D2)

U (n)(t,−∞) =
(

− i

h̄

)n ∫ t

−∞
dτ1V̂I (τ1) · · ·

∫ τn−1

−∞
dτnV̂I (τn),

(D3)

where U (t,−∞) is the evolution operator. For a weak per-
turbation, this series may be truncated at a finite term n, and
the nth order transition amplitude 〈 f |U (n)(t,−∞)|i〉 can be
evaluated:

〈 f |U (1)(t,−∞)|i〉 = − i

h̄

∫ t

−∞
dτ1V̂I (τ1)

= − i�2

2

[ ∫ t

−∞
dτ1ei(ωi f −ωd )τ1〈 f |ĉ†|i〉

+
∫ t

−∞
dτ1ei(ωi f +ωd )τ1〈 f |ĉ|i〉

]
.

(D4)

〈 f |U (2)(t,−∞)|i〉 = − 1

h̄2 〈 f |
∫ t

−∞
dτ1V̂I (τ1)

∫ τ1

−∞
dτ2V̂I (τ2)|i〉 = − 1

h̄2

∑
j

∫ t

−∞
dτ1eiω j f τ1〈 f |V̂ (τ1)| j〉

∫ τ1

−∞
dτ2eiωi jτ2〈 j|V̂ (τ2)|i〉.

(D5)
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Going over the long-time limit t → ∞ in the final integral and collecting the terms belonging to the same δ functions gives [51]

〈 f |U (2)(t,−∞)|i〉 = 2π i�2
2

4

[
δ(ωi f + 2ωd )

∑
j

〈 f |ĉ| j〉〈 j|ĉ|i〉
ωi j + ωd

+ δ(ωi f )

(∑
j

〈 f |ĉ†| j〉〈 j|ĉ|i〉
ωi j + ωd

+
∑

j

〈 f |ĉ| j〉〈 j|ĉ†|i〉
ωi j − ωd

)

+ δ(ωi f − 2ωd )
∑

j

〈 f |ĉ†| j〉〈 j|ĉ†|i〉
ωi j − ωd

]
. (D6)

The probability of the two-photon transition from |i〉 to | f 〉 is
the square modulus of the corresponding amplitude, P(2)

i→ f =
|〈 f |Û (2)(∞,−∞)|i〉|2. The rate (probability per unit interac-
tion time T ) of absorption of two photons is defined as

W (2)
i→ f = lim

T →∞
P(2)

i→ f

T
. (D7)

To cancel out one of the δ functions in the resulting expres-
sion, we can use the identity

δ(ω f − ωi − 2ωd )

= 1

2π
lim

T →∞

∫ T/2

−T/2
ei(ωi f −2ωd )t dt = lim

T →∞
T

2π
.

For a two-photon emission:

W (2)
i→ f = π�4

2

8

∣∣∣∣∑
j

〈 f |ĉ| j〉〈 j|ĉ|i〉
ωi j + ωd

∣∣∣∣
2

δ(ωi f + 2ωd )

= R(2)
i→ f δ(ωi f + 2ωd ).

(D8)

For a two-photon absorption:

W (2)
f →i = π�4

2

8

∣∣∣∣ ∑
j

〈 f |ĉ†| j〉〈 j|ĉ†|i〉
ωi j − ωd

∣∣∣∣
2

δ(ωi f − 2ωd )

= R(2)
f →iδ(ωi f − 2ωd ).

(D9)

For our case, ωd = δ which leads to (14).

APPENDIX E: MEASUREMENT SETUP AND METHODS

The sample was measured in a BlueFors LD250 dilution
refrigerator at 16 mK. For the readout a Keysight PNA-L
N5232A VNA was used. For the coherent excitation of the
SAM, we used an Agilent MXG N5183B analog signal gen-
erator. The sample was flux biased using Yokogawa GS200

current sources (two for the flux lines and one for the external
coil wrapped around the sample holder).

Input microwave lines were isolated from the high-
temperature noise with 60 dB of attenuation (10 at 4 K, 10 at
1 K, 20 at 100 and 16 mK) and custom IR filters. The effective
on-chip attenuation between the drive line and the transmons
was calculated in Sonnet to be around 70 dB at 6 GHz. Coaxial
flux-bias lines were attenuated by 20 dB at 4 K and IR filtered
as well. Output path contained two 20 dB isolators and two
amplifiers: a 4–14 GHz LNF amplifier at the 4 K stage and a
room-temperature LNF amplifier.

As the main experimental method, we have employed the
so-called two-tone spectroscopy which consists of exciting the
SAM with monochromatic light at a certain frequency (first
tone) until the steady state is reached while simultaneously
measuring the signal transmission at the readout resonator
frequency (second tone). This technique yields the average
value of the joint measurement operator M̂ in the steady
state. To find the resonator frequency, we have been fitting its
complex S21 response for each current with the second tone
turned off with a method similar to the one described in our
prior work [57], which employs the circlefit library [38].

APPENDIX F: SAMPLE FABRICATION

The device was fabricated on a high-resistivity Si wafer
(10 k� cm). First, the wafer was cleaned with Pirahna, HF,
and then coated with bilayer MMA/PMMA resist stack. The
nominal after-bake thickness of the MAA and PMMA are 800
and 100 nm, respectively. The bilayer resist stack was exposed
using a 50 kV Raith Voyager EBL system and then developed.
Next, the sample was placed into a high-vacuum electron-
beam evaporation chamber (Plassys) and after a gentle ion-
milling step, a double-angle evaporation technique at 10◦ was
used to deposit Al/AlOx/Al layer (25/45 nm). Finally, hot
NMP followed by IPA was used to lift off the resist mask
stack.
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