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Cavity-assisted controlled phase-flip gates
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Cavity-mediated two-qubit gates, for example between solid-state spins, are attractive for quantum network
applications. We propose three schemes to implement a controlled phase-flip gate mediated by a cavity. The
main advantage of all these schemes is the possibility to perform them using a cavity with high cooperativity,
but not in the strong-coupling regime. We calculate the fidelity of each scheme in detail, taking into account the
most important realistic imperfections, and compare them to highlight the optimal conditions for each scheme.
Using these results, we discuss which quantum system characteristics might favor one scheme over another.
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I. INTRODUCTION

Building a global quantum network or “quantum internet”
[1–3] will enable many applications such as secure communi-
cation, enhanced sensing, and distributed quantum computing.
Establishing a quantum network requires interfaces between
stationary qubits (e.g., superconducting qubits, trapped ions,
or spins in solids) and flying qubits (photons). The various
quantum internet applications also require local gates between
stationary qubits. For example, two-qubit gates are necessary
for entanglement storage and swapping for quantum repeater
protocols [4], and a basic operation for generating and ma-
nipulating entangled states for quantum computation [5]. So
far, to perform two-qubit gates, different types of interac-
tions including magnetic and electric dipole-dipole interac-
tions [6–8] and phonon-mediated couplings [9] have been
employed.

To be efficient, interfaces between stationary and flying
qubits often need cavities. It is natural to explore whether
cavity-assisted interactions can also be used to perform two-
qubit gates [10–14]. Using cavity quantum electrodynamics
(QED), one can perform two-qubit phase-flip gates between
qubits encoded in two modes of the electromagnetic field
(photonic qubits) [15], between a quantum system and a
cavity mode [16], and also between two individual quantum
systems (e.g., ions, atoms, etc.) inside a cavity [10–12]. Of
those, the latter is of great interest due to its wide range of
applications. Unlike electric and magnetic dipole-dipole inter-
actions, cavity-mediated interactions do not require quantum
systems to be very close to each other.

Although the strong-coupling regime of cavity QED has
been observed for some solid-state systems such as quantum
dots [17–19] and superconducting qubits [20], achieving a
true strong-coupling regime with vacuum Rabi splitting re-
mains an outstanding challenge in other solid-state systems
that are quite attractive from a quantum internet perspective.
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For example, rare-earth ions (REIs) are attractive because of
their convenient wavelengths, narrow optical transitions, and
long coherence times, but have weak dipoles [21]. Defect
centers in diamond are also attractive because of their excel-
lent coherence (even at room temperature in the case of the
nitrogen-vacancy center); however, fabricating high-quality
cavities in diamond is not straightforward.

In this paper, we propose three different cavity-mediated
approaches to perform controlled phase-flip gates between
two individual quantum systems. All of these schemes require
only a high cooperativity cavity-emitter system. Therefore,
even using materials or quantum emitters that are unlikely
to reach the strong-coupling regime, the following schemes
are applicable. We calculate explicit solutions for the fidelity
of these gates in detail and compare their advantages and
disadvantages.

In the first scheme, we propose to perform two-qubit
controlled phase-flip gates by scattering a single photon off
of a cavity-qubit system. This approach has been discussed
before in the context of a strong-coupling regime [10,22],
but not in the so-called “bad-cavity” regime that we also
consider. For the second scheme, we discuss how to use a
dissipative cavity coupling to perform a controlled phase-flip
gate via a virtual photon exchange. This interaction has been
explored in microwave and optical systems [11,13,23], but to
our knowledge, the specific details and fidelity calculations
for a cavity QED phase-flip gate using this interaction are
not presented in the literature. Finally, inspired by a proposed
scheme in Ref. [12], we propose a third scheme that can per-
form a controlled phase-flip gate between qubits with unequal
optical transition frequencies using a Raman-assisted virtual
photon exchange interaction. In addition, for each scheme, we
provide a complete picture of the high-fidelity regime of oper-
ation that takes into account finite cavity cooperativity, and we
compute each scheme’s robustness to qubit decoherence and
imprecise control of detunings. Moreover, we compare these
three schemes using a consistent approach to highlight the
advantages and disadvantages of each scheme in the context
of their application to different solid-state emitters.
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FIG. 1. Scheme illustration and energy level diagram of both
quantum systems in the photon scattering scheme. The |↑〉 and |↓〉
ground states represent the qubit states and |e〉 is the excited state
of the system. The |↑〉-|e〉 transition of both systems is resonant
with the cavity, whereas the |↓〉-|e〉 transition is either far-detuned
or uncoupled from the cavity.

II. METHODS

The starting point for each scheme is to consider a pair
of individual quantum systems (A and B) placed in a cavity.
For each system, we employ two of the lowest energy levels
(e.g., hyperfine or Zeeman levels) to encode one qubit within
states |↑〉 and |↓〉. Depending on the protocol we also require
one or two additional excited or ground states. In all of
these schemes we require a high-cooperativity cavity C =
4g2/κγ � 1 where κ is the cavity decay rate, g is the cavity
coupling rate, and γ is the decay rate of the quantum system
excited state(s). High cooperativity is achievable in both the
bad-cavity regime where κ � g � γ and the strong-coupling
regime where g � κ � γ .

A. Photon scattering

Cavity-assisted photon scattering is one way to perform a
controlled phase-flip gate between qubits in the same cavity
by scattering a single photon off of the qubit-cavity system
and detecting it. Although it is not necessary to detect the
photon after reflection, doing so can herald the gate, which
drastically improves the gate fidelity for realistic single-
photon sources.

Performing a phase-flip gate using this scheme has already
been discussed in the strong-coupling regime [10,22,24,25].
Moreover, based on this scheme, a theoretical investigation of
the entanglement generation has been studied [26]. Here, we
present the fidelity calculation for this gate in both bad-cavity
and strong-coupling regimes. We also analyze infidelity due
to possible spectral wandering of the incident single-photon
and imperfect quantum systems resonance conditions.

In this scheme, we use a single-sided cavity and two 3-
state quantum systems with a � system (i.e., two ground
states |↑〉 and |↓〉 and an excited state |e〉). For both quantum
systems, the |↑〉-|e〉 transition is resonant with the cavity
and the |↓〉-|e〉 transition does not interact with the cavity,
as shown in Fig. 1. In systems where both qubit states can
interact with the excited state for the same polarization (e.g.,
rare-earth ions), |↓〉-|e〉 should be far-detuned from the cavity
frequency [27].

We denote the state of the photon by |p〉. If both qubits
are in the state |↓〉, the photon enters and then exits the
cavity unhindered. This reflection of the photon from inside
the cavity causes the joint state of the qubit-photon system to

acquire a π -phase shift. On the other hand, if either or both
of the qubits are in the state |↑〉, the cavity mode becomes
modified and the photon will not be impedance matched. In
this case, the cavity acts as a mirror and the photon does not
enter the cavity but reflects from the out-coupling mirror of
the cavity. Under the correct cavity and photon conditions, the
phase of the qubit-photon system remains unchanged for these
three cases.

This phase-flip gate can also be described by a unitary
operator U = eiπ |↓↓〉〈↓↓|⊗|p〉〈p|, meaning that there would be a
phase-flip in the system only if both ions are in the state |↓〉.
As a result, the states |↑↑〉|p〉, |↑↓〉|p〉, and |↓↑〉|p〉 remain
unchanged but |↓↓〉|p〉 changes to −|↓↓〉|p〉. At the end, we
can detect the reflected photon to herald the gate.

In the strong-coupling regime, the impedance mismatch
can be described simply by a frequency shift (vacuum Rabi
splitting). However, in the bad-cavity regime, the resonant
systems cause a phase shift that destroys the constructive
interference of the photon inside the cavity within a narrow
frequency window; therefore, the photon will not enter the
cavity (see Ref. [27]).

In the regime where C � 1 we find that the total gate
fidelity of this scheme is well approximated by

Fgate = 1 − 5

4C
− δ2

p + σ 2
p

8γ 2C2

[
11 − 20

(
2g

κ

)2

+ 12

(
2g

κ

)4]

− (δεA − δεB )2

4γ 2C
− 	T, (1)

where σp is the spectral standard deviation of an incident
photon with a Gaussian intensity profile, δp is the mean cavity-
photon detuning, and δεk for k ∈ {A, B} is the detuning of the
kth system’s optical transition from the cavity resonance. We
also introduce 	 as the effective qubit decoherence rate that is
a weighted average of decoherence rates from system-specific
processes that are small compared to cavity dissipation and
spontaneous emission. Here T = 8π

√
2 ln 2/σp is the gate

time, which we define to be twice the FWHM duration of the
photon for this scheme. This effective rate is at least given by
the qubit decoherence time: 	 � 1/2T2. Equation (1) is valid
to first order in C−1 and 	T ; and to second order in δεk /γ ,
δp/γC, and σp/γC. See Appendices A and B for detailed
calculations.

The second term in Eq. (1) shows the infidelity due solely
to a finite cavity cooperativity, the third term shows the spec-
tral mode matching sensitivity of the incident single photon,
the fourth term captures the degradation when either of the
quantum systems |↑〉 transitions are not exactly resonant with
the cavity, and the last term captures a linear scaling due to a
small effective qubit decoherence rate.

For shorter photons, the larger bandwidth can exceed the
narrow spectral range over which the destructive interference
occurs within the cavity. This degrades the fidelity of the
phase-flip gate. On the other hand, for very long photons,
the gate becomes so slow that qubit decoherence can dom-
inate and degrade the gate fidelity. These two competing
processes limit high-fidelity operation to a range of gate times
[see Fig. 2(a)] with an optimal gate time given by T 3

o =
(352π2 ln 2)/(γ 2C2	) in the bad-cavity limit.
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FIG. 2. Fidelity of the photon scattering phase gate as a function
of (a) the gate time T , (b) the photon-cavity detuning δp for a
given cavity regime, and (c) the cavity regime for a given photon-
cavity detuning. Here we set the cavity cooperativity to C = 4000,
quantum system detunings to δεA = δεB = 0, the effective dephasing
to 	/γ = 10−5, and for (a): δp = 30γ , and (b), (c): T = 2/γ . The
ratio of cavity coupling rate g to cavity dissipation rate κ gives
the regime of operation with g/κ 
 1 and g/κ � 1 indicating the
bad-cavity and strong-coupling regimes, respectively. The solid lines
show the numerical solution without expanding around small δp/γC,
σp/γC, and large C. The dashed lines correspond to the analytic
approximation given by Eq. (1). For the numerical simulation, we
assume that the effective decoherence rate 	 exponentially degrades
the coherence of the reduced spin density matrix as opposed to using
the linear correction as in the analytic approximation.

We find that there is a nontrivial relationship between the
regime of operation and robustness against photon detuning
[see Figs. 2(b) and 2(c)]. In addition, since the photon de-
tuning infidelity scales as δ2

p, averaging the fidelity over a
Gaussian spectral wandering profile with standard deviation
σ 
 simply results in σ 
 replacing δp in Eq. (1). Hence, the
effect of photon detuning captured in Eq. (1) and shown
in Fig. 2 also demonstrates the effect of random spectral
wandering of the incident photon.

Far in the bad-cavity regime where g/κ 
 1, the system is
very resilient to photon detuning and finite bandwidth effects.

In this regime, the spectral window where a phase flip can
occur is small, scaling by g2/κ [27]; however, mode matching
so that the photon enters the cavity when the quantum systems
are off-resonant is relatively simple to accomplish due to the
large cavity bandwidth. In contrast, in the strong-coupling
regime where g/κ � 1, the spectral window for the phase flip
is larger, but mode matching becomes much more difficult to
achieve and so the fidelity is more sensitive to the photon spec-
tral properties. Although the bad-cavity regime is surprisingly
robust against spectral wandering, photon detuning, and finite
bandwidth effects, we find that the most robust regime is the
so-called “critical regime” where 2g � κ [28] [see Fig. 2(b)].

B. Simple virtual photon exchange

Another type of a cavity-assisted interaction between
qubits can be achieved by the exchange of virtual cavity
photons when the quantum systems’ optical transitions are
resonant but dispersively coupled to a cavity mode [11,13,23].
Using this interaction, we provide a description of how to
perform a phase-flip gate as well as detailed calculations on
the fidelity of the gate.

For our analysis, we consider two 4-state quantum systems;
each system has two ground states |↓〉 and |↑〉 and two excited
states |e1〉 and |e2〉. Since the systems’ optical transitions
are dispersively coupled to a symmetric cavity, there is no
energy exchange with the cavity. To have a phase-flip gate
between qubits, first we bring the |↑〉-|e2〉 transition of the
first system into resonance with the |↓〉-|e1〉 transition of the
second system using a magnetic flux or an ac Stark pulse
[13,29]. Next, a π -pulse (P1) is applied to one of the systems
to bring it to the excited state, as shown in Fig. 3(a). After a
time delay, another optical π pulse (P2) is applied to bring the
excited quantum system back to its initial state.

To understand how this process performs a phase-flip gate
between qubits, we have shown the level diagram of the
two-qubit system in the product space in Fig. 3(b). If the
two-qubit system is in the state |↓↓〉 or |↓↑〉, pulses P1 and
P2 are ineffective and hence the qubits will be unaffected. If
the state is |↑↑〉, then P1 excites system A to the excited state
|e2〉. So far as the splitting between the states |e2 ↑〉 and |↑ e2〉
is large enough, there will be no interaction between them.
Applying another π - pulse P2 to system A will then return
it to the ground state and leave |↑↑〉 unaffected. However, if
the state is |↑↓〉, after exciting system A to the excited state,
the degenerate states |e2 ↓〉 and |↑ e1〉 interact via the virtual
exchange of a cavity photon which adiabatically performs a
π phase flip on the state. At the end, the optical pulse P2

brings system A back to its initial state but with a relative
phase −|↑↓〉.

The virtual interaction can be controlled by detuning the
quantum system optical frequencies away from each other.
That is, when the detuning between the optical transitions is
much more than the cavity coupling strength, the qubit-qubit
interaction can be made negligible and the gate will not be
successful.

We define �k = ωC − ωk as the detuning between the cav-
ity and the |↑〉 → |e2〉 transition of the kth quantum system.
In the high cooperativity regime, the cavity detuning � =
�A � �B + δeg dictates the gate fidelity Fgate and gate time
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FIG. 3. (a) Energy-level diagram of the simple virtual photon
exchange phase gate. The |↑〉-|e2〉 transition of system A is brought
into resonance with the |↓〉-|e1〉 transition of system B. To perform a
phase-flip gate, we apply a pair of optical π pulses with a time delay
on system A. (b) Level diagram in the product space. The splitting
between |e2 ↑〉 and |↑ e2〉 states is equal to the difference between the
ground- and excited-state splittings δeg = |ωe − ωg|. The interaction
between the states |e2 ↓〉 and |↑ e1〉 performs a phase-flip gate in the
system. However, high fidelity can only be achieved when δeg is large
enough so that the |e2 ↑〉 and |↑ e2〉 states are not interacting.

T = π�/g2, where δeg = |ωe − ωg| is the difference between
ground-state and excited-state splittings. If the detuning is
too small, the excited system can emit a photon into the
cavity mode, which can subsequently decay. Hence the fidelity
becomes limited by the cavity dissipation rate κ . However,
if the detuning is too large, T is also large, which causes
the system to relax before the gate is complete. Hence the
fidelity becomes limited by γ . The maximum gate fidelity of
the simple virtual photon exchange is achieved between these
extremes at a detuning of 2� = κ

√
C (see Fig. 4) and is well

approximated by

Fmax = 1− π√
C

− 3π2

32

[(
To�ε

2π

)2

+
(

2π

Toδeg

)2

− 12

C

]
−	To,

(2)

where To = 2π/γ
√

C is the optimal gate time, 	 is the ef-
fective decoherence rate, and �ε = ωB − ωA − δeg is a small
detuning between the systems’ optical transitions. Equation
(2) is valid to first order in C−1 and 	To, and also to second
order in To�ε and (Toδeg)−1. See Appendices A and B for
detailed calculations and the expression for Fgate that includes
dependence on � and κ .

From the above solution we can note that the maximum
fidelity is ultimately limited by the cavity cooperativity. How-
ever, we can also see that this maximum can only be reached
if the optical transitions of the systems are resonant to within
a precision dictated by the inverse gate time: �ε 
 2πT −1

o .
In addition, there should not be any other optical transitions
coupled to the cavity within δeg � 2πT −1

o . If either or both of

FIG. 4. Fidelity of the simple virtual photon exchange phase gate
Fgate as a function of the cavity detuning �/κ . The analytic solution
in the adiabatic regime given in Appendix B (black dashed curve)
matches closely with the numerically exact solution in the weak-
coupling regime (solid red curve) with g/κ = 10−1 and accurately
predicts the maximum fidelity Fmax at 2� = κ

√
C. High fidelity can

also be achieved if the system is not too far into the strong-coupling
regime (gray solid curve) with g/κ = 10, but it is less optimal. Here
�ε = 0, δeg → ∞, and C = 8000.

these conditions are violated, it may be beneficial to choose a
detuning that better optimizes the gate fidelity.

This simple virtual photon exchange scheme operates most
optimally in the bad-cavity regime. In the strong-coupling
regime, Rabi oscillations begin to occur when the cavity
detuning is not large enough. This effect pushes the optimal
detuning further away and forces the fidelity to be more
limited by decay from the excited state (see Fig. 4).

C. Raman virtual photon exchange

A controlled phase-flip gate can also be performed between
distant qubits by virtual excitation of the cavity mode via
a Raman coupling. Performing two-qubit gates using the
Raman coupling has been discussed in Ref. [30] for quantum
dots. Later, Ref. [12] proposed an improved version of the
latter scheme for trapped ions, which is more efficient in terms
of the number of operations. However, there is a challenge
related to shelving the qubit state in Ref. [12] (see below
for more information). Here, we discuss and fully analyze
our modified scheme that overcomes that challenge without
limiting our analysis to a specific system. Using our proposed
scheme, one may perform a controlled phase-flip gate between
qubits in quantum systems with unequal optical transitions
using a two-photon resonance between a driving laser and a
vacuum cavity field.

For our analysis, we consider two 4-level quantum systems
each containing three ground states that includes two qubit
states |↑〉 and |↓〉 and a shelving state |s〉 in addition to an
excited state |e〉. The systems are dispersively coupled to a
far-detuned cavity with a high cooperativity. For each system,
we drive the Raman transition between qubit ground states
via the vacuum cavity field and a driving field with Rabi
frequencies gk and k , respectively, for system k ∈ {A, B}
as shown in Fig. 5. The detuning �k is assumed to be large
compared to the Rabi frequencies k so that the excited state
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FIG. 5. Energy-level diagrams and pulse sequence for the Raman
virtual photon exchange phase gate. For each system, we establish
the near two-photon resonance process using a classical laser field
with Rabi frequency k and the cavity mode with cavity coupling
rate gk , for k ∈ {A, B}. A MW π pulse shelves qubit B into the state
|s〉. Then, laser A (B) applies a 2π pulse on qubit A (B). Another MW
π pulse then brings qubit B back to its original state.

will not be populated by the driving fields. For a fixed cavity
frequency ωc, if the driving fields are tuned to satisfy the
resonance condition δA = δB = δ, then an effective coupling
between |↑↓〉 and |↓↑〉 is induced.

To perform the gate, first a microwave (MW) π pulse is ap-
plied to shelve qubit B (i.e., target qubit) to the shelving state
|s〉. Next, the driving fields A and B are turned on to induce
the Raman coupling. During the adiabatic Raman process, the
qubits interact through the cavity mode via a virtual photon
interaction. Once the Raman process is complete, another
MW π pulse brings qubit B back to the state |↑〉. The result
of this gate transforms |↓↑〉 into −|↓↑〉 without affecting the
relative phases of the remaining qubit product states.

In the following, we assume that gA = gB = g; however,
we discuss how to compensate for unequal cavity couplings
in Appendix B. For high-fidelity operation, it is necessary to
satisfy four main conditions: (1) the two-photon resonance
detuning δ must be larger than the cavity linewidth κ , (2) the
gate time given by T = πδ�A�B/g2AB must not exceed
the lifetime of the shelved state, (3) the driving field intensities
should not exceed any detunings k 
 �k, δ, and (4) the
system should be in the bad-cavity regime g < κ .

The maximum gate fidelity of the Raman virtual photon
exchange in the high-cooperativity regime is achieved under
the condition that 2δ = κ

√
C, and is well approximated by

Fmax = 1 − π√
C

− π2

16

[(
Toδε

2π

)2

+ �2
ε

�2
− 18

C

]
− 	To, (3)

where To = (�/)2(2π/γ
√

C) is the optimal gate time,  =
A = B

√
�B/�A � B is the optimal Rabi frequency con-

dition, �k is the detuning between the kth quantum system’s
optical transition and the driving field, 	 is the effective
decoherence rate that includes decoherence caused by the
shelving state decay rate γs 
 γ , and δε = |δA − δB| 
 δ is a
small two-photon resonance error. This expression is valid to
first order in C−1 and 	To, and also to second order in Toδε and
�ε/� = |�A − �B|/�, where � = (�A + �B)/2 � �A �
�B. See Appendices A and B for detailed calculations and

the full expression for Fgate that includes the dependence on δ

and κ .
The Raman scheme exchange is slower than the simple

exchange by a factor of (/�)−2 � 1, which must be large
so that the excited states |e〉k are only virtually populated. Al-
though the gate is slower, it gains the advantage of being much
less sensitive to γ . In fact, these two factors seem to exactly
cancel to give the same cooperativity scaling. However, as a
consequence of the Raman scheme being slower, it can also
suffer a lot from the decay of |s〉. Therefore, for high-fidelity
operation, it is necessary to shelve |↓〉B into a metastable state
where γs 
 γ so that γs/γ 
 (/�)2 
 1. In this regime,
the first-order correction due to the shelving decoherence is
−γsT/8. Thus the effective decoherence rate 	 must include
at least a contribution of γs/8.

Similar to the simple virtual photon scheme, the Raman
scheme has a fairly strict resonance condition scaling by T −1

o .
That is, for high-fidelity operation, it is necessary that the two-
photon resonance be satisfied more precisely than the inverse
gate time: δε 
 2πT −1

o .
The main advantage of the Raman scheme is that the gate

fidelity is robust against unequal optical transitions. Since
the maximum fidelity depends only on the relative detuning
difference �ε = |�A−�B| compared to the magnitude |�|,
there is an inherent trade-off between gate time and system
spectral separation. The larger the difference between the
system transitions, the larger both cavity detunings must be to
maintain the same fidelity. This, in turn, increases the overall
optimal gate time. However, � cannot be increased indefi-
nitely because the fidelity will eventually become limited by
decoherence. By considering the bounds on the regime of
high fidelity (see Fig. 6), we find that the spectral separation
that will give a maximum fidelity no less than 1 − 2π/

√
C is

�ε = κγ /(π	
√

8), which corresponds to  = 2�
√

	/γ and

2� = �ε

√
π

√
C (see Appendix B). This limit on �ε implies

that, for 	/γ 
 1, the spectral separation of the systems
can be many times larger than the cavity linewidth without
significantly degrading the fidelity.

Let us note that in Ref. [12] the state |↓〉 of one qubit is
shelved in the excited state |e〉. Doing so causes an additional
unwanted phase evolution on the shelved state due to cavity
Lamb and ac Stark shifts that cannot be reduced below the
desired interaction rate without violating the adiabatic criteria.
As a consequence, there does not exist a regime where the gate
can be performed. We solved this issue by proposing to shelve
the qubit into a metastable ground state that is uncoupled to
the cavity, and then we demonstrated that a large high-fidelity
regime exists.

III. RESULTS AND DISCUSSION

A. Scheme comparison

The maximum fidelity scaling with cavity cooperativity
is very different for the scattering scheme compared to the
virtual photon exchange schemes (see Fig. 7). In the photon
scattering scheme the detection of the output photon heralds
the gate and makes its fidelity independent of all sources of
photon loss. Therefore, this scheme has the highest maximum
fidelity with a scaling of 1 − 5/4C. However, as a result of
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FIG. 6. (a) Numerically simulated fidelity of the Raman-induced
virtual photon exchange phase gate Fgate as a function of detunings δ

and � for a fixed  = �/20 and g/κ = 10−1. The analytic bounds
on the regime of high fidelity are marked with dashed black lines.
The cross section along � = κ is identical to the fidelity curve
plotted in Fig. 4; but in the Raman scheme, δ has the same function as
the cavity detuning in the simple exchange scheme. The maximum fi-
delity occurs along the ridge 2δ = κ

√
C (solid black horizontal line).

(b) Cross section along the 2δ = κ
√

C line. The fidelity oscillates
rapidly for larger values of /� (gray solid curve) as the driving
laser begins to induce coherence between the ground and excited
states and the adiabatic evolution breaks down. The red and gray
lines are numerically computed while the black dashed line shows
the analytic solution detailed in Appendix B. Other parameters are
δε = 0, �A = �B, 	 = 0, and C = 8000.

heralding, this scheme is probabilistic. On the other hand,
the maximum fidelity of the virtual photon exchange schemes
scales like 1 − π/

√
C, but these schemes realize deterministic

gates that do not rely on single-photon generation and detec-
tion.

For each scheme, an increase in qubit decoherence will
reduce the maximum attainable fidelity. To partially mitigate
this effect, it is possible to reduce the total gate time. How-

FIG. 7. Cooperativity-limited fidelity Fmax for phase gates based
on photon scattering and virtual photon exchange. The simple photon
exchange (orange line) and Raman photon exchange (dashed green
line) have the same Fmax values. The straight gray lines represent the
Fmax scaling in the limit of large C. These first-order approximations
underestimate the maximum fidelity when the cooperativity is low,
but still give a good estimate when the fidelity is larger than 0.8.

ever, reducing the gate time below the optimal value will
also reduce the fidelity. These two opposing effects create
an intermediate optimal gate time that maximizes fidelity as
a function of the effective decoherence rate of the qubits.
This decoherence-limited maximum fidelity and correspond-
ing optimal gate time have noticeably different trends for each
scheme (see Fig. 8). In the following, we discuss other pros
and cons for each scheme in more detail.

Photon scattering. This scheme requires two nearly-
identical quantum systems that must both have transitions
resonant with the cavity. Having individual spectral control
may require spatial resolution of the systems, which is a
disadvantage for nanoscale devices. An advantage for this
scheme is that the systems are not optically excited when
performing the gate. Hence, this scheme could be of interest
in systems with lower cavity cooperativity and some optical
pure dephasing. Quantum dot devices are particularly suited
to this scheme for the latter reasons, but also because a similar
device could be used to efficiently generate the required single
photons, providing a cohesive platform. RE ions may also be
promising candidates for this scheme. Single RE emitters have
been observed [31], and when coupled to a high-quality-factor
cavity the system could provide a cavity cooperativity large
enough to achieve fast controlled phase-flip gates with a high
fidelity.

The probability of heralding will depend on the effi-
ciency of available indistinguishable single-photon sources
and detectors. On-demand sources with high photon indistin-
guishability and single-photon purity have been demonstrated
[32–34]. In addition, highly efficient on-demand sources
should become increasingly available with advances in de-
terministic fabrication [35]. The best commercially available
sources provide an efficiency of around 10%–30% in practice,
but these values are likely to improve in the near future [36].
Single-photon detector efficiency is also improving [37,38];
superconducting single-photon nanowire detectors with effi-
ciencies exceeding 90% are becoming widely available. The
overall success probability could be improved significantly

013703-6



CAVITY-ASSISTED CONTROLLED PHASE-FLIP GATES PHYSICAL REVIEW A 102, 013703 (2020)

(a)

(b)

FIG. 8. (a) Maximum fidelity Fmax as a function of effective qubit
decoherence rate 	 for the scattering scheme (red curve), simple
virtual photon exchange scheme (orange curve), and the Raman
virtual photon exchange scheme (green curve) using a system in
the bad-cavity regime g/κ = 10−1 with a cooperativity of C = 8000.
(b) Gate time corresponding to the maximum fidelity in panel (a).

if the photon source, detector, and cavity are all integrated
on-chip [39,40]. It is also possible to extend the scheme to
perform nonlocal gates between multiple qubit-cavity systems
(i.e., remote cavities). This ability can help with scalable
quantum computing by naturally providing a connection be-
tween multiple qubits.

Simple virtual photon exchange. As with the scattering
scheme, this scheme also requires the ability to tune the
systems’ optical transitions into resonance. This can be ac-
complished, for example, by using an ac Stark effect provided
that systems are spatially resolved or by using a large electric
or magnetic field gradient if they are not spatially separated.
However, after tuning the systems, spatial resolution is still
required to excite only one system to the excited state without
affecting the other qubit. To avoid this requirement, it might
be possible to excite one system before tuning them into
resonance. As a result, the time it takes to tune the systems
into resonance should be much faster than the phase evolution
time of the system yet slow enough to remain adiabatic.
Otherwise, the phase evolves while tuning the systems, which
may limit the gate fidelity.

This scheme benefits from the exchange of virtual photons;
therefore, the cavity-induced relaxation can be avoided. How-
ever, a limiting factor of the scheme is still the excited-state
lifetime of the systems. To perform the gate, it is necessary
for the excited system to remain excited for a time that is

long enough compared to the gate time. Otherwise, the system
decays before the phase-flip gate takes place. This effect is the
primary cause of the reduced cooperativity-limited fidelity of
1 − π/

√
C compared to the scattering scheme. On the other

hand, the simple exchange scheme can be very fast, reducing
the impact of qubit dephasing. This scheme is particularly
suited to systems with little optical pure dephasing and small
phonon sidebands, such as the group-IV defects in diamond
[41] and rare-earth ions [42,43].

It is also possible to perform this scheme using a � system.
However, in the 4-level system that we have presented, tuning
opposite transitions into resonance can prevent the require-
ment for the spatial resolution in systems with different polar-
ization for opposite transitions, provided that both transitions
can still be coupled to the same cavity mode.

Raman virtual photon exchange. The main advantage of
this scheme is the ability to adjust the frequency and intensity
of driving fields A and B to allow for a difference between the
optical transition frequencies of the systems. As a downside,
this method requires an additional metastable state to shelve
one qubit. In addition, for a large κ , the optimal detuning δ

must be quite large. This could be a major limitation for some
systems with multiple close optical transitions, such as rare-
earth ions.

With the correct parameters, the Raman scheme can be per-
formed while maintaining the spectral resolution of the system
optical transitions. This is a huge advantage for solid-state
microcavity systems where emitters are often quite different
and their close proximity may not allow for spatial addressing.
The main trade-off for this advantage is an increase in total
gate time compared to the simple virtual photon exchange,
making it more susceptible to decoherence of the metastable
state.

The target qubit can either be shelved in a metastable state
in the ground state or in a second uncoupled excited state.
However, it is preferable to shelve the qubit in a ground
state as the decoherence rate of the ground states is usually
less than the excited states. A spin-triplet ground-state system
with a relatively long spin-coherence time and good optical
properties, such as in a neutrally charged silicon-vacancy
center in diamond [44], would provide the ideal structure for
this scheme.

In systems where shelving is not feasible, one could es-
tablish a Raman coupling directly between the two quantum
systems [45], rather than a Raman coupling for each of the
qubits individually, as explained in our protocol. Such a
scheme would require a weak external laser field ( < g) and
spatial-separated nearly-identical quantum systems.

B. Comparison of all three gate schemes for 171Yb:YVO

We consider 171Yb ions doped into a yttrium orthovanadate
(YVO) crystal as an example system to compare the three
different gates. The energy-level structure of this ion in the
presence of an external magnetic field is shown in Fig. 9. Note
that the figure only shows the lowest excited-state level. Here,
we refer to the two lowest ground-state hyperfine levels as the
qubit states |↓〉 and |↑〉.

For an ensemble of 171Yb ions in YVO, the excited-state
decay rate is γ = 2π × 596 Hz [46]. In addition, the spin-
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FIG. 9. Energy-level structure of 171Yb:YVO in the presence of
an external magnetic field along the c axis of the crystal. Here,
|0〉 ≡ |ms = 1/2〉 and |1〉 ≡ |ms = −1/2〉 are electron spin states and
|⇑〉 ≡ |mI = 1/2〉 and |⇓〉 ≡ |mI = −1/2〉 are nuclear spin states.
We use the |0 ⇓〉, |0 ⇑〉, and |1 ⇑〉 hyperfine states as the qubit states
|↑〉 and |↓〉 and the shelving state |s〉, respectively.

coherence time of T2 = 6.6 ms has been measured (for B =
440 mT) [46]. For a single Yb coupled to a YVO photonic
crystal cavity, it has been shown that the spin-coherence
time can be further increased to 30 ms using a Carr-Purcell-
Meiboom-Gill (CPMG) decoupling sequence [47].

In the following, we estimate the maximum gate fidelity
and the corresponding gate time for each scheme when as-
suming g/κ = 10−1 and C = 50 000.

Photon scattering. Considering 	 = 1/(2T2), where T2 =
6.6 ms, T = 1/γ , δp = 30γ , and δεA = δεB = 0, the fidelity of
the photon reflection scheme is Fmax = 0.98 and the gate time
is T = 267 μs.

Simple virtual photon exchange. As discussed previously in
Sec. III, it is also possible to perform the simple virtual photon
exchange scheme using a �-type system. Here we consider
a three-level system and, to perform the gate we bring the
|↑〉-|e〉 transitions of the two ions into resonance with each
other (instead of tuning opposite transitions). In this case,
considering δeg = 0.2 GHz [46], 	 = 1/(2T2) + γ 
/2 (here
γ 
 = 9 KHz is calculated by the relation γ 
 = 1/T2,O − γ /2
where T2,O = 91 μs is the optical coherence time for B =
500 mT [46]), and �ε = 0 we get Fmax = 0.952 and T =
7.5 μs.

Raman virtual photon exchange. For this scheme, we con-
sider the |1 ⇑〉 hyperfine ground state as the shelving level as
shown in Fig. 9. Assuming 	 = 1/(2T2), δε = 0, �A = �B,
and  = 0.1�, the optimal fidelity and the gate time are
Fmax = 0.93 and T = 750 μs, respectively.

Increasing the cavity cooperativity will increase the fidelity
and decrease the gate time of the simple and Raman virtual
photon exchange schemes further. On the other hand, to
improve the fidelity and the gate time of the photon scattering
scheme, a photon with a smaller FWHM duration is required.
Although the properties and level structure of 171Yb:YVO
allows performing all three schemes, the most suitable scheme
for this system should be selected according to the gate
requirements and experimental restrictions. As an example,

if the optical transition frequencies of Yb ions are unequal,
one should perform the gate using the Raman scheme. The
simple virtual exchange scheme, on the other hand, is the best
option to perform a fast gate. And finally, the photon scattering
scheme can lead to a probabilistic but high-fidelity gate.

IV. CONCLUSION

Using the cavity-assisted interactions, we proposed and
compared three schemes to perform controllable phase-flip
gates between two qubits. The first scheme works better for
systems with an integrated design and when performing a
high-fidelity gate is more important than a deterministic gate.
If one looks for a deterministic gate, however, either the
simple or Raman virtual photon exchange schemes should
be considered. In cases where the quantum systems are not
resonant, the Raman exchange is the best scheme. On the
other hand, the simple exchange can be suitable for systems
with more severe qubit dephasing but little pure dephasing of
the optical transition.

Looking forward, our promising results on the photon
scattering gate may provide further motivation for integrating
sources and cavities on chip. Moreover, the fidelity of the
simple and Raman virtual photon exchange schemes could be
improved using the quantum Zeno effect [48]. In this tech-
nique, by observing possible photons emitted by the cavity
at frequent time intervals using an efficient single-photon
detector, the system can be forced to follow the adiabatic
evolution [49]. Detecting a leaked photon also indicates a
failed gate and improves fidelity.

Developing quantum information processing nodes using
cavity-mediated gates is an important step towards the imple-
mentation of quantum networks. By outlining the benefits and
limitations of different approaches to this goal, we provided
a framework to identify and tailor two-qubit gate schemes
for a given system. This will accelerate the development of
platforms that could form the basis for a future quantum
internet.
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APPENDIX A: APPROACH

1. Fidelity

For each scheme, we define two initially independent
quantum systems that each include qubit states denoted |↑〉
and |↓〉. The total two-qubit space is spanned by the four
canonical product space states |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉. In
our analysis, we define the gate fidelity Fgate to be the fidelity
after applying the gate operations to the initial product state
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|ψ (0)〉 = (1/2)(|↑〉 + |↓〉)A ⊗ (|↑〉 + |↓〉)B:

Fgate =
√

〈ψ (T )|ρ̂(T )|ψ (T )〉, (A1)

where ρ(T ) (or |φ(T )〉〈φ(T )| in the case of a pure state)
is the imperfect final state and |ψ (T )〉 is the expected ideal
pure state after applying the gate operation with duration time
T . For example, if the gate operation takes |↓↓〉 → −|↓↓〉
relative to the remaining three product states, the ideal state is
|ψ (T )〉 = (1/2)(|↑↑〉 + |↑↓〉 + |↓↑〉 − |↓↓〉). This choice of
initial state serves to represent an average gate fidelity because
it takes into account the effect of the gate on each product
state amplitude in addition to the relative phases between
them. It also represents the fidelity expected when using
the gate to generate maximally entangled states. However,
certain initial states may result in higher or lower fidelity
than this definition predicts. For example, the initial state
|↑〉A ⊗ (|↑〉 + |↓〉)B/

√
2 for the above example could have

above-average fidelity since it will not experience infidelity
due to the imperfect phase-flip operation on |↓↓〉. On the
other hand, |↓〉A ⊗ (|↑〉 + |↓〉)B/

√
2 could experience below-

average fidelity due to the absence of contribution from the
less-stringent evolution on |↑↑〉 and |↑↓〉.

2. Decoherence

To simplify the analysis and to focus on the intrinsic
high-performance limitations for each scheme, we assume
that decoherence processes other than cavity dissipation and
spontaneous emission occur on a timescale much longer than
the gate time. These additional processes include qubit deco-
herence and possibly pure dephasing of the optical transition.
To capture these small effects, we describe the effect of any of
these additional processes by a single effective decoherence
rate 	. The exact form of 	 may be different depending on the
scheme and on the dominant source of additional decoherence
for a system operating under a given scheme. For example,
regardless of the scheme, the effective qubit decoherence rate
	 must be at least limited by the qubit relaxation rate γ↑↓ and
pure dephasing rate γ 


↑↓. Consider the following decoherence
master equation:

ρ̇ = γ↑↓D(σ̂ )ρ(t ) + 2γ 

↑↓D(σ̂ †σ̂ )ρ(t ), (A2)

where D(σ̂ )ρ̂ = σ̂ ρ̂σ̂ † − {σ̂ †σ̂ , ρ̂}/2 for σ̂ |↑〉 = |↓〉. If we
wish to maintain the coherence of an initial state |ψ (0)〉 =
(|↑〉 + |↓〉)/

√
2 = |ψ (T )〉, the fidelity of the final state ρ̂(T )

will be √
〈ψ (T )|ρ̂(T )|ψ (T )〉 � 1 − 	T, (A3)

when expanding to first order in γ↑↓T 
 1 and γ 

↑↓T 
 1

where 	 = γ↑↓/8 + γ 

↑↓/4. In most real applications, the ef-

fective decoherence rate 	 will be dominated by the largest
source of additional decoherence for that particular system or
scheme-system combination.

3. Non-Hermitian dynamics

In the virtual photon exchange schemes, we take advantage
of non-Hermitian Hamiltonians to include cavity dissipation
and spontaneous emission as opposed to solving the full
master equation. This allows us to capture the effects of

finite cavity cooperativity while still allowing for simple and
accurate analytically tractable solutions.

Dynamics from non-Hermitian Hamiltonians cannot cap-
ture an increase in population of the ground state due to a
decay event. To illustrate this, consider the master equation

ρ̇ = −i[Ĥ, ρ̂] + γD(σ̂ )ρ̂ + κD(â)ρ̂, (A4)

where we take h̄ = 1. This can be rewritten as [50]

ρ̇ = − i[Ĥ , ρ̂] − 1
2 {γ σ̂ †σ̂ + κ â†â, ρ̂} + γ σ̂ ρ̂σ̂ † + κ âρ̂â†

= − i(Ĥeffρ̂ − ρ̂Ĥ†
eff ) + γ σ̂ ρ̂σ̂ † + κ âρ̂â†, (A5)

where

Ĥeff = Ĥ − i

2
(γ σ̂ †σ̂ + κ â†â) (A6)

is the effective non-Hermitian Hamiltonian that describes the
amplitude decay of σ̂ and â.

The solution |φ(t )〉 under the effective Hamiltonian is the
unnormalized pure state trajectory for a successful gate and
this trajectory occurs with probability p = 〈φ(t )|φ(t )〉. The
terms γ σ̂ ρ̂σ̂ † and κ âρ̂â† in the master equation cause a
recycling of population into the ground state after a decay
event. Thus the total master equation solution is given by
ρ̂(t ) = |φ(t )〉〈φ(t )| + (1 − p)ρ̂γ κ (t ) where ρ̂γ κ (t ) is the state
of the system at time t given that at least one emission
event occurred. The final fidelity after completing the gate of
duration T is then

Fgate =
√

pF 2
0 + (1 − p)F 2

γ κ , (A7)

where F0 = |〈φ(T )|ψ (T )〉|/√p is the fidelity after a success-
ful gate and Fγ κ = √〈ψ (T )|ρ̂γ κ (T )|ψ (T )〉 is the potentially
nonzero fidelity after a failed gate.

By only solving the effective non-Hermitian Hamiltonian
part of the master equation, we make the approximation that
Fgate � √

pF0. This approximation is accurate when p � 1 and
hence when

√
pF0 � 1. The precision of this approximation

depends on F0 and Fγ κ for a given implementation. Since
Fγ κ < F0 for the schemes we study, this approximation is also
valid to explore the cooperativity scaling of the fidelity limits.
We comment on the accuracy of this approximation for the
specific cases of the virtual photon exchange schemes in the
following Appendix.

APPENDIX B: FIDELITY CALCULATIONS

1. Photon scattering

In this scheme, the probability that an incident photon
excites either qubit is low. Therefore, the quantum Langevin
equations for the photon (quantum system) excitation ampli-
tude(s) a(t ) (sk (t ), k ∈ {A, B}) can be written as [27,51,52]

ȧ(t ) = −κ

2
a(t ) + gAsA(t ) + gBsB(t ) − √

κain(t ),

ṡA(t ) = −gAa(t ) +
(

−γ

2
− i�A

)
sA(t ),

ṡB(t ) = −gBa(t ) +
(

−γ

2
− i�B

)
sB(t ),

(B1)
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where ain(t ) is the input photon field, gk is the cavity coupling
rate for the kth quantum system, and �k is the detuning
between the |↓〉 → |e〉 transition of the kth quantum system
and the bare cavity mode. Using the input-output relation
aout = √

κa + ain, the ratio of output and input field for a
plane-wave input is

aout(ω)

ain(ω)
= 1 − κ

κ/2 + g2
A/rA + g2

B/rB − iω
, (B2)

where rk = γ /2 + i(�k − ω) and ω is the plane-wave fre-
quency detuning from the cavity resonance. This expression is
valid in both the strong-coupling and bad-cavity regimes [27].
Using the above general expression for the photon amplitude
of plane wave |ω〉, we can write the amplitude si j (ω) (where
i, j ∈ {↑,↓}) expected for each initial qubit product state
|↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉 so that |i j〉|ω〉 → si j (ω)|i j〉|ω〉.
This can be done by setting the �k zero for |↑〉k and nonzero
but large for |↓〉k . Under the assumptions that gA = gB = g
and �A, �B � κ (when nonzero) we have

s↑↑(ω) = aout(ω)

ain(ω)

∣∣∣∣
�A=0,�B=0

= 1 − 2κ (γ − 2iω)

2κγC + (κ − 2iω)(γ − 2iω)
,

s↑↓(ω) = lim
�B→∞

aout(ω)

ain(ω)

∣∣∣∣
�A=0

= 1 − 2κ (γ − 2iω)

κγC + (κ − 2iω)(γ − 2iω)
,

s↓↑(ω) = lim
�A→∞

aout(ω)

ain(ω)

∣∣∣∣
�B=0

= 1 − 2κ (γ − 2iω)

κγC + (κ − 2iω)(γ − 2iω)
,

s↓↓(ω) = lim
�B→∞,�A→∞

aout(ω)

ain(ω)
= −1 − 4iω

κ − 2iω
,

(B3)

where C = 4g2/κγ . Although we do not present it here, the
above set of equations could include finite quantum system
detunings for systems A and B by evaluating the ratio aout/ain

for �A = δεA and �B = δεB instead of �A = 0 and �B = 0,
where appropriate. To illustrate how these amplitudes indicate
a controlled phase gate, consider the ideal case where we have
a perfect plane wave exactly resonant with the cavity so that
ω = 0. Then the amplitudes reduce to

s↑↑(0) = 1 − 2

2C + 1
,

s↑↓(0) = 1 − 2

C + 1
,

s↓↑(0) = 1 − 2

C + 1
,

s↓↓(0) = −1. (B4)

From this it is clear that when C � 1 these ratios converge to
1, 1, 1, and −1, respectively.

In reality, some deviation from the ideal conditions is
expected. In particular, we consider a finite Gaussian band-
width photon with a standard deviation σp and a possible

small cavity resonance error of δp. Even though the final spin
state is pure for a plane wave, the spin-frequency entangle-
ment captured by the frequency-dependent amplitudes si j (ω)
causes some reflection-induced spin dephasing. To correct for
a finite-bandwidth photon, we consider an initial photon state
|p〉 = ∫

dω f (ω)|ω〉 where

| f (ω)|2 = 1

σp

√
2π

e−(ω−δp)2/2σ 2
p . (B5)

For an initial spin state (1/2)(|↑〉 + |↓〉)A ⊗ (|↑〉 + |↓〉)B, the
joint spin-photon state after reflection is

|φ(T )〉sp = 1

2

∫
dω

∑
i j

si j (ω) f (ω)|i j〉|ω〉, (B6)

where we take the total gate time T to be twice the FWHM
of the photon duration: T = 8π

√
2 ln 2/σp. The reduced spin

density matrix ρ̂ can then be obtained by tracing out the state
of the photon ρ̂(T ) = Trp[|φ(T )〉〈φ(T )|sp]. This gives

ρ̂(T ) = 1

4

∫
dω

∑
i j

∑
kl

si j (ω)s∗
kl (ω)| f (ω)|2|i j〉〈kl|. (B7)

After a single photon reflects off the cavity, the final state
of the two-qubit system can be compared with the ideal state
|ψ (T )〉 = (1/2)(|↑↑〉 + |↑↓〉 + |↓↑〉 − |↓↓〉) to give the to-
tal gate fidelity Fgate from Eq. (A1). By following this proce-
dure using (B7) to take into account small imperfections due
to nonzero δp, σp, and δεk , we derived the total gate fidelity
Fgate as presented in Eq. (1) of the main text. This was done
analytically by first expanding the amplitudes si j in terms of
small ω/Cγ and then integrating over the Gaussian photon
profile.

We also note that, in the limit that σp and δp are small, the
amplitudes from Eq. (B4) immediately give the cooperativity-
limited maximum fidelity of

Fmax = 1 − 1

C + 1
− 1

4C + 2
� 1 − 5

4C
. (B8)

2. Simple virtual photon exchange

For this scheme, we begin with two 4-level systems cou-
pled to a single cavity mode. The general Hamiltonian that
governs the evolution is Ĥ = ĤA + ĤB + ĤC + ĤI . The quan-
tum system Ĥk is given by

Ĥk = ωk σ̂
†
↑k

σ̂↑k + (ωk − ωe)σ̂ †
↓k

σ̂↓k − ωgσ̂
†
↑↓k

σ̂↑↓k , (B9)

where ωk is the frequency separation between |↑〉k and |e2〉k ,
ωe is the separation between |e1〉k and |e2〉k , and ωg is
the separation between |↑〉k and |↓〉k . Also, σ̂↓k |e1〉k = |↓〉k ,
σ̂↑k |e2〉 = |↑〉k , and σ̂↑↓k |↓〉k = |↑〉k (see Fig. 3 of the main
text). The cavity homogeneous evolution is ĤC = ωCâ†â for
cavity frequency ωC , cavity photon annihilation (creation)
operator â (â†), and the interaction part is given by

ĤI =
∑
j∈↑,↓

∑
k∈A,B

g jk σ̂
†
jk

â + H.c., (B10)

where g↓k is the cavity coupling rate of the |↓〉 → |e1〉 transi-
tion to the cavity mode and g↑k is the cavity coupling rate of

013703-10



CAVITY-ASSISTED CONTROLLED PHASE-FLIP GATES PHYSICAL REVIEW A 102, 013703 (2020)

the |↑〉 → |e2〉 transition to the cavity mode. The dissipation
is governed by the Lindblad master equation

ρ̇ = −i[Ĥ, ρ̂] + κD(â)ρ̂ +
∑
k, j

γ jkD(σ̂ jk )ρ̂, (B11)

where D(Â)ρ̂ = Âρ̂Â† − {Â†Â, ρ̂}/2, κ is the decay rate of the
cavity photon, and γ jk are the decay rates of the |e1〉k → |↓〉k
and |e2〉k → |↑〉k transitions. In the following, we assume
γ jk = γ for all j and k. The corresponding effective non-
Hermitian Hamiltonian is then

Ĥeff = Ĥ − i

2

⎡
⎣κ â†â + γ

∑
k, j

σ̂
†
jk
σ̂ jk

⎤
⎦. (B12)

Note that the effective Hamiltonian for dissipation due to γ

does not discriminate between events that emit into |↑〉 or
|↓〉 because the recycling term is neglected. That is, γ here
represents the total decay rate of the excited states.

The total cavity-qubit system can be broken into four
subsystems defined by the four basis states of the electronic
ground states: {|↑↑〉, |↓↑〉, |↑↓〉, |↓↓〉}. To perform a control
phase gate using a virtual photon interaction, quantum system
A is excited at ωA so that |↑〉A → |e2〉A. This implies that
|↑↓〉 → |e2 ↓〉 and |↑↑〉 → |e2 ↑〉. Hence we are concerned
with the relative evolution within the two subsystems gov-
erned by H↑↓ and H↑↑. In our analysis, we assume that
infidelity due to the fast excitation process |↑〉A → |e2〉A is
much smaller than the infidelity due to the slower adiabatic
virtual photon exchange process; we focus only on the phase
rotation component of the protocol.

In the single-excited ↑↓ subspace with the basis
{|e2 ↓ 0〉, |↑↓ 1〉, |↑ e10〉}, H↑↓ can be written as

Ĥ↑↓ =
⎛
⎝ 0 g↑A 0

g↑A �A g↓B

0 g↓B �A − �B − δeg

⎞
⎠, (B13)

where �k = ωC − ωk and δeg = ωe − ωg. In the single-excited
↑↑ subspace with the basis {|e2 ↑ 0〉, |↑↑ 1〉, |↑ e20〉}, H↑↑
can be written as

Ĥ↑↑ =
⎛
⎝ 0 g↑A 0

g↑A �A g↑B

0 g↑B �A − �B

⎞
⎠. (B14)

The last index of each combined-system state indicates the
photon number in the cavity mode.

The evolution of the remaining subsystems is H↓↑ =
H↓↓ = 0 for the unexcited states |↓↑〉 and |↓↓〉. Note that
since only two of the four basis states are evolving in this
scheme, we are concerned with only the relative phase be-
tween |↑↓〉 and |↑↑〉. This is because any global phase
for |↑↓〉 and |↑↑〉 can be eliminated by moving qubit A
into the correct rotating frame. Knowing this, we can sim-
plify the total gate fidelity to Fgate = (Fπ + 1)/2 where Fπ =
|〈φ(T )|(|↑↑〉 − |↑↓〉)|/√2 is the fidelity of the relative π

phase gained between state |↑↑〉 and |↑↓〉 for the initial state
|ψ (0)〉 = (|↑↑〉 + |↑↓〉)/

√
2.

In the regime where �k are much larger than the cavity
coupling rates, the Hamiltonian H↑↑ performs a π -phase
rotation on |e2 ↑ 0〉 if �A − �B � 0. Alternatively, if �A −

�B � δeg, H↑↓ performs the π phase on |e2 ↓ 0〉. These two
scenarios are equivalent and so, without loss of generality, we
focus only on the case where the opposite spin transitions are
resonant �A − �B � δeg.

Since the cavity coupling rates may not be equal, it may
be necessary to tune �B to offset the different Stark shifts
induced on each qubit by the cavity. By adiabatically elimi-
nating the amplitude of state |↑↓ 1〉, the optimal tuning of the
unexcited qubit is found to be

�B = � + g2
↑A

− g2
↓B

�
− δeg, (B15)

where we write �A = � for simplicity. The corresponding
excitation time required to achieve a π phase is given by

T = π
�

g↑A g↓B

. (B16)

High phase gate fidelity for virtual photon exchange is
dependent on satisfying four main conditions: (1) the cavity
detuning � must exceed the decay rate κ of the cavity, (2) the
gate time T must not exceed the lifetime of the system excited
state 1/γ , and (3) the system should not be far into the strong-
coupling regime g/κ � 1. Finally, (4) high-fidelity operation
depends critically on achieving the one-photon resonance
condition. To capture how sensitive the fidelity is to errors in
matching the resonance condition in Eq. (B15), we assume
that �B deviates from the ideal condition by some small value
�ε . That is, �ε = �B − � − (g2

↑A
− g2

↓B
)/� + δeg.

The effective non-Hermitian Hamiltonians corresponding
to Ĥ↑↓ and Ĥ↑↑ are

Ĥ↑↓ = Ĥ↑↓ − i

2
(γ |e2 ↓0〉〈e2 ↓0| + γ |↑ e10〉

× 〈↑ e10| + κ|↑↓ 1〉〈↑↓ 1|),
Ĥ↑↑ = Ĥ↑↑ − i

2
(γ |e2 ↑0〉〈e2 ↑0| + γ |↑ e10〉

× 〈↑ e10| + κ|↑↑ 1〉〈↑↑ 1|). (B17)

By performing adiabatic elimination on the amplitude
of |↑↓1〉 and |↑↑1〉 where we set d〈φ(t )|↑↓1〉/dt =
d〈φ(t )|↑↑1〉/dt = 0, we can compute Fπ . Although by choos-
ing �B correctly, the unequal cavity coupling rates can be
compensated, to minimize the gate time T ∝ (g↑A g↓B )−1 it is
optimal to have g↑A � g↓B = g. In this case, we have

Fπ = 1

2

∣∣〈e2 ↑0|e−iT Ĥ↑↑ |e2 ↑0〉 − 〈e2 ↓0|e−iT Ĥ↑↓ |e2 ↓0〉∣∣
= 1

2
e−2π�/Cκ−πκ/2�

∣∣∣∣ei4πg2/�δeg + cosh

[
πκ

2�

]
e−iπ�ε�/g2

∣∣∣∣.
(B18)

In the case where δeg � g2/� � �ε , this can be written as

Fπ = e−2π�/Cκ−πκ/2� cosh2

[
πκ

4�

]
+ O

(
�2

ε , δ
−2
eg

)
. (B19)

Then the total gate fidelity is given by Fgate = (Fπ + 1)/2.
This expression is maximized for the choice 2� � κ

√
C when

g < κ (see Fig. 4 in the main text). Then in the regime where
C � 1, the maximum gate fidelity in the ideal regime can be

013703-11
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expanded to the lowest-order nonvanishing terms to acquire
the result presented in Eq. (2) of the main text.

If a photon is emitted during the gate and system A
collapses to the ground state |↑〉A prematurely, then the final
pulse used to return system A coherently to the ground state
will instead reexcite |↑〉A. Since system A is in an excited
state after a failure, the fidelity Fγ κ vanishes and so the non-
Hermitian approximation is exact in this case.

3. Raman virtual photon exchange

The analysis of the Raman scheme follows similar to the
simple virtual photon exchange scheme. However, with the
addition of the Raman coupling there are two nested adiabatic
processes occurring. To simplify the analysis, we will assume
that any infidelity caused by pulses 1 and 2 used to shelve
|↓〉B are negligible compared to infidelity caused by the much
slower Raman interaction.

For this scheme, we begin with two 4-level systems cou-
pled to a single cavity mode (see Fig. 5 of the main text).
The general Hamiltonian that governs the evolution is Ĥ =
ĤA + ĤB + ĤC + ĤI . The quantum system Ĥk is given by

Ĥk = ωk σ̂
†
↑k

σ̂↑k + ωsk σ̂
†
sk
σ̂sk − ωgk σ̂

†
↑↓k

σ̂↑↓k , (B20)

where ωk is the frequency separation between the |↑〉k and
|e〉k states, ωsk is the separation of the shelving state |s〉k and
|↑〉k , and ωgk is the separation of the |↑〉k and |↓〉k states. Also,
σ̂↑k |e〉k = |↑〉k , σ̂sk |s〉k = |↓〉k , and σ̂↑↓k |↓〉k = |↑〉k (see Fig. 5
of the main text). The cavity homogeneous evolution is ĤC =
ωCâ†â for cavity frequency ωC , cavity photon anihilation
(creation) operator â (â†), and the interaction part is given by

ĤI =
∑

k∈A,B

gk σ̂
†
↑k

σ̂↑↓k â + k σ̂
†
↑k

eitωLk + H.c., (B21)

where gk is the cavity coupling rate of the |↑〉 → |e〉 transition
to the cavity mode and ωLk is the control laser frequency cou-
pling |↓〉k and |e〉k via the operator σ̂

†
↑k

σ̂↑↓k |↓〉k = σ̂
†
↑k

|↑〉k =
|e〉k with Rabi frequency k . The dissipation is governed by
the Lindblad master equation

ρ̇ = −i[Ĥ, ρ̂] + κD(â)ρ̂+
∑

k

γkD(σ̂↑k )ρ̂ +
∑

k

γskD(σ̂sk )ρ̂,

(B22)

where D(Â)ρ̂ = Âρ̂Â† − {Â†Â, ρ̂}/2, κ is the decay rate of the
cavity photon, γk is the decay rate of |e〉k , and γsk is the decay
rate of the shelving state |s〉k . The corresponding effective
non-Hermitian Hamiltonian is then

Ĥeff = Ĥ − i

2

[
κ â†â + γ

∑
k

σ̂
†
↑k

σ̂↑k + γs

∑
k

σ̂ †
sk
σ̂sk

]
, (B23)

where we have assumed γk = γ and γsk = γs for both quan-
tum systems A and B. Recall again that the effective Hamil-
tonian does not discriminate which ground state recycles the
population. In effect, γs represents the total decay rate out of
|s〉 into any other state.

As with the virtual photon exchange, we can first break
the system into four subsystems associated with the four
basis states of the two-qubit space: {|↑↑〉, |↓↑〉, |↑↓〉, |↓↓〉}.
After shelving |↓〉B to state |s〉B, these states become

{|↑↑〉, |↓↑〉, |↑s〉, |↓s〉}. Then the driving fields A and B

couple |↓↑〉 and |↑↓〉. Consequently, the fields also induce a
phase on |↓ s〉 due to the ac Stark and cavity Lamb shifts.
Since |s〉B is decoupled from the cavity and far-detuned
from the driving fields, we only consider the dynamics in
the subspaces affecting |↑↓〉 and |↑s〉 dictated by H↑↓ and
H↑↑. From the Hamiltonian, we can write H↓↑ in the basis
{|↑↓0〉, |e↓0〉, |↓↓1〉, |↓e 0〉, |↓↑0〉} as

H↑↓ =

⎛
⎜⎜⎜⎝

0 A 0 0 0
A �A gA 0 0
0 gA −δA gB 0
0 0 gB �B + (δB − δA) B

0 0 0 B δB − δA

⎞
⎟⎟⎟⎠,

(B24)

and H↑↑ in the basis {|↑s 0〉, |e s 0〉, |↓s 1〉} as

H↑↑ =
⎛
⎝ 0 A 0

A �A gA

0 gA −δA

⎞
⎠, (B25)

where �k = ωk − ωLk and δk = ωLk + ωgk − ωC . The last
index of each state indicates the photon number in the
cavity mode. To obtain these time-independent subsystem
Hamiltonians, we have moved into a rotating frame Ĥ →
e−itR̂Ĥ (t )eitR̂ − R̂ defined by

R̂ = (ωC + δB)â†â +
∑

k

ωLk σ̂
†
↑k

σ̂↑k

+
∑

k

ωsk σ̂
†
sk
σ̂sk + ωgB σ̂

†
↑↓B

σ̂↑↓B

+ (δA − δB − ωgA )σ̂ †
↑↓A

σ̂↑↓A . (B26)

This rotating frame preserves the desired relative phase evo-
lution between |↑↓〉 and |↑↑〉 because it is defined using local
operators only.

The evolution in remaining subsystems can be neglected:
H↓↑ = 0 and H↓↓ = 0 for the states that are not coupled
to the driving fields. Similar to the previous scheme, the
total gate fidelity can then be simplified to Fgate = (Fπ +
1)/2 where Fπ = |〈φ(T )|(|↑↑〉 − |↑↓〉)|/√2 for initial state
|ψ (0)〉 = (|↑↑〉 + |↑↓〉)/

√
2.

At the two-photon resonance (δA = δB = δ), H↑↓ will per-
form a π -phase rotation on |↑↓〉. However, unlike the simple
exchange scheme, the Raman exchange scheme can operate
when �A and �B are not restricted to a fixed relation, allowing
for a gate to be performed between two quantum systems
that have unequal optical transitions. However, a π phase can
only be achieved when B is selected to compensate for gA �=
gB and �A �= �B. By adiabatically eliminating the excited
state and cavity amplitudes where we set d〈φ(t )|e↓0〉/dt =
d〈φ(t )|↓↓1〉/dt = d〈φ(t )|↓e 0〉/dt = 0, the optimal Rabi fre-
quency relation is found to be

B = A

√
g2

A + δ�A

g2
B + δ�B

� A

√
�A

�B
, (B27)

corresponding to the time required to achieve a π phase of

T = π
g2

A�A + g2
B�B + δ�A�B

gAgBAB
� π

δ�A�B

gAgBAB
, (B28)

013703-12



CAVITY-ASSISTED CONTROLLED PHASE-FLIP GATES PHYSICAL REVIEW A 102, 013703 (2020)

assuming g2
k 
 δ�k .

The non-Hermitian parts are given by corresponding decay
rates of each state amplitude

Ĥ↑↓ = Ĥ↑↓ − i

2
(γ |e↓0〉〈e↓0| + κ|↓↓ 1〉

× 〈↓↓ 1| + γ |↓ e 0〉〈↓ e 0|),
Ĥ↑↑ = Ĥ↑↑ − i

2
(γ |e s 0〉〈e s 0| + κ|↑ s 1〉〈↑ s 1|), (B29)

where we have assumed that γs 
 γ , κ . We analyze the
fidelity in the case where gA = gB = g, δA � δB � δ but δε =
|δA − δB| 
 δ is nonzero, �A � �B � � but �ε = |�A−
�B| 
 � is nonzero, and also A � B

√
�B/�A � . Un-

der these conditions, and after adiabatically eliminating the
state amplitudes that are only virtually populated, the fidelity
overlap is found to be

Fπ = |〈↑s 0|e−iH↑↑T |↑s 0〉 − 〈↑↓0|e−iH↑↓T |↑↓0〉|

� e−2πδ/Cκ−πκ/2δ cosh2

[
πκ

4δ

]
+ O

(
�2

ε , δ
2
ε , γs

)
, (B30)

where we assume that C � 1. Notice that this solution mirrors
that of the previous scheme but now the two-photon detuning
δ plays the same role that the cavity detuning � did prior. The
maximum cooperativity-limited fidelity is then given when
2δ = κ

√
C. In the regime where C � 1 and γs 
 γ , the

maximum fidelity can be expressed as

Fmax = 1 − π√
C

− π2

16

[
T 2

o δ2
ε

4π2
+ �2

ε

�2
− 18

C

]
(B31)

at the optimal gate time of To = (�/)2(2π/γ
√

C).
The maximum fidelity given by Eq. (B31) relies on the

satisfaction of adiabatic criteria. Unlike the previous scheme
where C � 1 and g � κ was enough to ensure adiabatic
evolution in the ideal detuning regime, the Raman process
places additional constraints on the driving field parameters
to achieve adiabatic evolution. Primarily, it is necessary for
 
 �. However, the magnitudes of � and  are also limited
by other system parameters. The lower bound on � for a given
/� ratio can be determined by considering the regime δ� <

g2 where cavity Rabi oscillations cause infidelity. This limit
can be solved by adiabatically eliminating both the excited
state amplitudes and the cavity mode amplitude. Likewise, the
upper bound on � for a given /� ratio can be determined
by considering the regime δ� < 2 where Rabi oscillations
induced by the driving field cause infidelity. These limits can
be analytically solved by adiabatically eliminating only the
excited-state amplitudes.

In the ideal regime where γs/γ 
 2(/�)2, �A � �B,
and δε 
 2πT −1

o , the total gate fidelity is well

approximated by

Fgate � 1

2

(
cos2

[
π

4�

]
cos2

[
π2

2δ�

]
sin

[
π/2

1 + g2/δ�

]
Fπ +1

)

� Fmax − π2

16

(
2

2�2
+ 24

δ2�2
+ g4

δ2�2

)
, (B32)

where the additional −	To scaling can be added to account
for decoherence infidelity. These extra constraints on the
adiabatic evolution are independent of the cavity cooperativity
but they do place bounds on the regime where the fidelity is
only limited by the cavity cooperativity. In addition, they will
place bounds on the gate time. Combining the results from
Eqs. (B30) and (B32) provides a very accurate estimate of the
fidelity given by the non-Hermitian Hamiltonian, as shown by
the black dashed line in Fig. 6 of the main text.

The upper bound on � will dictate the maximum pos-
sible spectral separation of the optical transitions. In turn,
for a fixed /� ratio, � is limited by the condition π� <

δ(�/)2 needed to maintain adiabatic evolution and the ratio
/� itself is limited from below by decoherence due to the
gate timescaling of T ∝ (�/)2. To solve for the minimum
�/ and maximum � corresponding to the maximum �ε ,
we optimize the expression

2π	�2

γ2
√

C
+ π24

8δ2�2
+ π2�2

ε

16�2
= π√

C
(B33)

when 2δ = κ
√

C, where the first term is the infidelity 	To due
to the effective decoherence 	, the second term captures the
condition � >  from Eq. (B32) to maintain adiabatic evolu-
tion, and the third term captures the infidelity from Eq. (B31)
due to spectral separation of the optical transitions. From this
expression, we find that the maximum spectral separation that
will result in an infidelity less than the cooperativity-limited
value is

�ε = κγ

π	
√

8
, (B34)

which corresponds to /� = 2
√

	/γ and 2� = �ε

√
π

√
C.

This implies that �A/�B � 1 ±
√

2/π
√

C, which validates
the initial assumption that �ε 
 �. The corresponding gate
time for these conditions is T = π/(2	

√
C).

In the adiabatic regime, the emission of a photon
will collapse the system into the mixed state ρ̂γ κ �
(1/2)|↓〉〈↓|A ⊗ (|↓〉〈↓| + |s〉〈s|)B. Hence the fidelity for a
failure is Fγ κ = 1/2. This implies that the maximum
error in the non-Hermitian solution Fgate given above

is
√

F 2
gate + (1 − F 2

gate)/4 − Fgate ∼ π/4
√

C. For example,

where the non-Hermitian approximation gives 0.9 (0.99), the
true fidelity from the full master equation is not more than
0.93 (0.993).
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