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Graded-index optical fiber transverse-spatial-mode entanglement
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We present a study of spontaneously arisen spatially entangled photon pairs via intermodal four-wave
mixing in a graded-index multimode optical fiber. Unique dispersive features of the fiber allow spectral
indistinguishability of two different phase-matched processes, producing entangled pairs of spatial qubits.
The bases are realized as superpositions of orthogonal transverse fiber modes having opposite parities. In
particular, we take into consideration the spectral properties of the processes by examining their joint spectral
amplitudes. It is shown that illuminating graded-index optical fiber with different pump wavelengths has an
impact upon efficiency parameters accordingly the degree of spatial entanglement and gives rise to photon
pairs with various spectral purities. Photons with higher spectral purity enable desired single-photon based
interactions to take place, whereas photons with lower spectral purity exhibit hybrid entanglement in frequency
and transverse mode. We also discuss Wigner function formalism and parity-displacement-based realization to
characterize spatial properties of the states, as well as to verify quantum entanglement through a violation of
Clauser-Horne-Shimony-Holt inequality.
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I. INTRODUCTION

Quantum information technologies are the subject of sus-
tained interest and development efforts, and they continue
to emerge with promising and striking findings. Among
these technologies, photon-based implementations find a great
number of applications. Depending on the application, pho-
tons with specific quantum states, from uncorrelated to entan-
gled in a degree of freedom, should serve the purpose. Thus
far, polarization and spectral degrees of freedom of generated
photons are studied extensively. Polarization-entangled pho-
tons [1,2], quantum-correlated photons with a spectral degree
of freedom created by engineering particular properties of the
medium and pump field [3–5], are prepared. However, the
amount of quantum information per photon can be increased
by enhancing individually manageable and measurable num-
ber of degrees of freedom. Therefore, together with spectral
(temporal) and polarization degrees of freedom, quantum
information can also be encoded transverse-spatial modes of
the photon.

To generate photons with specific quantum states, the
well-established process of spontaneous parametric down-
conversion (SPDC) in crystals having nonzero χ (2) nonlin-
earity is used traditionally. In these bulk crystals, the trans-
verse profile of photons can be described by continuous
variables, and hence they need a special treatment known as
Schmidt decomposition, in which the joint state is written
as a discrete summation [6,7], whereas inside a guided-wave
structure they are naturally defined in terms of a discrete set
of spatial modes. Recently, a 1-mm-long multimode nonlinear
periodically polled χ (2) waveguide is studied to generate
and characterize spatial qubits [8]. On the other hand, the
process of spontaneous four-wave mixing (sFWM) based on
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χ (3) nonlinearity of the optical fiber is a powerful alternative
to SPDC, since efficient coupling into other communication
components is desirable for practical photon sources, partic-
ularly for quantum communications applications where they
may need to be transmitted over long distances. Step-index
optical fibers [9] and bow-tie fibers [10] are utilized as photon-
generation platforms in different spatial modes by exploiting
intermodal phase matching. Apart from these optical fibers,
graded-index multimode optical fibers (GIMFs) have unique
properties that allow all the modes having the same principal
mode number to propagate with nearly identical propagation
constants as the result of the Wentzel, Kramers, and Brillouin
(WKB) approximation [11]. These mode groups are used as
individual transmission channels to reach very high band-
widths in classical communication [12], while in quantum
optics the generation of frequency-degenerate photons in the
same mode group may provide an opportunity for spatially
entangled photon pair generation.

In this paper, we analyze theoretically generation of photon
pairs in GIMF as a source of spectral and spatial correlated
qubits in every aspects. In Sec. II, we present a brief overview
of GIMFs and mode groups with degenerate propagation
constants. Photon pairs generation via intermodal sFWM are
examined in details in Sec III. Various degrees of spatially
entangled states having different spectral purities are shown
in Sec. IV to respond to every need in photon-based quantum
information technologies. Section V focuses on characteriza-
tion of spatial qubits to identify basis modes by means of
Wigner function formalism and its realization based on simple
interferometer with a geometric phase rotator. Violation of
the Clauser-Horne-Shimony-Holt (CHSH) inequality [13] is
demonstrated in Sec. VI as a verification of entanglement
with the extension of the proposed experimental method in
the previous section. Finally, we draw conclusions and discuss
future prospects in Sec. VII.
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FIG. 1. Real part of the transverse field component of the optical
fiber modes (a) LP01 and (b) LP11 at 600 nm, (c) LP11 at 460 nm, and
(d) LP02 at 633 nm.

II. GRADED-INDEX MULTIMODE FIBERS

Cylindrically symmetric refractive index profile of the
optical fibers is given by the well-known piecewise equation

n2(r) =

⎧⎪⎨
⎪⎩

n2
1

[
1 − 2�

(
r

R

)α]
, 0 � r � R

n2
1[1 − 2�] = n2

2, r > R

,

where R is the core radius, n1 is the maximum refractive index
in the center of the core, n2 is the cladding refractive index,
and � is the guidance parameter that indicates the refractive
index difference between the core and cladding as � = (n2

1 −
n2

2)/2n2
2.

For a GIMF having parabolic index profile α ≈ 2, the
transverse electric-field distribution of a propagation invariant
scalar mode (eigen-function) written as [14]

Fm,p(r, φ) =
√

(p − 1)!

π (p − 1 + |m|)!
r|m|

r|m|+1
0

L|m|
p−1

(
r2

r2
0

)

× exp

(
− r2

2r2
0

)
eimφ (1)

with

r0 =
√

R/
(
2k2

0n2
1�

)1/4
,

where L|m|
p is the generalized Laguerre polynomials, and k0 =

2π/λ. Here each propagation-invariant mode is characterized
by two indices (m, p) referred to the angular and radial num-
bers, where m is an integer and p ∈ Z+, respectively. Note
that for the linearly polarized (LP) modes under weak guid-
ing approximations, which suggests that transverse modes
are essentially polarized in one direction, for small �, the
longitudinal component of the electric field is small compared
to the transverse component. Accordingly, Eq. (1) represents
the dominant component of the electric field. Exemplary real
part of the transverse electric fields are plotted in Fig. 1.
In our notation, the spatial mode profile of an LP mode is
characterized by LP|m|p.

GIMFs offer many advantages in terms of nonlinear inter-
actions due to almost degenerate propagation constant values

among modes with equal mode group number g = 2p + |m| −
1, approximated by the WKB method as [14]

βg = n1k0{1 − 2�[g/
√

Nα]2α/(α+2)}1/2, (2)

where the number of guided modes Nα is defined as

Nα = α

α + 2
k2

0n2
1R2�. (3)

III. FOUR-WAVE MIXING AND PHOTON
PAIR GENERATION

sFWM is a χ (3) parametric nonlinear process that involves
the interaction of four optical waves. For the photon pair
generation processes, two pump photons (p1 and p2) are
annihilated to generate a signal (s) and idler (i) photon pair.
In order for this process to take place, energy and momentum
must be conserved. In optical terms, omitting h̄, the conser-
vation rules equate total frequencies and match total phases
of annihilated photons and those of created photons. The
phase-matching condition depends simply on the propagation
constants of the participating fields, which are determined
by the frequency (energy), geometry, and the refractive in-
dex profile of the optical fiber under consideration. There
are two prevalent techniques for achieving phase matching
in single-mode fibers: exploiting birefringence [15,16] and
setting the pump wavelength close to the zero dispersion
wavelength region [17,18]. However, in multimode fibers,
phase-matching conditions become diversified due to mul-
tiple transverse modes with different dispersive properties
and propagation constants [19]. In multimode optical fibers,
the phase-matching condition, known as intermodal phase
matching, is written as

�β = βγ
s

(
ω0

s

) + βκ
i

(
ω0

i

) − βμ
p1

(
ω0

p1

) − βν
p2

(
ω0

p2

)
. (4)

Here β

j (ω0

j ) represents the propagation constant of the jth
field with the center frequency ω0

j and spatial mode 
, j ∈
{p1, p2, s, i}. In order to find phase-matching points, routine
Taylor expansion of Eq. (4) up to second order is utilized
about the central frequency ω0 = (ω0

p1
+ ω0

p2
)/2, regarding

energy conservation, ω0
s + ω0

i − ω0
p1

− ω0
p2

= 0.
From the standard perturbative approach of sFWM inside

multimode optical fiber, the total biphoton quantum state
subjected to heralding measurement is the sum of all possible
N phase-matched processes (�β ≈ 0), as follows:

|�t 〉 =
N∑

j=1

η j

∫
dωsdωi f j (ωs, ωi; τ j )â

†
s (ωs; μ j )

× â†
i (ωi; ν j )|0〉s|0〉i, (5)

and for each process j, η j represents the probability amplitude
that depends on the relevant χ (3) nonlinear susceptibility, the
fiber length L, pump powers, and spatial overlap integral. The
normalizable joint spectral amplitude (JSA), f j (ωs, ωi; τ j ) of
the process j, has a simple physical meaning: The modulus
squared of the normalized JSA, | f n

j (ωs, ωi; τ j )|2, gives a joint
probability density to detect a signal photon with a frequency
ωs and a corresponding idler photon with a frequency ωi

with a possible time delay τ j between nondegenerate pump
fields (for processes triggered by degenerate pump fields τ j =
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0). Here, â†
s (ω; μ j ) [â†

i (ω; ν j )] is the photon creation oper-
ator, which generates signal (idler) photons with frequency
ω and spatial mode μ j (ν j ), and |0〉s|0〉i is the two-mode
vacuum state. It should be emphasized that generation of two-
dimensional modal entangled quantum states is provided by
substantial overlap of two different phase-matched processes
in the spectral domain, i.e., fl (ωs, ωi; τ ) ≈ f j (ωs, ωi; τ ) for
l �= j [20].

IV. SPECTRAL PROPERTIES OF PHASE
MATCHED PROCESSES

As the basis states for the spatial qubits, single photons
are prepared in LP01 and LP11 modes whose electric field
distributions are shown in Fig. 1. Selection of this basis gives
an opportunity to use stable mode sorting based on the parity
of the transverse-spatial states at the single-photon level [21].
As we show in Sec. VI, CHSH spatial violation is based on
the spatial Wigner function and correlated photons subjected
to two particular inverting interferometers [22].

Simultaneous realization of two phase-matched processes
sharing a common spectral band are considered to produce the
state

|�〉 =
∫

dωsdωi[η1 f1(ωs, ωi; τ )|ωs; LP11〉|ωi; LP01〉
+ η2 f2(ωs, ωi; τ )|ωs; LP01〉|ωi; LP11〉]. (6)

The efficiency parameter η is directly proportional to spatial
overlap integral of the involved modes having same polariza-
tion, I = IrIφ , in terms of radial Ir and azimuthal parts Iφ as
follows:

Ir =
∫ ∞

0
rdrF ∗

p1
(r)F ∗

p2
(r)Fs(r)Fi(r), (7)

Iφ =
∫ 2π

0
dφ exp[−i(mp1 + mp2 − ms − mi )φ], (8)

where an asterisk (∗) represents complex conjugation. The
overlap integral is zero, once the integrand is not azimuthally
symmetric; i.e., angular momentum is not conserved [10].
In order to have a nonzero overlap integral, the integrand
of Eq. (8) should be equal to one, meaning that the angular
mode numbers of the pumps, signal, and idler photons satisfy
the selection rule for the LP modes and conserve the angular
momentum [23]. Therefore, the most natural candidates for
the pumps to produce state |�〉 are the lowest order LP11

and LP02 modes; see Fig. 1. This nondegeneracy of the
pump photons increases number of processes provided that
angular momentum is conserved. It is worth stressing, to avoid
confusion, that all the processes which include annihilation of
two LP11 pump photons, annihilation of one LP11 photon and
one LP02 photon, and annihilation of two LP02 pump photons
can contribute to output state |�t 〉.

Without loss of generality, in accordance with Eq. (8),
the following are true: (i) Annihilation of two LP02 pump
photons centered at ω02 frequency may trigger processes
ηq,p|ωsq ; LP|ms|q〉|ωip ; LP|mi|p〉 conserving angular momen-
tum, satisfying the constraint ms + mi = 0, at the differ-
ent phase matched frequencies ωsq and ωip with a proba-
bility amplitude ηq,p. (ii) Annihilation of two LP11 pump

photons centered at ω11 frequency can contribute to to-
tal quantum state by generating processes of the form
ηm�

s ,q
�,m�

i ,p� |ωsm�
s q� ; LP|m�

s |q�〉|ωim�
i p� ; LP|m�

i |p�〉 conserving angu-

lar momentum, satisfying the constraint m�
s + m�

i = 2 or
0, at the different phase-matched frequencies ωsm�

s q� and
ωim�

i p� with an efficiency parameter ηm�
s ,q

�,m�
i ,p� . (iii) One

LP02 photon centered at ω02 frequency and one LP11

photon centered at ω11 frequency can trigger processes
ηm′

s,q
′,m′

i,p′ |ωsm′
sq′ ; LP|m′

s|q′ 〉|ωim′
i p′ ; LP|m′

i|p′ 〉 conserving angular

momentum, satisfying the constraint m′
s + m′

i = 1, at the
different phase matched frequencies ωsm′

sq′ and ωim′
i p′ with a

probability amplitude ηm′
s,q

′,m′
i,p′ . Therefore, some processes

can be distinguished spectrally due to the fact that they are
triggered at different phase-matched points. On the other
hand, spectrally indistinguishable processes having different
modal characteristics can possess nonclassical correlation in
the spatial domain. Furthermore, similar values of spatial
mode indices (ms, q, mi, p,...) have relatively high efficiency
parameters η due to substantial overlap in the transverse
plane. Before moving on, two points deserve to be high-
lighted without compromising the generality of the results:
(i) Expressing the azimuthal dependence of the LP modes in
a {sin(mφ), cos(mφ)} basis dictates parity-conservation rules
[10], and (ii) all the aforementioned processes may not satisfy
phase-matching conditions owing to the dispersive properties
of the media, notwithstanding angular momentum and parity
conservations.

For simplicity, we consider only annihilation of spatially
nondegenerate pump photons generating the separated state
|�〉 via spectral filters to present possible two-dimensional
spatial entanglement.

We now turn to the study of the spectral bandwidth of
photons due to finite bandwidth of the pump pulses and fiber
of finite length. All these effects are embedded in the un-
normalized JSA, which can be expressed as the product of
pump envelope function α(vs, vi ) and phase-matching func-
tion �(vs, vi ) in terms of frequency detunings vs,i = ωs,i −
ω0

s,i at perfect phase-matched frequencies ω0
s,i [24]:

f (vs, vi; τ ) = α(vs, vi )�(vs, vi; τ ), (9)

with

α(vs, vi ) = exp

[
− (vs + vi )2

σ 2
1 + σ 2

2

]
, (10)

and

�(vs, vi; τ ) = exp

[
−

(
Tsvs + Tivi

στp

)2]

×
[

erf

(
σ (τ + τp)

2
+ i

Tsvs + Tivi

στp

)

− erf

(
στ

2
+ i

Tsvs + Tivi

στp

)]
; (11)

group delays are given by

τs,i = L

(
β ′

p1

(
ω0

p1

) + β ′
p2

(
ω0

p2

)
2

− β ′
s,i

(
ω0

s,i

))
(12)

τp = L
(
β ′

p1

(
ω0

p1

) − β ′
p2

(
ω0

p2

))
(13)
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TABLE I. Phase-matching points, normalized efficiency parameters, and spectral purities for Cornings InfiniCor eSX+.

Cfg Prcs p1, λp1
(nm) p2, λp1

(nm) λi (nm) λs (nm) |η|2 P (%)

1 a LP11, 460 LP02, 633 478.005 601.806 0.45 94.93
b LP11, 460 LP02, 633 478.008 601.801 0.55 94.97

2 a LP11, 488 LP02, 640 518.583 594.049 0.47 80.05
b LP11, 488 LP02, 640 518.582 594.05 0.53 80.16

3 a LP11, 510 LP02, 650 571.5 571.5 0.5 35.2
b LP11, 510 LP02, 650 571.5 571.5 0.5 35.2

with inverse group velocities β ′
μ = dβμ(ω)/dω|ω0

μ
, μ ∈

{p1, p2, s, i}, Ts,i = τs,i + 1
2τp(σ 2

1 − σ 2
2 )/(σ 2

1 + σ 2
2 ), and ef-

fective bandwidth σ = σ1σ2/
√

σ 2
1 + σ 2

2 . Pumps are consid-
ered here as Gaussian spectral envelopes centered at phase-
matched frequencies ω0

p1
(ω0

p2
) with bandwidth (half width

at 1/e max amplitude) σ1 (σ2). The probability p(τ ) that a
photon pair is generated, p(τ ) = |η|2 ∫

dvsdvi| f (vs, vi; τ )|2,
is given by [25]

p(τ ) = pmax

[derf
( στ+στp√

2

) − erf
(

στ√
2

)
erf

( στp

2
√

2

) − erf
( − στp

2
√

2

) ]
, (14)

where pmax corresponds to the maximum generation proba-
bility, which occurs when two pumps maximally overlap in
the middle of the optical fiber, τ = −τp/2. In this scheme
based on nondegenerate pump pulses, expressed as |στp| 

1, there is no interaction at the beginning of the optical fiber
as the two pump pulses are temporally well separated (the
slow pump is sent ahead of the fast by a time |τp/2|), and
interaction strength gradually increases when the fast pump
pulse catches up to the slower pump pulse. The interaction
then starts decreasing and completely vanishes once the pump
pulses separate. This regime emerges as a result of short pulse
durations or group velocity mismatch (temporal walk-off),
which is crucial for practical implementation. Under these
circumstances, the phase-matching function is reduced to

�nd (vs, vi ) = exp

[
−

(
Tsvs + Tivi

στp

)2]
. (15)

For a given JSA, the spectral correlation between created
signal and idler photons can be calculated after decomposing
into Schmidt modes as [26]

f (ωs, ωi ) =
∑

n

�ngn(ωs)hn(ωi), (16)

where gn(ωs) and hn(ωi ) are sets of orthogonal spectral modes
with real amplitude coefficients �n. By virtue of the decompo-
sition, one can define broadband photon wave-packet creation
operators [27]

ŝ†
n =

∫
dωs gn(ωs)â†(ωs), (17)

î†
n =

∫
dωi hn(ωi )â

†(ωi ). (18)

In terms of photon wave-packet creation operators, the two-
photon state produced by sFWM postselected jth process is

obtained as

|� j〉 =
∑

n

� jn ŝ†
jn

î†
jn

|0〉s|0〉i. (19)

Because of the normalization, the probability of two-photon
emission in the nth spectral mode pair is �2

jn . Therefore, the
decomposition quantifies precisely the degree of factorability
(purity) by means of Schmidt number K or spectral purity P
as [28]

K = 1

P = 1∑
n �4

jn

. (20)

Following the investigation of nondegenerate JSA with
Schmidt modes, we use realistic commerical grade GIMF
such as Corning InfiniCor eSX+ as a photon pair generation
platform in simulations. The typical core radius R = 25 μm,
maximum doping in weight percentage at the center of the
core is 10.8 [29], and generalized Sellmeier coefficients can
be found depending on the doping percentage [30]. Gaussian
envelope pump fields with 1-THz bandwidths (equal to 1
nm at 532 nm) at given wavelengths are chosen to conduct
experiments easily within the boundaries of current marketing
of photonics and laser technology products. In Table I, we
show the normalized sFWM efficiencies of different phase-
matching configurations with their purities. Three configu-
rations for the six different phase-matching processes corre-
sponding to three spectrally distinguishable spatially identical
quantum states are given, to show possibility of realizing
states with different efficiency parameters which determine
the degree of entanglement.

In order to distinguish synchronic realization of the
frequency-degenerate two phase-matched processes sharing a
common spectral band, we label first one as process a and the
subsequent part is labeled as process b:

|�〉 =
∫

dωsdωi
[
η1 fa(ωs, ωi )|ωs; LP11〉|ωi; LP01〉︸ ︷︷ ︸

process a

+ η2 fb(ωs, ωi )|ωs; LP01〉|ωi; LP11〉︸ ︷︷ ︸
process b

]
. (21)

Generated quantum states from first two configurations are
nonmaximally entangled states which find themselves a num-
ber of applications [31]. However, the lattermost state is
known as maximally entangled Bell state, i.e., |η1| = |η2| =
1/

√
2. This state possesses relatively high nonclassical corre-

lation also in spectral domain as a result of low spectral purity.
By an important extension, in this scheme, photon pairs are
born with hybrid entanglement in spectral and in spatial mode.
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FIG. 2. Phase-matching curves for processes a and b of first
configuration with phase-matched points (�β ≈ 0) for idler and
signal photons (shown in left and right insets respectively)

For the sake of simplicity, only constituent-frequency de-
generate processes a and b (see Fig. 4) of first configuration
are treated comprehensively. Figure 2 illustrates the phase-
matching curves and phase-matching points for idler and
signal photons. In Table II, eigenvalues of decomposed JSA’s
fa(ωs, ωi ) and fb(ωs, ωi ) are shown.

Intensity of only first two modes in spectral domain for
both processes are depicted in Fig. 3 due to highest probability
of occurrence, ≈97.4%. For a typical Gaussian JSA, Schmidt
modes overlap in both spectral and temporal domain; i.e., they
are their own Fourier transforms.

Before moving on to the spatial characterization, it is
noteworthy to point out that the spectral (temporal) shape
of the photons are Gaussian, and hence they are optimal for
linear optical quantum information processing [32].

V. SPATIAL QUBIT CHARACTERIZATION

In this section, we introduce the density matrix formalism,
which is the most convenient theoretical tool for quantum
information protocols. In moving forward and describing
observable quantities for subsystems of a composite system
via reduced density matrices, we parametrize the two-photon
wave function in the spatial (position) representation with
two-dimensional transverse positions (xs, ys) and (xi, yi ) of
the respective photons, signal and idler, given by

ψ (xs,i, ys,i; ωs,i ) = f (ωs, ωi )[η1LP11(xs, ys)LP01(xi, yi )

+ η2LP01(xs, ys)LP11(xi, yi )], (22)

where f (ωs, ωi ) = fa(ωs, ωi ) = fb(ωs, ωi ), since they overlap
in the spectral domain, see Fig. 4. A straightforward calcula-

TABLE II. First three eigenvalues �2
an

and �2
bn

of process a and
process b, respectively.

�2
an

�2
bn

n = 1 0.9740 0.9742
n = 2 0.0253 0.0252
n = 3 0.0007 0.0006

477 477.5 478 478.5 479
0

0.03

0.06

0.09
(a)

601 602 603
0

0.03

0.06
(b)

477 477.5 478 478.5 479
0

0.03

0.06

0.09
(c)

601 602 603
0

0.03

0.06
(d)

ar
b

. u
n

it
s

FIG. 3. The spectral shape of the first modes corresponding to
first process: (a) |ha1 (λi )|2, (b) |ga1 (λs )|2, and second process (c)
|hb1 (λi )|2, (d) |gb1 (λs )|2.

tion shows that single-photon reduced density matrix for the
spatial coordinate y in the case of signal photon by tracing out
the appropriate variables is given by

ρ̂s =
∫

dx′
sdy′

sdȳs[|η1|2LP11(x′
s, y′

s)LP∗
11(x′

s, ȳs)

+ |η2|2LP01(x′
s, y′

s)LP∗
01(x′

s, ȳs)]|y′
s〉〈ȳs|, (23)

where orthonormality of the transverse modes and normal-
ization of the JSA are utilized. The representation of signal
photon reduced density matrix ρs(y, y̆) = 〈y|ρ̂s|y̆〉 is

ρs(y, y̆) =
∫

dx′
s[|η1|2LP11(x′

s, y)LP∗
11(x′

s, y̆)

+ |η2|2LP01(x′
s, y)LP∗

01(x′
s, y̆)]. (24)

Note that the reason we restrict ourselves to only one spatial
coordinate y is because the basis transverse modes (LP01

and LP11) exhibit opposite parity in that coordinate. The
reduced density matrix ρi(y, y̆) for an idler photon can also
be calculated congruently. The Hilbert space operator ρ̂ can

599 600 601 602 603 604
475

476

477

478

479

480

481

601 601.5 602 602.5
477.5

478

478.5

a,b

FIG. 4. Joint spectral intensity (JSI) of two processes are over-
lapped significantly, the bottom right inset is an enlargement of JSIs
of the processes to illustrate phase-matched points.
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FIG. 5. Mach-Zehnder interferometer includes an image rotator
(rounded object) to invert spatially one of the interfering beams
and a steering mirror to determine the phase-space point (y, k) for
measuring the Wigner function.

be transformed to the experimentally accessible phase-space
Wigner function defined for the signal photon alone as [33]

Ws(r, k) = 1

π2
Tr[〈�|1̂i ⊗ �̂r,k|�〉], (25)

where 1̂ is the identity operator and displaced parity operator
�̂r,k is defined as

�̂r,k =
∫

dr0 exp(−2ik.r0)|r − r0〉〈r + r0|

=
∫

dk0 exp(−2ir.k0)|k + k0〉〈k − k0|, (26)

where r = [x, y] is the two-dimensional spatial vector and
k = [kx, ky] is the transverse wave vector representing the
phase-space position and momentum values.
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FIG. 6. (a) Noisy single-photon Wigner function with a signal-
to-noise ratio (SNR) of 10, |η1|2 = 0.45, and |η2|2 = 0.55.
(b) Single-photon density matrix obtained from the noisy Wigner
function.
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FIG. 7. Spatial profiles of (a) |u01
s |2 and (b) |u11

s |2 basis modes
reconstructed from the Wigner function compared with their initial
forms.

The displaced parity operator performs a reflection about
the phase-space point (r, k). For a single spatial coordinate,
Ws(y, k) can equivalently be expressed in the form related to
reduced density matrix [34]

Ws(y, k) = 1

π

∫
dξ exp(−2ikξ )ρs(y + ξ, y − ξ ). (27)

Next, we investigate inverting the interferometer-based
realization of the spatial Wigner function. The position ar-
gument of the Wigner function is defined by displacing the
input beam with respect to the interferometer axis, whereas
wave-number k dependency is proportional to the tilt of the
input beam [35]; see Fig. 5. Accordingly, the reduced density
matrix can be calculated with the help of inverse formula of
Eq. (27).

ρs(y, y̆) =
∫

dk exp(ik(y − y̆))Ws((y + y̆)/2, k). (28)

In order to gain further insight into the reduced den-
sity matrix and identify spatial qubit basis modes, we add
Gaussian noise with standard deviation equal to 0.1 of the
maximum absolute value of the Wigner function suggested in
Ref. [8], and obtain the reduced density matrix with the help of
Eq. (28), as shown in Fig. 6. In what follows, the reconstructed
density matrix can be decomposed into eigenvalues to obtain
basis modes

ρs(y, y̆) =
∑

p

ςpup(y)u∗
p(y̆). (29)

In Fig. 7, we compare the initial and reconstructed basis
states corresponding to the two highest eigenvalues. They
show remarkably good agreement despite the presence of
noise and considering only the y spatial coordinate greatly
simplifies practical implementations.

VI. CHSH INEQUALITY

Entanglement is one of the most prominent findings of
quantum mechanics that disagrees with classical intuition and
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FIG. 8. Contour plot of the CHSH inequality for different alignments ys1 = yi1 and ys2 = yi2 . Values greater than 2 indicate violation of
CHSH inequality.

predicts the violation of CHSH inequality. In essence, CHSH
inequality rules out the possibility of persisting memory of
the interaction in a sense, between two separate quantum
bodies forming a single quantum system, regardless of the dis-
tance. What gives rise to entanglement is the conservation of
physical properties in the generation process. These physical
properties or their conjugate variables that lead to nonclas-
sical correlation are themselves indications of entanglement.
In this scenario, conservation of the involved photons mo-
mentum gives birth to nonclassical momentum and position
correlation.

The original CHSH inequality relies on dichotomic out-
comes of the measurements performed on seperate subsys-
tems. Displaced parity operator �̂r,k that has two eigenvalues
±1 can be used to test violation of CHSH inequality. It is
sufficient to carry out this procedure in one dimension. Hence,
the quantum correlation function can be written as

E (ys, ks; yi, ki ) = 〈�|�̂ys,ks ⊗ �̂yi,ki |�〉. (30)

A straightforward calculation yields

E (y0, k0; y1, k1) =
∫

drsdridωsdωiψ (y0 + ys, xs, y1 + yi, xi;

×ωs, ωi )ψ
∗(y0 − ys, xs, y1−yi, xi; ωs, ωi )

× exp(−2i(k0ys + k1yi )), (31)

where rs = (xs, ys) and ri = (xi, yi ) are the transverse in-
tegration plane parameters. The CHSH inequality can be
constructed for the joint transverse-spatial state for photons
parametrized with (ys, ks) and (yi, ki) as follows:

|E (ys1 , ks1 ; yi1 , ki1 ) + E (ys1 , ks1 ; yi2 , ki2 )

+ E (ys2 , ks2 ; yi1 , ki1 ) − E (ys2 , ks2 ; yi2 , ki2 )| � 2. (32)

The problem is to find proper settings (ys1 , ks1 ), (ys2 , ks2 ),
(yi1 , ki1 ), and (yi2 , ki2 ) that allow the given state to violate this
inequality. Only displacing input beam with respect to the
interferometer axis without tilting it provides a scheme for
violation: ks1 = ks2 = ki1 = ki1 = 0. In the rest of the paper,
k dependency of the correlation function will be omitted
for brevity of notation, E (ys; yi ). The maximum value of
constructed combination of correlation function is optimized
over displacement variables ys1 = yi1 and ys2 = yi2 in Fig. 8.

In the experimental realization of the scheme, idler and
signal photons are subjected to simultaneous separated inter-
ferometric measurements, where the displacement is applied.
The two outputs of the interferometer corresponding to two
possible results depending on the parity of the photon are
collected and directed to a detector. Correlation function
E (ys; yi ) is estimated between the parties of the two photons
as a function of their respective displacements via

E (ys; yi )= C(+s,+i )−C(−s,+i )−C(+s,−i )+C(−s,−i )

C(+s,+i )+C(−s,+i )+C(+s,−i )+C(−s,−i )
,

(33)

where C is the coincidence count rate recorded between
different pairs of detectors.

VII. CONCLUSIONS

In this paper, we have theoretically analyzed spontaneously
arisen spatially entangled photon pairs in a GIMF. We have
presented different phase-matching configurations to achieve
different degree of spatial entanglement and examined their
JSA’s to illuminate the meaning of spectral purities and corre-
sponding Schmidt modes.

Spatial qubits in only one dimension in which basis
transverse fiber modes have opposite parities have been
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characterized via introducing density matrix formalism. We
have investigated experimentally accessible single-photon
Wigner function for determining the basis modes via a sim-
ple inverting interferometer with a steering mirror to scan
phase-space points. The relation between spatial quantum
correlation function and two-particle Wigner function has
been demonstrated explicitly to verify entanglement through
violation of CHSH inequality.

All these studies show that GIMFs are strong candi-
dates for responding to every need in the field of quan-
tum information technologies as a photon pair genera-
tion platform. Also, the results of the paper will open
opportunities for controlling rich correlated spatiotempo-
ral dynamics of photons and pave the way for further
optical-fiber-based quantum information investigations and
applications.
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[8] M. Jachura, M. Karpiński, K. Banaszek, D. Bharadwaj,

J. Lugani, and K. Thyagarajan, Phys. Rev. A 95, 032322 (2017).
[9] H. Pourbeyram and A. Mafi, Phys. Rev. A 94, 023815 (2016).

[10] K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna,
E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R.
Ramirez-Alarcon, and A. B. U’Ren, Phys. Rev. A 93, 033810
(2016).

[11] D. Gloge and E. A. J. Marcatalli, Bell Syst. Tech. J. 52, 1563
(1973).

[12] B. Franz and H. Bülow, Phot. Tech. Lett. 24, 1363 (2012).
[13] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys.

Rev. Lett. 23, 880 (1969).
[14] A. Mafi, J. Lightwave Tech. 30, 2803 (2012).
[15] R. H. Stolen, M. A. Bösch, and C. Lin, Opt. Lett. 6, 213 (1981).
[16] B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A.

Walmsley, Opt. Express 17, 23589 (2009).
[17] K. Inoue, J. Lightwave Tech. 10, 1553 (1992).
[18] X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, Opt. Express

12, 3737 (2004).

[19] R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, Appl. Phys. Lett.
24, 308 (1974).

[20] M. F. Saleh, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 79,
053842 (2009).

[21] C. Leary, L. Baumgardner, and M. Raymer, Opt. Express 17,
2435 (2009).

[22] E. Mukamel, K. Banaszek, I. A. Walmsley, and C. Dorrer, Opt.
Lett. 28, 1317 (2003).

[23] F. Poletti and P. Horak, J. Opt. Soc. Am. B 25, 1645
(2008).

[24] B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, Opt.
Express 21, 2707 (2013).

[25] Y. Zhang, R. Spiniolas, K. Shinbrough, B. Fang, O. Cohen, and
V. O. Lorenz, Opt. Express 27, 19050 (2019).

[26] C. K. Law, I. A. Walmsley, and J. H. Eberly, Phys. Rev. Lett.
84, 5304 (2000).

[27] R. Loudon, The Quantum Theory of Light (Oxford University
Press, Oxford, UK, 1973).

[28] B. Bell, A. McMillan, W. McCutcheon, and J. Rarity, Phys. Rev.
A 92, 053849 (2015).

[29] E. Nazemosadat, H. Pourbeyram, and A. Mafi, J. Opt. Soc. Am.
B 33, 144 (2016).

[30] J. W. Fleming, Appl. Opt. 23, 4486 (1984).
[31] A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat,

Phys. Rev. Lett. 83, 3103 (1999).
[32] P. P. Rohde, T. C. Ralph, and M. A. Nielsen, Phys. Rev. A 72,

052332 (2005).
[33] N. Gonzalez, G. Molina-Terriza, and J. P. Torres, Phys. Rev. A

80, 043804 (2009).
[34] W. P. Schleich, Quantum Optics in Phase Space (Wiley, Wein-

heim, 2001).
[35] B. J. Smith, B. Killett, M. G. Raymer, I. A. Walmsley, and

K. Banaszek, Opt. Lett. 30, 3365 (2005).

013702-8

https://doi.org/10.1103/PhysRevA.60.R773
https://doi.org/10.1103/PhysRevLett.94.053601
https://doi.org/10.1103/PhysRevA.64.063815
https://doi.org/10.1103/PhysRevLett.100.133601
https://doi.org/10.1103/PhysRevLett.102.123603
https://doi.org/10.1103/PhysRevLett.92.127903
https://doi.org/10.1088/1367-2630/15/8/083015
https://doi.org/10.1103/PhysRevA.95.032322
https://doi.org/10.1103/PhysRevA.94.023815
https://doi.org/10.1103/PhysRevA.93.033810
https://doi.org/10.1002/j.1538-7305.1973.tb02033.x
https://doi.org/10.1109/LPT.2012.2202224
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1109/JLT.2012.2208215
https://doi.org/10.1364/OL.6.000213
https://doi.org/10.1364/OE.17.023589
https://doi.org/10.1109/50.184893
https://doi.org/10.1364/OPEX.12.003737
https://doi.org/10.1063/1.1655195
https://doi.org/10.1103/PhysRevA.79.053842
https://doi.org/10.1364/OE.17.002435
https://doi.org/10.1364/OL.28.001317
https://doi.org/10.1364/JOSAB.25.001645
https://doi.org/10.1364/OE.21.002707
https://doi.org/10.1364/OE.27.019050
https://doi.org/10.1103/PhysRevLett.84.5304
https://doi.org/10.1103/PhysRevA.92.053849
https://doi.org/10.1364/JOSAB.33.000144
https://doi.org/10.1364/AO.23.004486
https://doi.org/10.1103/PhysRevLett.83.3103
https://doi.org/10.1103/PhysRevA.72.052332
https://doi.org/10.1103/PhysRevA.80.043804
https://doi.org/10.1364/OL.30.003365

