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We propose a generalized system of nonequilibrium cavity QED with interacting dipoles coupled to a
single-mode of an electromagnetic field in strong-, ultrastrong-, and deep-strong-coupling regimes. To illustrate
the applicability of the system, an extended Dicke model is developed for atoms undergoing Raman transitions
between the ground states in the presence of laser fields and considering dipole-dipole interactions; the latter
has been neglected in many previous works. We have studied the effect of a ferroelectric and an antiferroelectric
arrangement on the phase transition for both a finite and an infinite number of dipoles. An additional superradiant
phase is observed in the deep-strong-coupling regime due to influence of the dipole-dipole interaction term.
A high degree of dipole-dipole entanglement occurs for the antiferroelectric arrangement in the deep-strong
regime, whereas it gets disentangled quite rapidly for the ferroelectric arrangement. A sharp transition of
system parameters is observed in the ultrastrong-coupling regime and beyond. The dipole-dipole interaction
also influences the spectra of the system, inducing a significant shift in the peaks, and modifies the average
number of photons emitted.
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I. INTRODUCTION

Quantum electrodynamics (QED) is the physics describing
light-matter interactions at the atomic level [1]. Cavity QED is
a branch of QED where atoms are considered at the quantum
level such as two-level atoms and their interaction with the
electromagnetic mode in a cavity [2]. Historically, the Jaynes-
Cummings model [3] with the rotating-wave approximation
(RWA) has been considered for the light-matter interaction
where the coupling strength η between the atoms and field
is taken to be much smaller than the transition frequency of
the atom ωa, field mode frequency ωc, and system losses such
as decay rates of the cavity κ and spontaneous emission of
the atom γ . To increase control over η, experiments using
the high-Q factor cavity [4] were developed which achieved
a coupling strength exceeding the parameters κ and γ . This
led to the strong-coupling regime (SCR) [5–7]. In the SCR,
there is a faster exchange of energy between the atom and
field which is called the Rabi oscillation [8]. Recently, novel
work in, for example, circuit QED [9] and solid-state semi-
conductors [10] has made significant advances in reaching the
ultrastrong-coupling regime (USCR) [11], in which the ratio
of η/ωc ∼ 0.1 and thus η is a significant fraction of ωc. When
η/ωc � 1, the deep-strong-coupling regime (DSCR) [12]
is reached.
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Dating back to 1954, an important phenomenon called
superradiance was studied by Dicke for N excited atoms to
model collective constructive emission [13,14]. This model
was then extended to represent the steady-state phase tran-
sition from the normal to the superradiant phase [15,16].
A crucial characteristic of the superradiant state is that the
two-level atoms become polarized and the mean value of
the cavity mode attains a finite value [17]. Several stud-
ies have realized the phase transition by utilizing superfluid
gas coupled to an optical cavity [18], a Raman-transition-
based multilevel atom in a ring cavity [19], and a Bose-
Einstein condensate in an optical resonator [20]. Novel find-
ings such as strong atom-field entanglement for a single
atom [21] and vacuum polarization in a superconducting
circuit [22] have catalyzed the study of these models in the
USCR and DSCR.

A wide range of work has been done based on the cavity-
assisted Raman-transition model [19]. With the inclusion of
an additional nonlinear atom-cavity term in the dissipative
system, a Rabi model is developed for a single atom showing
critical phase transition behavior [23,24]. An experimental
realization [25], based on the existing proposal [19], shows
that the parameters in the system can be easily and indepen-
dently tunable. Similarly, Ref. [26] also explored tunability
of the system parameters for a spin-1 Dicke model and its
rich phase transition map for different phase regions. The
work done in [27] describes the necessity of different laser
beam geometries for the existing Hamiltonian of [19] and
accounts for its influence on motional effects present in the
system.
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In line with all these works, we try to realize a system
based on the contribution of the additional dipole-dipole inter-
action (DDI) in the four-level atom with the Raman-transition
scheme [19]. In this study we consider the influence of the
DDI in the phase transition, spectra, and entanglement of the
system. In particular, we consider N number of multilevel
atoms inside an optical cavity with a single field mode in
the presence of laser fields considering Raman transitions
between the ground states [28–30]. We analyze the system
on the basis of ferroelectric (attractive) and antiferroelectric
(repulsive) arrangements of dipoles and study the extended
Dicke model with dipole-dipole interaction for the SCR,
USCR, and DSCR. In the SCR the impact of DDI on the
phase transition and spectra is studied in the thermodynamic
limit using phase-space formalism. Going beyond the SRC
to the USCR and DSCR for a finite number of dipoles, we
study numerically the impact of ferroelectric (attractive) and
antiferroelectric (repulsive) arrangements of dipoles on intra-
cavity photon numbers and collective spin inversion using
QUTIP [31]. The phase transition in this limit is also studied
via the Wigner quasiprobability distribution.

One of the main results of our work is the finding and
analysis of various entanglement stability regimes of the
system considered. It is known that effects of the DDI are
very pronounced in the case of the USCR and DSCR [32,33].
The influence of the DDI on the atomic spin inversion and
time evolution of the mean photon number is a significant
result of our work. Moreover, we find that in the deep-strong
regime, an additional superradiant phase transition also be-
comes possible. The present study also reconfirms the atom-
cavity entanglement as found in previous studies [23,34].
Such a noteworthy observation may be applicable in many
distinct physical models such as microcavities consisting of
organic molecules [35], in controlling coupling of nanostruc-
ture systems [36–38], and in many potential applications like
quantum information processing [39], nonlinear optics [40],
quantum sensing [41], and QED chemistry [42].

The paper is structured as follows. Section II provides the
theoretical insight of the model and the mathematical formal-
ism. Section III outlines the influence of the DDI in the phase
transition, eigenvalue analysis, and spectra in thermodynamic
limit. The system is also analyzed numerically for N = 8
atoms in order to check the reliability of the model. In Sec. IV
we study the influence of the DDI in the entanglement, phase
transition, and system parameters such as photon number and
collective spin inversion in the USCR and DSCR for N � 2.
Section V summarizes this work. Appendixes A and B cover
the derivation of the effective extended Dicke Hamiltonian.
The simplification of the effective Hamiltonian in the superra-
diant phase is given in Appendix C.

II. CAVITY QED MODEL

We consider N number of atoms inside an optical cavity
of volume V and coupled to a single field mode as shown
in Fig. 1. Each atom is placed a distance rd apart from
each other. The entire system is subjected to a laser field so
that we can take the driving and dissipation of the system
into consideration. This model is inspired by the multilevel
cavity-mediated Raman-transition scheme as illustrated in

FIG. 1. Schematic of the cavity QED model with atoms sepa-
rated at a distance rd and with the DDI term Jk j . The magnified
view of one atom representing all shows the four-level atom with
hyperfine ground levels |g1〉 and |g2〉 and excited states |r1〉 and |r2〉
(not to scale). The laser Rabi frequencies are �r1 and �r2 with cavity
decay rate κ .

[19] with the significant addition of the DDI in the system.
The Hamiltonian involves the counterrotating terms otherwise
neglected in the RWA. This system provides greater flexibility
in tuning the laser frequencies and other effective parameters
to have better control over the system.

A. Closed system

We analyze the system in the presence of two laser fields
which are transversely polarized to the cavity axis. A magnetic
field (perpendicular to the laser field) breaks the degeneracy of
the Zeeman sublevels of the atom [43]. We thus consider two
ground states |g1〉 and |g2〉 which are mediated by a Raman
transition to couple. The ground state |g1〉 has zero energy.
An atomic transition between ground states {|g1〉 and |g2〉}
and excited states {|r2〉 and |r1〉} takes place with laser Rabi
frequencies �r2 and �r1 , respectively. We assume an equal
atom-cavity coupling strength g between |g1〉 and |r1〉 and also
|g2〉 and |r2〉. The detunings from the excited states {|r1〉, |r2〉}
are {�r1 ,�r2}, respectively. The Hamiltonian of each
dipole is

Ĥsys = Ĥc + Ĥa + Ĥac + Ĥla. (1)
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The first and second terms are related to the energy of the
cavity and atom, respectively, with Ĥc = h̄ωqâ†â, where â†

and â are the creation and annihilation operators of the cavity,
respectively, following the commutation relation [â, â†] = 1,
and

Ĥa = h̄ωr1 |r1〉〈r1| + h̄ωr2 |r2〉〈r2| + h̄ωg|g2〉〈g2|. (2)

The cavity frequency is denoted by ωq and {ωr1 , ωr2 , ωg} are
the frequencies of the atom. The third and fourth terms of
Eq. (1) are the interactions of the atom-cavity and atom-pump
lasers, respectively,

Ĥac = h̄g(â†|g1〉〈r1| + â†|g2〉〈r2|)e−ikxk

+ h̄g(|r1〉〈g1|â + |r2〉〈g2|â)eikxk , (3)

where k is the wave vector of the copropagating laser field and
xk is the location of each dipole, and

Ĥla = h̄�r1 [eiωlr1 t |g2〉〈r1|e−ikxk + e−iωlr1 t |r1〉〈g2|eikxk ]

+ h̄�r2 [eiωlr2 t |g1〉〈r2|e−ikxk + e−iωlr2 t |r2〉〈g1|eikxk ]. (4)

The pump laser frequencies are denoted by ωlr1 and ωlr2 . To
simplify the above system, we transform Ĥsys to the interac-
tion Hamiltonian Ĥint as

Ĥint = U†{Ĥsys − Ĥ0}U , (5)

where U is the unitary transformation expressed as U (t ) =
exp(−iĤ0t/h̄). The interaction frame rotates at the driving
frequency

ωlr1 +ωlr2
2 with Ĥ0,

Ĥ0 = h̄ωlr2

2
(|r1〉〈r1| + 2|r2〉〈r2| + â†â)

+ h̄ωlr1

2
(|r1〉〈r1| + â†â) + h̄

2

(
ωlr2 − ωlr1

)|g2〉〈g2|,
(6)

to get Ĥint, which is time independent:

Ĥint = h̄�cavâ†â + h̄�r1 |r1〉〈r1| + h̄�r2 |r2〉〈r2|
+ h̄�01|g2〉〈g2| + Ĥla (0) + Ĥac. (7)

The detunings are given as �cav = ωq − ωlr1 +ωlr2
2 , �r1 =

ωr1 − ωlr1 +ωlr2
2 , �r2 = ωr2 − ωlr2 , and �01 = ωg − ωlr1 −ωlr2

2 .
When �r1,r2 � {�{r1,r2}, g}, the excited states |r1〉 and |r2〉
will be adiabatically eliminated [19] to arrive at an effective
Hamiltonian Ĥeff ,

Ĥeff = ωcâ†â + 1
2ω0σz + η(σ+ + σ−)(â† + â), (8)

with the substitutions

η = −g�r1

�r1

= −g�r2

�r2

,

ω0 = �2
r2

�r2

− �2
r1

�r2

+ �01,

ωc = �cav −
(

g2

�r1

+ g2

�r2

)
,

(9)

following the derivation as given in Appendix A.

B. Dipole-dipole interaction

When the distance rd separating two neighboring atoms is
very small and the volume V of the cavity is constant, then the
density of the ensemble increases [33]. In this high-density
atomic cloud we cannot neglect the DDI term. The direct
dipole-dipole interaction Jk j is given by

Jk j = r3
d

4π

| �dk j |2 − 3( �dk j · �ez )2

| �dk j |5
, (10)

where �dk j = �dk − �d j corresponds to distance between the kth
and jth dipoles. We assume that the dipoles are arranged along
the x axis and make an angle of θ = 0 with the z axis.

For weak-coupling regime, the dipole-dipole interaction
term arises from the elimination of the cavity field by invoking
the Born-Markov approximation [44]. However, in the case of
the strong-coupling regime, rapid energy exchanges between
the atom and field stop us from using the Born-Markov
approximation for our model [45]. Thus, we have to resort
to a different strategy in our four-level system to analyze the
dipole-dipole interaction Hamiltonian

ĤDD = h̄
N∑

k, j

Jk j

ν
(D†

kD j + D†
jDk ), (11)

where ν is the filling factor given by Nr3
d/V . Let us consider

the case of two atoms where the operators D†
1 and D2 are

raising and lowering operators for atoms 1 and 2, respectively.
They can be expressed as

D†
1 = gâ(|r1〉〈g1|1 + |r2〉〈g2|1),

D2 = gâ†(|g1〉〈r1|2 + |g2〉〈r2|2).
(12)

After substituting Eq. (12) in Eq. (11) one finds the expression
for ĤDD, in terms of excited states {|r1〉 and |r2〉} and ground
states {|g1〉 and |g2〉},

Ĥ (1,2)
DD = h̄g2{â|r1〉〈g1|1â†|g1〉〈r1|2 + â|r1〉〈g1|1â†|g2〉〈r2|2

+ â|r2〉〈g2|1â†|g1〉〈r1|2 + â|r2〉〈g2|1â†|g2〉〈r2|2
+ H.c.}, (13)

where H.c. is the Hermitian conjugate. For the time being, we
suppress the term

∑N
k, j

Jk j

ν
, which will be added at the end.

The limit for detunings which is considered in our
system is

�r1,r2 � �{r1,r2}, g. (14)

Under this condition, we can adiabatically eliminate the ex-
cited states. However, for interacting atoms, the DDI will lead
to energy level shifts. We consider the energy level shifts to
be very small in comparison to �r1,r2 . For such a situation
to arise, the average distance between dipoles is taken to be
tolerably large. We can neglect the energy level shift change
surfacing due to the DDI if the detuning from the excited
states is large in comparison to the atomic energy level shifts.
This justifies the adiabatic elimination of the excited states.
The above assumptions are only valid for pointlike dipoles
such that the above condition is satisfied [46,47].

In order to derive the extended effective Hamiltonian with
the DDI, as discussed in Appendix B, we find the equation of
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motion of the coefficients using Eq. (13) and considering the
evolution of the state of the atoms after adiabatic elimination
of the excited states. Finally, Eq. (8) is extended to include the
DDI to arrive at the effective extended Dicke Hamiltonian

Ĥeff = h̄ωcâ†â + h̄ωa Ĵz + η√
N

h̄(â + â†)(Ĵ+ + Ĵ−)

+ h̄

Nωc
η2ξ Ĵ+Ĵ−, (15)

where Ĵz, Ĵ+, and Ĵ− are collective spin operators as defined
in Eq. (B6) and ξ is the average DDI interaction term given
by 1

ν

∑N
k, j Jk j = ξ . This system can be described in terms of

an array of dipoles arranged in a different order forming a
ferroelectric, i.e., attractive (ξ < 0) aligned dipoles and anti-
ferroelectric, i.e., repulsive (ξ > 0), dipoles; ξ = 0 represents
noninteracting dipoles. This type of model can also arise in
different cases of cavity QED [33] and circuit QED [32].
We also note that there are other ways of obtaining effective
Hamiltonians, e.g., by using Lie-type transformations [48].

C. Open system

The above Hamiltonian in Eq. (15) describes a closed
quantum system where the associated effects of the environ-
ment or the reservoir are not yet taken into account. In an
open system, the dissipation parameters such as cavity decay
rates κ and spontaneous emission are included in the system
as it interacts with the surrounding environment [49]. The
evolution of the full system density operator ρ̂ is expressed
by the Lindblad master equation [50–52]

∂t ρ̂ = − i

h̄
[Ĥeff , ρ̂] + Lcρ̂ + Lsρ̂. (16)

The Lcρ̂ and Lsρ̂ include cavity decay and spontaneous
emission to the environment, respectively, and are known as
Lindblad superoperators. These terms have nonunitary evolu-
tion properties added to the closed system. We recall that the
laser frequency is far detuned from the atomic frequency, and
thus the spontaneous emission rate can be neglected [53] in
our model and Eq. (16) simplifies to

∂t ρ̂ = − i

h̄
[Ĥeff , ρ̂] + Lcρ̂, (17)

with Lcρ̂ = κ (2âρ̂â† − â†âρ̂ − ρ̂â†â).
As an example which could illustrate the use of the pro-

posed model described by Eqs. (15) and (17), one can consider
87Rb atoms from the alkali-metal group for experimental
implementations. These atoms are excited by a laser with the
D1 transition and the D1 line |5 2S1/2(F1)〉 ↔ |5 2P1/2(F ′

1 )〉 is
a part of fine-structure doublet [19,43]. Here F1 and F ′

1 are the
hyperfine levels in which the ground and excited states are
present. One can use g/2π ≈ 50 kHz and κ/2π ≈ 20 kHz,
which leads to η having a value approximately equal to hun-
dreds of kilohertz and with control of the detunings to reach
the coupling regime ωc ∼ ωa ∼ η [19,54]. In particular, we
have used the normalized values ωc = ωa = 1.0 and κ = 0.2
for the calculations, as will be discussed in Sec. III. It should
be noted that all parameters in the thermodynamic limit are on
the order of kilohertz.

III. PHASE TRANSITION, EIGENVALUE ANALYSIS,
AND SPECTRA

A. Phase transition

For the semiclassical analysis we intend to find the ex-
pected values of the field mode 〈â〉, spin polarization 〈Ĵ−〉,
and population inversion Re(〈Ĵz〉). The expected value of
an operator, say, 〈â〉, is determined by 〈â〉 = Tr[ρ̂â] and its
equation of motion (EOM) with

∂t 〈â〉 = ∂tTr[ρ̂â] = Tr[(∂t ρ̂)â]. (18)

Substituting Eq. (17) in Eq. (18), we have the EOM for the
field operator with the cyclic properties of the trace [55]

∂t a = −(κ + iωc)a − i
η√
N

(J∗
− + J−). (19)

Similarly, we obtain the EOM for operators 〈Ĵ−〉 and 〈Ĵz〉:

∂t J− = −iωaJ− + 2i
η√
N

(a + a∗)Jz − i
ξ

Nωc
η2J−,

∂t Jz = i
η√
N

(a + a∗)(J− − J∗
−).

(20)

Here we have assumed factorization of the given operators,
e.g., 〈Ĵ±,z(â + â†)〉 = 〈Ĵ±,z〉〈â + â†〉. The scalar variables ap-
pearing in above equations are 〈â〉 = a, 〈Ĵ−〉 = J−, and 〈Ĵz〉 =
Jz. Solving Eqs. (19) and (20) with conservation of the total
spin, J2

z + |J−|2 = N2

4 for steady states using ∂t a = 0, ∂t J− =
0, and ∂t Jz = 0; we get two sets of values for different regimes
of η. For η > ηc,

ass = ± η
√

N

ωc−iκ

√√√√1− 1

η4

{
1

2

√(
ωc+κ2

ωc

)(
ωa + ξ

ωc
η2

)}4

,

(21a)

(J−)ss = ∓N

2

√√√√1 − 1

η4

{
1

2

√(
ωc + κ2

ωc

)(
ωa + ξ

ωc
η2

)}4

,

(21b)

(Jz )ss = −N

8

1

η2

(
ωc + κ2

ωc

)(
ωa + ξ

ωc
η2

)
, (21c)

where ass, (J−)ss, and (Jz )ss represent the corresponding
steady-state parameters and the critical coupling ηc depends
on the DDI parameter ξ ,

ηc =
√

−ωaωc
(
κ2 + ω2

c

)
ξ
(
κ2 + ω2

c

) − 4ω2
c

. (22)

For η < ηc, the steady-state parameters are ass = 0, (J−)ss =
0, and (Jz )ss = −N

2 . They obtain nonvanishing finite values
for η > ηc, which marks the quantum phase transition from
the normal to the superradiant phase [15,16,56]. In partic-
ular, we have considered ωc = ωa = 1.0, κ = 0.2, and ξ =
{−0.5, 0.0, 0.5}, resulting in ηc = {0.4797, 0.5099, 0.5467},
respectively. Figure 2 represents the semiclassical phase dia-
gram depicting the variation of steady-state parameters with
η. Moreover, variation of ηc with ξ signifies a shift in the
transition point between the ferroelectric (ξ = −0.5) and the
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FIG. 2. Semiclassical phase diagrams plotted for κ = 0.2 and ωa = ωc = 1.0. Here ηc = {0.4797, 0.5099, 0.5467} for ξ =
{−0.5, 0.0, 0.5}, respectively.

antiferroelectric (ξ = 0.5) arrangement of dipoles. For ferro-
electric dipoles, the phase transition is obtained earlier than
for antiferroelectric dipoles.

B. Nondissipative model

As Eq. (15) cannot be solved analytically [57], we use
the Holstein-Primakoff (HP) approximation [58,59] for lin-
earization of the nondissipative case. When total excitations
are small, angular momentum operators can be represented
by bosonic modes, i.e., Jz = b†b − N

2 , J+ = b†
√

N − b†b,
and J− = (

√
N − b†b)b, where [b, b†] = 1. For N � 1, the

quadratic Hamiltonian in the case of a normal phase
(η < ηc) is

ĤHPn = h̄ωca†a + h̄ωab†b + h̄η(a† + a)(b† + b) + εb†b,
(23)

with ε = h̄η2ξ/ωc. The above equation is then diagonal-
ized using the Bogoliubov procedure [58,60,61]. This intro-
duces the eigenmode operators e± leading to the Hamiltonian
ĤHPn = ∑

υ=± h̄ωυe†
υeυ , yielding excitation frequencies

ω2
± = 1

2

{
ω2

c + �2
d ±

√(
ω2

c − �2
d

)2 + 16η2ωcωa

}
, (24)

with �2
d = ωa(ωa + ε). The excitation frequency ω− is real

for ω2
c + �2

d �
√

(ω2
c − �2

d )2 + 16η2ωcωa, arriving at a criti-
cal value of coupling

ηc =
√

ωcωa

4 − ξ
, (25)

which can also be obtained by substituting κ = 0 in Eq. (22).
For the superradiant phase (η > ηc), the bosonic operators

have macroscopic values and hence they undergo coherent
displacement a† = c† + √

α and b† = d† − √
β, where c† and

d† are fluctuation operators and {α, β} are the displacements.
Using the HP approximation on Eq. (15), as discussed in
Appendix C, the effective Hamiltonian for the superradiant
phase can be written as

ĤHPs = h̄ωcc†c + h̄ω1d†d + h̄ω2(d† + d )2

+ h̄η1(c† + c)(d† + d ) + const, (26)

with

ω1 = ωa + 2ωa

κ(4 − ξ )
(1 − κ), (27a)

ω2 = ωa(1 − κ)

2κ(4 − ξ )

{
3 + κ

1 + κ

− ξ

}
, (27b)

η1 = ηκ

√
2

1 + κ

, (27c)

and κ = η2
c

η2 . Using κ = 1 in Eq. (26), one can recover
Eq. (23). These equations will be utilized in Sec. III C for
eigenvalue and spectral analyses.

C. Eigenvalue and spectral analyses with DDI

In this section we present an eigenvalue analysis of the
system using a Fokker-Planck equation [62]. The Fokker-
Planck equation is succinctly expressed as the EOM of a
probability distribution P (φ, ϕ), with φ and ϕ classical forms
of the quantum fluctuation operators. Such an equation also
depicts information on the mean values of operators and
further on the analysis of the spectra of the system. In addition,
P (φ, ϕ) illustrates normally ordered operators [63] using the
Glauber-Sudarshan P representation [57,64,65]

〈φ̂†r φ̂sϕ̂†t ϕ̂v〉 =
∫

d2φ d2ϕ P (φ, ϕ)φ∗rφsϕ∗tϕv, (28)

with d2φ = d{Re[φ]}d{Im[φ]} and d2ϕ = d{Re[ϕ]}
d{Im[ϕ]}. For the next step, we discuss the characteristic
function Y (x, y),

Y (x, y) = Tr[ρ̂eix∗φ̂†
eixφ̂eiy∗ϕ̂†

eiyϕ̂], (29)

with density operator ρ̂. The EOM for Y (x, y) is formed
using the equation d ρ̂

dt = Lρ̂,

Ẏ = Tr[ ˙̂ρeix∗φ̂†
eixφ̂eiy∗ϕ̂†

eiyϕ̂], (30)

where ˙̂ρ is represented by Eq. (17). The equations result in
the semipositive-definiteness of drift and diffusion matrices.
To overcome this issue of semipositive-definiteness, we have
interpreted the representation as a positive-P representation
which considers the variables φ̂† and φ̂ as complex variables
instead of conjugates. A more detailed discussion can be
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found in [57,66]. Utilizing these assumptions and normal
ordering of operators, we obtain a Fourier transform of Y (x, y)
to get P (φ, ϕ) and finally compute the Fokker-Planck EOM

∂P
∂t

= ∂

∂ϑAϑP + 1

2

∂

∂ϑB ∂

∂ϑ
P, (31)

ϑ := (φ, φ∗, ϕ, ϕ∗), and ∂ϑ := (∂φ, ∂φ∗ , ∂ϕ, ∂ϕ∗ ) with drift
matrix A and diffusion matrix B given by [57]

A = i

⎛
⎜⎜⎝

ωa − iκ 0 η1 η1

0 −(iκ + ωa ) −η1 −η1

η1 η1 ω1 + 2ω2 2ω2

−η1 −η1 −2ω2 −(ω1 + 2ω2)

⎞
⎟⎟⎠,

(32a)

B = i

⎛
⎜⎜⎝

0 0 −η1 0
0 0 0 η1

−η1 0 −2ω2 0
0 η1 0 2ω2

⎞
⎟⎟⎠, (32b)

valid for η > ηc along with ω1, ω2, and η1 as defined in
Eq. (27). In the case of η < ηc, η1 is replaced by η and
ω1 = ωa and ω2 = 0. The imaginary and real eigenvalues of
the drift matrix A represent the excitations and damping of the
system, respectively. Each of them has two parts: the photonic
and atomic parts. As shown in Fig. 3, the photonic (atomic)
parts are plotted using solid (dashed, dash-dotted, and dotted)
lines for imaginary and real eigenvalues. We have considered
ξ = {−0.5, 0.0, 0.5} to study the effect of the arrangement of
dipoles; the corresponding critical coupling constants are ηc =
{0.4797, 0.5099, 0.5467}, which are computed using Eq. (22).
The eigenvalues are unaffected by the variation of ξ for
η < ηc, while they are highly dependent in the region η ∼ ηc.
For ξ � 0.0, there exists a region 1-2 where the photonic part
of imaginary eigenvalues vanishes while the real part splits, as
shown in the insets of the corresponding figures. In particular,
the 1-2 regime is observed for η = [0.9915ηc, 1.004ηc] for
ξ = 0.0 and η = [0.9255ηc, 1.0420ηc] for ξ = 0.5, while in
the case of ξ < 0.0 the 1-2 regime never exists. For larger
η/ηc, the photonic parts of the imaginary eigenvalues con-
verges while the atomic part diverges for all ξ ; the latter
characterizes the beginning of symmetry-broken regime near
η/ηc ≈ 1 [57].

In order to probe the spectra of system we use the phase-
space formalism [57,62,67]. The drift matrix A and diffusion
matrix B, as defined in Eqs. (32a) and (32b), carry information
on the motion of the mean values and on the broadening of
the distribution. We use Eq. (33) to compute the spectra S of
the system

S ( f ) = 1

2π
(A + i f I)−1B(AT − i f I)−1, (33)

with the frequency f and identity matrix I.
We have studied the effect of dipole arrangement on

the spectra S . In particular, we have considered ξ =
{−0.5, 0.0, 0.5} along with ωc = ωa = 1.0 and κ = 0.2, as
before. The spectra are plotted for η/ηc = {0.7, 1.0, 1.4}
in Figs. 4(a)–4(c), respectively. For each plot, the exterior
peaks represent the atomic eigenmodes and the interior peaks

FIG. 3. (a) Imaginary eigenvalues and (b) real eigenvalues of
the drift matrix A for different DDI values ξ = {−0.5, 0.0, 0.5}
with corresponding ηc = {0.4797, 0.5099, 0.5467}. The photonic
(atomic) parts are plotted using solid (dashed, dash-dotted, and
dotted) lines. The insets show a magnified view around η = ηc. The
parameters are ωa = ωc = 1.0 and κ = 0.2.

represent the photonic eigenmodes; they are symmetric with
respect to f = 0. The symmetrical nature of the peaks indicate
the conservation of energy for any value of ξ . The amplitude
of the interior peaks increases with an increase in ξ . The
inner peak is found to be larger than the outer one for η � ηc

in Figs. 4(a) and 4(b), while it is the opposite for η > ηc

in Fig. 4(c). Figure 4(b) also shows that the inner peaks
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FIG. 4. For different DDI values ξ = {−0.5, 0.0, 0.5}, the spectra are plotted for different values of frequency with κ = 0.2 and ωa =
ωc = 1.0.

converge at η ∼ ηc, portraying the huge increase of fluctua-
tion. Figure 4(c) demonstrates that the separation of atomic
eigenmodes increases as ξ goes from negative to positive.

D. Numerical results for spectra

We consider the HP approximation to study the system
analytically at the thermodynamic limit (N → ∞), which
provides an overall picture of the model across the phase
transition as the quantum fluctuation becomes negligible in
this limit. One can use the atomic coherent state representa-
tion [57] to find the analytical solution for a comparatively
very large number of dipoles (N ∼ 103); however, here we
use the HP approximation for its mathematical simplicity.
To demonstrate the validity of the effective Hamiltonian we
analyze the numerical solution for comparison. Carrying out
simulations in particular approximating N → ∞ is computa-
tionally prohibitive and beyond the scope of this paper. As an
alternative, we have obtained a numerical solution for N = 8.
The numerical results are qualitatively similar to the analytical
solution (N → ∞), although we do not have an analytical
expression which represents a critical value of the coupling
ηc. In Fig. 5 the numerical plot for spectra is shown for N = 8
atoms for a small value of η. This is quite similar for the
N → ∞ case when η < ηc.

IV. INFLUENCE OF THE DDI IN THE USCR AND DSCR

Here we study the impact of the dipole-dipole interac-
tion for a finite number of dipoles N � 2 in the strong-,
ultrastrong-, and deep-strong-coupling regimes and beyond.
Considering a very small cavity volume V , the number of
dipoles can be greatly reduced [60]. Controlling the detunings,
laser frequencies, and coupling parameter in a whispering-
gallery-mode microtoroidal resonator [68] will lead to the
ultrastrong- and deep-strong-coupling regimes. For experi-
mental implementations, one can use g/2π � 200 MHz and
κ/2π � 0.2 MHz, which results in η/2π being on the order
of hundreds of megahertz [23,69].

In this section we study system characteristics considering
N = 2 for different coupling strengths. Taking the cavity

losses into account in the effective system as in Eq. (17), we
present the impact of ξ on the collective atomic inversion and
photon number in different coupling regimes. Normalized pa-
rameters are considered for the representation with η/2π →
η̄, κ/2π → κ̄ , ξ/2π → ξ̄ , ωc/2π → ω̄c, and ωa/2π → ω̄a.
For the numerical simulation of the steady-state collective
atomic inversion 〈Jz〉ss and photon number 〈â†â〉ss, we con-
sider ω̄c = ω̄a = 1.0, η̄ = {0.5, 1.0, 2.0, 2.5}, and κ̄ = 0.2.
For a small range of DDI values as it changes from attractive
to repulsive, there is a transition in the system behavior which
is observed from variation of 〈Jz〉ss and 〈â†â〉ss as shown in
Figs. 6(a) and 6(b), respectively. This effect becomes more
prominent as η̄ increases to η̄ � 2, i.e., beyond the DSCR; the
system becomes unstable. This signifies that the arrangement
of dipoles has a stark effect in the DSCR and beyond. The
steady-state photon number 〈â†â〉 rapidly increases with the
coupling strength η̄ as portrayed in Fig. 6(b).

We use the Wigner function W (α) [70] to illustrate the
above-mentioned transition-type characteristic of the system

FIG. 5. For different DDI values ξ = {−0.5, 0.0, 0.5}, the nu-
merical plot of spectra is for different values of frequency with
κ = 0.2 and ωa = ωc = 1.0 (η = 0.7).
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FIG. 6. Variation of (a) collective atomic inversion and (b) num-
ber of photons, plotted with different values of ξ̄ for N = 2, with
value of κ̄ = 0.2, ω̄a = ω̄c = 1.0, and h̄ = 1 in steady state.

around small values of |ξ̄ |. Here W (α) is a quasiproba-
bility distribution and is a quantum analog of the classical
phase-space distribution with quantum correction [71] and is
defined as

W (α) = 2

π
tr[D†(α)ρ̂D(α)(−1)â†â], (34)

with a displacement operator D(α) := exp(αâ† − α∗â) act-
ing on the vacuum state |0〉 of a single cavity mode to
produce a coherent state |α〉 with α = (x + iy)/

√
2 [70].

Here x and y represent the displacement of the position
and momentum of a quantum particle. The Wigner distri-
bution is plotted in Fig. 7 for N = 2, η̄ = 2.5, and ξ̄ =
{−0.50,−0.18,−0.14, 0.00, 0.38, 0.60}. Figure 7(a) repre-
sents the normal state of the system for ξ̄ = −0.50, char-
acterized by a single peak at the center. At ξ̄ = −0.18, a
superradiant transition takes place which is characterized by
a slight splitting of the peak as portrayed in Fig. 7(b). This
can be related to the superradiant transition in the case of
the original Dicke model [23,53]. As ξ̄ reaches −0.14, a
distinctive split is observed portraying four peaks in Fig. 7(c),
which characterizes the degeneracy of the system. This can
also be related to the ground-state degeneracy of the cavity
state of an equilibrium model [72]. For a small series of values
of ξ̄ from −0.13 to 0.38, an additional superradiant phase
is formed showing strong peaks in Figs. 7(d) and 7(e). This
additional phase was also observed in [23] when including a
nonlinear atom-cavity term in the Rabi model. At ξ̄ = 0.60, a
distinct mixed state characterized by an elongated peak along
the x axis is observed, as shown in Fig. 7(f).

A. Entanglement

For an open quantum system consisting of many compo-
nents, entanglement measurement has boosted interest signif-
icantly, especially with the system in proximity to a quantum
phase transition [73] and in the application in quantum infor-
mation processing [74]. For a mixed state we can calculate
the logarithmic negativity which provides information on the
upper bound of the entanglement [23]. It is defined by EN =
log2 ‖ρTS ‖1 based on ρTS , which is the partial transpose of the
mixed state ρ with the trace norm ‖M‖1 := Tr(

√
M†M ) [75].

In this dissipative system, we study the entanglement be-
tween dipole-cavity and dipole-dipole interactions in terms of
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FIG. 7. Quasiprobability distribution W (α) for different values of ξ̄ = {−0.50,−0.18, −0.14, 0.00, 0.38, 0.60} and η̄ = 2.5, with the
number of dipoles N = 2. The other parameters are ω̄c = ω̄a = 1.0, h̄ = 1, and κ̄ = 0.2.

013701-8



NONEQUILIBRIUM CAVITY QED MODEL ACCOUNTING … PHYSICAL REVIEW A 102, 013701 (2020)

FIG. 8. Measuring entanglement. (a) Variation of logarithmic
negativity EN with time to measure the dipole-cavity entanglement
for different values of the coupling parameter. (b) Plot of maximum
entanglement achieved for a range of DDI values ξ̄ = [−3.0, 3.0]
and η̄ = 2.0. Here the entanglement of all dipoles to the cavity is
Edc and one dipole to the rest of the system is Edd. Also plotted is
the variation of entanglement for (c) repulsive DDI (ξ̄ = 0.4) and
(d) attractive DDI (ξ̄ = −0.4) with time. In all plots, N = 4, η̄ = 2.0,
ω̄a = 0.0, ω̄c = 1.0, h̄ = 1, and κ̄ = 0.2 are considered.

both repulsive and attractive DDIs. At time t = 0, we have a
disentangled state |g2〉 ⊗ |0〉. The variation of entanglement
between the cavity and dipoles is measured with time for
different coupling parameters η̄ = {0.5, 1.0, 2.0} as shown in
Fig. 8(a) with ω̄a = 0.0, ω̄c = 1.0, and κ̄ = 0.2. The system
shows a high degree of entanglement after a short time
t ∝ 1/η̄ followed by disentanglement between the dipoles
and cavity, which is also in line with observations made
in [23].

Next we define the entanglement between all dipoles and
the cavity as Edc and one dipole with the rest of the system
as Edd for both the repulsive DDI (ξ̄ > 0) and the attractive
DDI (ξ̄ < 0) in Figs. 8(c) and 8(d), respectively. For the
repulsive DDI, Edd does not decay with time while Edc does.
Therefore, the dipole-dipole entanglement prevails with time
for ξ̄ > 0 in comparison to dipole-cavity coupling which
gradually becomes disentangled. This is a very important
characteristic observed in the case of repulsive dipoles. How-
ever, for attractive DDIs both Edc and Edd decay. Moreover,
we have recorded maximum entanglement {Edc, Edd} achieved
for different values of ξ̄ = [−3.0, 3.0] as shown in Fig. 8(b).
Maximum entanglement is observed for small values of |ξ̄ |
and decreases almost linearly for ξ̄ > 0 and quadratically
for ξ̄ < 0.

An explanation for the observation of enhanced dipole-
dipole entanglement in the case of antiferroelectric dipoles
can be made from the time evolution of the photon number.
The number of photons emitted in the case of antiferroelectric

FIG. 9. Time evolution of the mean photon number 〈â†â〉 for
(a) N = 4 and ξ̄ = {−0.4, 0.4} and (b) N = 8 and ξ̄ = {−0.8, 0.8}.
The other parameters are η̄ = 2.0, ω̄a = 0.0, ω̄c = 1.0, h̄ = 1, and
κ̄ = 0.2.

arrangement is less than that for the ferroelectric arrangement.
We explore two cases: N = 4 with ξ̄ = {0.4,−0.4} [Fig. 9(a)]
and N = 8 with ξ̄ = {0.8,−0.8} [Fig. 9(b)]. As time passes,
it can be seen that photon number of the antiferroelectric
dipoles reaches a steady state at an earlier stage than in the
ferroelectric case. We note that the number of photons associ-
ated with the antiferroelectric case is low in comparison to the
ferroelectric case. This comparatively low number of photons
in the antiferroelectric case distinguishes the dipole-dipole
entanglement from the other case. Thus, we get to observe
enhanced entanglement between the dipoles in the antiferro-
electric arrangement as the number of photons decreases.

B. Atomic inversion

The dipole-dipole interaction has a significant effect on
the time evolution of collective spin inversion 〈Jz〉. In par-
ticular, we consider an initial state |g1〉 ⊗ |0〉 and study the
effect of ξ̄ = {−0.3, 0.0, 0.5} on the time evolution of 〈Jz〉 in
Fig. 10. The figure demonstrates a significant effect of the DDI
on the oscillations before achieving the steady state. More-
over, the time required to reach the steady state also depends

FIG. 10. Time evolution of atomic inversion plotted for N = 8,
ξ̄ = {−0.3, 0.0, 0.5}, ω̄c = ω̄a = 1.0, h̄ = 1, κ̄ = 0.2, and η̄ = 2.0.
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on the particular value of ξ̄ . This is a signature of a system
having critical transitions [23].

V. CONCLUSION

To summarize, a generalized open cavity QED system with
atoms undergoing Raman transitions with the addition of a
dipole-dipole interaction was studied for strong-, ultrastrong-,
and deep-strong-coupling regimes. Multilevel atoms were
considered to have better control over the system parameters
and to achieve different coupling regimes. It was found that
the impact of the DDI increases with an increase of atom-
cavity coupling and hence it cannot be ignored. The phase
transition was analyzed for N → ∞ and a finite number of
dipoles with ferroelectric and antiferroelectric arrangements,
which shows a modification of the value of the critical cou-
pling parameter with the DDI. The spectra of the system
in the thermodynamic limit were studied using phase-space
formalism for strong coupling and it was found that the
DDI alters the position and amplitude of the peaks. A sharp
transition for collective atomic inversion and photon numbers

for a very small value of the DDI was noted. The system
showed a high degree of entanglement after a short time
t ∝ η−1 followed by disentanglement between the dipoles and
cavity. A strong dipole-dipole entanglement was observed for
the antiferroelectric arrangement, while for the ferroelectric
arrangement it became disentangled quite rapidly with time.
An additional superradiant phase was observed in the DSCR
with the DDI value changing from very small repulsive to
attractive. Though this scheme was built from many approxi-
mations, the results of this work will provide opportunities for
different physical setups of a cavity QED system [18,76].
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APPENDIX A: DERIVATION OF EFFECTIVE HAMILTONIAN WITHOUT DDI

We introduce the evolution of the state vector |�(t )〉 and its decomposition as [57]

|�(t )〉 =
∞∑

m=0

[(
bm

r1
|r1〉 + bm

r2
|r2〉 + bm

g2
|g2〉 + bm

g1
|g1〉

) ⊗ |m〉], (A1)

with the cavity mode being in the state |m〉 and the coefficients being time dependent. Substituting Eqs. (A1) and (7) into the
Schrödinger equation

i
d|�(t )〉

dt
= 1

h̄
Ĥ |�〉, (A2)

we derive the EOM for the coefficients after neglecting the term h̄�cavâ†â as

iḃm
r1

= �r1 bm
r1

+ (
�r1 bm

g2
+ gbm+1

g1

√
m + 1

)
eikx, (A3a)

iḃm
r2

= �r2 bm
r2

+ (
�r2 bm

g1
+ gbm+1

g2

√
m + 1

)
eikx, (A3b)

iḃm
g2

= �01bm
g2

+ (
�r1 bm

r1
+ gbm−1

r2

√
m
)
e−ikx, (A3c)

iḃm
g1

= (
�r2 bm

r2
+ gbm−1

r1

√
m
)
e−ikx. (A3d)

When �r1,r2 � {�{r1,r2}, g{r1,r2}}, the excited states |r1〉 and |r2〉 can be adiabatically eliminated. Noting that ḃm
r1

and ḃm
r2

evolve to
zero, Eqs. (A3a) and (A3b) can be approximated as

bm
r1

= − eikx

�r1

(
�r1 bm

g2
+ gbm+1

g1

√
m + 1

)
,

bm
r2

= − eikx

�r2

(
�r2 bm

g1
+ gbm+1

g2

√
m + 1

)
.

(A4)

The resulting expressions for bm
r1

and bm
r2

can be substituted in Eqs. (A3c) and (A3d) to get

iḃm
g2

=
(

�01 − �2
r1

�r1

)
bm

g2
− g�r1

�r1

√
m + 1bm+1

g1
− g�r2

�r2

√
mbm−1

g1
− g2

�r2

bm
g2

m, (A5a)

iḃm
g1

= −�2
r2

�r2

bm
g1

− g�r2

�r2

√
m + 1bm+1

g2
− g�r1

�r1

√
mbm−1

g2
− g2

�r1

bm
g1

m. (A5b)
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The associated effective Hamiltonian with only the hyperfine ground states |g1〉 and |g2〉 has the form

Ĥeff =
(

�01 − �2
r1

�r1

)
|g2〉〈g2| − g�r1

�r1

(
σ+â + σ−â†

) − g�r2

�r2

(
σ−â + σ+â†

) − �2
r2

�r2

|g1〉〈g1| − g2

�r2

â†â|g2〉〈g2| − g2

�r1

â†â|g1〉〈g1|,
(A6)

with

σ+ = |g2〉〈g1|, σ− = |g1〉〈g2|. (A7)

The terms |g1〉〈g1| and |g2〉〈g2| in Eq. (A6) can be redefined with σz and 1 and written in the form

|g2〉〈g2| = 1 + σz

2
, |g1〉〈g1| = 1 − σz

2
. (A8)

We discard the constant terms in the above Hamiltonian to arrive at the Hamiltonian given in Eq. (8).

APPENDIX B: EXTENDED EFFECTIVE HAMILTONIAN WITH THE DDI

In order to derive the extended effective Hamiltonian with the DDI, we take into account the state of the atom. The first atom
(atom 1) is in the excited state and the second atom (atom 2) is in the ground state and vice versa [77],

|�(t )d〉 =
∞∑

m=0

{[(
bm

r1
bm

g1
|r1〉1|g1〉2 − bm

g1
bm

r1
|g1〉1|r1〉2

)

+ (
bm

r2
bm

g2
|r2〉1|g2〉2 − bm

g2
bm

r2
|g2〉1|r2〉2

)] ⊗ |m〉
}
. (B1)

The coefficients of the excited and ground states of both atoms are equal, i.e., the coefficients of |r1〉1 and |r1〉2 are the same, and
the equations of the coefficients are as given in Appendix A. Following Appendix A, and taking Eq. (A2) and replacing Ĥ by
Ĥ (1,2)

DD as given in Eq. (13), we get the equations of motion for new coefficients

iḃg1 bm
g2

= g�r1

�r1

g�r2

�r2

[â(σ+)(1)â†(σ−)(2)] + g2

�r1

g2

�r2

[(σ−)(2)â†â†â(|g1〉〈g1|)(1)], (B2a)

iḃg2 bm
g1

= g�r2

�r2

g�r1

�r1

[â(σ−)(1)â†(σ+)(2)] + g2

�r2

g2

�r1

[(σ+)(2)â†â†â(|g2〉〈g2|)(1)], (B2b)

iḃg1 bm
g2

= −g�r1

�r1

g�r2

�r2

[â†(σ−)(1)â(σ+)(2)] − g2

�r1

g2

�r2

[(σ−)(1)â†â†â(|g1〉〈g1|)(2)], (B2c)

iḃg2 bm
g1

= −g�r2

�r2

g�r1

�r1

[â†(σ+)(1)â(σ−)(2)] − g2

�r2

g2

�r1

[(σ+)(1)â†â†â(|g2〉〈g2|)(2)]. (B2d)

As explained in Appendix A, ḃm
r1

and ḃm
r2

are assumed to be zero. The above equations contain terms involving only |g1〉〈g2|,
|g2〉〈g1|, |g1〉〈g1|, and |g2〉〈g2|, i.e., only the hyperfine ground states. By putting Eq. (A8) in Eq. (B2) and adding all the terms
we obtain the dipole-dipole Hamiltonian

Ĥ eff (1,2)
DD = g�r1

ωc�r1

g�r2

�r2

[ââ†(σ+)1(σ−)2 − â†â(σ−)1(σ+)2] + g�r2

ωc�r2

g�r1

�r1

[ââ†(σ−)1(σ+)2 − â†â(σ+)1(σ−)2]. (B3)

With the help of the bosonic commutation relation [â, â†] = 1 and the relation as given in Eq. (9) we finally have

Ĥ eff (1,2)
DD = η2

ωc
[(σ+)1(σ−)2 + (σ−)1(σ+)2]. (B4)

The above equation can be written including the direct dipole-dipole interaction term for all atoms, which we have
omitted before:

Ĥ eff
DD = η2

ωcν

N∑
k, j

Jk j[(σ+)k (σ−) j + (σ−)k (σ+) j]. (B5)

For an ensemble of N atoms, we rewrite η in terms of η/
√

N and the collective spin operators as

Ĵz =
N∑

j,k=1

σ ( j,k)
z , Ĵ+ =

N∑
j,k=1

σ
( j,k)
+ , Ĵ− =

N∑
j,k=1

σ
( j,k)
− . (B6)

013701-11



DEVI, GUNAPALA, STOCKMAN, AND PREMARATNE PHYSICAL REVIEW A 102, 013701 (2020)

In order for us to have a qualitative understanding of the overall system we can reduce this complex system to a more
simplified one. The influence of direct dipole-dipole interaction term can be captured with an all-to-all dipole interaction in
the homogeneous sample [33]

1

ν

N∑
k, j

Jk j[(σ+)k (σ−) j + (σ−)k (σ+) j] → ξ Ĵ+Ĵ−. (B7)

Here ξ is the average DDI term given by

1

ν

N∑
k, j

Jk j = ξ . (B8)

We can also consider using the term Ĵ−Ĵ+ instead of Ĵ+Ĵ−, but this will lead to an imaginary value for the critical coupling
described in Sec. III A. Thus, we make a seemingly justifiable decision to retain a real coupling coefficient. It is also important
to note that as Eqs. (A7) and (A8) are used to represent the operators we cannot replace Ĵ+Ĵ− with the atomic inversion term Ĵz.
Thus, replacing the exact DDI with the average term ξ in Eq. (B5), we get

Ĥ eff
DD = h̄

Nωc
η2ξ Ĵ+Ĵ−. (B9)

Combining Eq. (B9) with Eq. (8) in the collective form gives us the effective extended Dicke Hamiltonian with the DDI:

Ĥeff = h̄ωcâ†â + h̄ωa Ĵz + η√
N

h̄(â + â†)(Ĵ+ + Ĵ−)

+ h̄

Nωc
η2ξ Ĵ+Ĵ−. (B10)

APPENDIX C: EFFECTIVE HAMILTONIAN IN THE SUPERRADIANT PHASE

Based on the Holstein-Primakoff approximation, we describe the system in the superradiant phase. Using the displacements
a† = c† + √

α and b† = d† − √
β, where c† and d† are fluctuation operators, in the Hamiltonian (15), we have [58]

ĤHPs = h̄ωc{c†c + √
α(c† + c) + α} + h̄ωa

{
d†d −

√
β(d† + d ) + β − N

2

}

+ h̄η

√
k

N
(c† + c + 2

√
α)(d†√� + √

�d − 2
√

β
√

�) + h̄k

ωcN
η2ξ

{
(d† −

√
β )�(d −

√
β )

}
, (C1)

with
√

� ≡
√

1 − d†d−√
β(d† + d )
k and k ≡ N − β. Considering the thermodynamic limit, we can write

ĤHPs = h̄ωcc†c + h̄

{
ωa + 2η

k

√
αβk

N

}
d†d − h̄

{
2η

√
βk

N
− ωc

√
α

}
(c† + c)

+ h̄

{
4η

k

√
αk

N

(
N

2
− β

)
− ωa

√
β − η2ξ

√
β

Nωc
(k − β )

}
(d† + d )

+ h̄

{
η

2k2

√
αβk

N
(2k + β ) − η2ξβ

Nωc

}
(d† + d )2 +

{
2h̄η

k

√
k

N

(
N

2
− β

)}
(c† + c)(d† + d )

+ h̄

{
ωa

(
β − N

2

)
+ ωcα − η

k

√
αβk

N
(1 + 4k) + η2ξβ

Nωc
(1 + k)

}
. (C2)

Removing terms from the above Hamiltonian which are linear in {c, c†, d, d†}, we get

2η

√
βk

N
− ωc

√
α = 0,{

8η2

ωcN

(
N

2
− β

)
− ωa − η2ξ

ωcN

(
k − β

)}√
β = 0.

(C3)

The nontrivial solution is

√
α = η

ωc

√
N (1 − κ

2),
√

β =
√

N

2
(1 − κ), (C4)
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with the definition κ = η2
c

η2 . The effective Hamiltonian of Eq. (C2) becomes

ĤHPs = h̄ωcc†c + h̄

[
ωa + 2ωa

κ(4 − ξ )
(1 − κ)

]
d†d + h̄

[
ωa(1 − κ)

2κ(4 − ξ )

{
3 + κ

1 + κ

− ξ

}]
(d† + d )2

+ h̄ηκ

√
2

1 + κ

(c† + c)(d† + d ) + const. (C5)
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