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Two-color flat-top solitons in microresonator-based optical parametric oscillators
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We studied numerically the generation of the two-color flat-top solitonic pulses, platicons, in the
microresonator-based doubly resonant optical parametric oscillator. We revealed that if the signs of the group
velocity dispersion (GVD) coefficients at interacting harmonics are opposite, platicon excitation is possible via
pump amplitude modulation or controllable mode interaction approach. Upon pump frequency scan generation
of platicons was observed at positive pump frequency detunings for the normal GVD at pump frequency and at
negative detunings in the opposite case. Interestingly, we found the effect of the transformation of the flat-top
platicon profile at half-frequency into the bell-shaped bright soliton profile upon frequency scan. For platicon
excitation one needs simultaneous accurate matching of the microresonator free spectral ranges at interacting
harmonics and resonant eigenfrequencies. Excitation conditions and platicon generation domains were found for
the different generation methods, and properties of the generated platicons were studied for various combinations
of the medium parameters.
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I. INTRODUCTION

Over the past two decades, optical frequency combs have
established themselves as a unique and indispensable tool
both for scientific research and important technological ap-
plications [1,2]. Microresonator-based Kerr frequency combs
(or microcombs) are of particular interest due to the high
compactness and energy efficiency of the comb generator
[3–8]. Since their discovery in 2007 [3] they became an
object of the intensive investigations and were demonstrated
in high-Q microresonators made of different materials (crys-
talline fluorides, diamond, quartz, silicon, silicon nitride, etc.)
and of different geometries, bulk and on-chip. Further, it
was shown the possibility of the generation of the coherent
microresonator-based frequency combs in the form of the
dissipative Kerr solitons [9,10]. Such structures were suc-
cessfully used in various important up-to-date applications,
such as high-precision metrology [11,12], high-resolution
spectroscopy [13,14], astrophysics [15,16], and high-volume
telecommunication systems [17]. Recently, it was shown that
generation of the optical frequency combs is also possible
in materials with quadratic nonlinearity, such as LiNbO3

or LiTaO3 [18–27]. This fact aroused great interest among
researchers, since generation of optical frequency combs due
to the quadratic nonlinearity may be realized at reduced pump
powers because of the high level of the nonlinear response
and in the spectral diapasons inaccessible for the conventional
Kerr frequency combs. Also, it was shown that quadratic
nonlinearity may support different types of the dissipative
solitons (bright, dark and quasisolitons) in optical microres-
onators upon second-harmonic generation process [28,29] or
via the down-conversion process (degenerate optical paramet-
ric oscillations) [30–34]. However, in a greater part of the
previous studies the main attention was paid to the existence
domains and properties of the localized states but not to their
generation. In our work we studied numerically the generation
of the particular type of the solitonic structures, two-color flat-

top solitonic pulses, platicons, in the microresonator-based
optical parametric oscillator via frequency scan that is the con-
ventional method of the dissipative Kerr solitons generation in
experiments [9]. Dark solitons [35–40] and platicons [41–46]
are well studied in Kerr microresonators and it was shown
that in terms of the pump-to-comb conversion efficiency the
generation of platicons may be significantly more efficient
than the generation of bright solitons [47,48] that is very
promising for the coherent optical communications [49,50].
In [51] platicon generation in the quadratically nonlinear mi-
croresonators was studied for the second-harmonic generation
process. In our work we demonstrated numerically that using
the methods developed for the platicon generation in Kerr
microresonators platicon generation can be also realized for
the down-conversion process (degenerate optical parametric
oscillations). We revealed that platicon excitation is possible if
the signs of the group velocity dispersion (GVD) coefficients
at interacting harmonics are opposite. Upon frequency scan
the generation of platicons was observed at positive pump
frequency detunings for the negative pump GVD coefficient
(and positive subharmonic GVD coefficient) and at negative
detunings in the opposite case. Interestingly, in some cases we
observed the transformation of the flat-top platicon profile at
the half-frequency into the bell-shaped bright soliton profile
upon frequency scan. For both methods, for the efficient
platicon excitation one needs simultaneous accurate matching
of both microresonator free spectral ranges at interacting har-
monics and resonant eigenfrequencies. Excitation conditions
and platicon generation domains were found for different gen-
eration methods, and properties of generated platicons were
studied for the different combinations of medium parameters.

II. MODEL

For numerical analysis we used the system of the two
coupled equations for the fundamental wave (FW) and
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FIG. 1. FW (left panels) and SH (right panels) field distribution (upper line) and spectrum (bottom line, logarithmic
scale) evolution upon forward pump frequency scan α2 = −11.0 + 0.002τ at b21 = 0.05, b22 = −0.05, f = 15, ε = 0.4.
μ1,2 are mode numbers, μ2 = 0 corresponds to the pumped mode, μ1 = 0 corresponds to the mode nearest to the half pump frequency. All
quantities are plotted in dimensionless units.

second-harmonic (SH) fields which, in normalized form, may
be written as
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where u and v are the normalized slowly varying envelopes
of the FW and SH fields, respectively. In comparison with
the second-harmonic generation (SHG) system described in
[50], the pump term is in the second equation. Here τ =
κ2t/2 denotes the normalized time, κ1,2 = ω01,02/Q1,2 denotes
the FW (SH) cavity decay rate, ω02 is the microresonator
eigenfrequency, closest to the pump frequency ωp, ω01 is
the microresonator eigenfrequency, nearest to the half pump
frequency, Q1,2 is the total quality factor at the fundamen-
tal frequency and second harmonic, ϕ ∈ [−π ; π ] is an az-
imuthal angle in a coordinate system rotating with the angular
frequency equal to the microresonator free spectral range
(FSR) D12 at the pumped mode, d = 2(D11 − D12)/κ2 is

the normalized difference between FSRs at the fundamental
and second-harmonic frequencies (temporal walk-off term),
α2 = 2(ω02 − ωp)/κ2 is the normalized pump frequency
detuning, α1 = 2(ω01 − 0.5ωp)/κ2 = 2(ω01 − 0.5ω02)/κ2 +
(ω02 − ωp)/κ2 = 0.5(α2 − δ), where δ = 2(ω02 − 2ω01)/κ2

is the normalized offset between the SH resonant frequency
ω02 and the doubled frequency of the fundamental resonance
ω01. f stands for the dimensionless pump amplitude. b21 and
b22 are the normalized GVD coefficients at the fundamental
and second-harmonic frequencies, respectively. Positive (neg-
ative) GVD coefficients correspond here to the anomalous
(normal) GVD, respectively.

We studied numerically nonlinear processes arising upon
pump frequency scan across the fundamental frequency res-
onance [ωp = ωp(0) − �t] with a noiselike input for dif-
ferent combinations of the GVD coefficients b21,22. This
method is widely used in experiments for the dissipative
Kerr solitons generation [9,10]. Taking into account that an
important parameter of Eq. (1) is the difference between the
pump frequency and microresonator resonant frequency, and
assuming microresonator eigenfrequencies to be constant, in
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FIG. 2. Profiles of the FW and SH components of the generated patterns for α2 = ±8.0 and α2 = ±3.0 at f = 15, ε = 0.4 for b21 = 0.05,
b22 = −0.05. All quantities are plotted in dimensionless units.

numerical simulations it is convenient to introduce a linear-
in-time variation of the pump frequency detuning α2 [α2 =
α2(0) + βτ, β = 4

κ2
2
�] and the consequent variation of α1 =

0.5(α2 − δ).
Equation (1) was solved numerically using a standard

split-step Fourier routine with 1024 points in the azimuthal
direction. We also checked that results do not change with
increase of the number of the transverse points. For anal-
ysis, we calculated the dependencies U1,2(α2), where U1 =∫ π

−π
|u|2dϕ and U2 = ∫ π

−π
|v|2dϕ are FW and SH intracavity

powers, and studied the field distribution evolution upon
frequency scan.

We set d = 0, f = 15, κ2/κ1 = 1. In order to guarantee the
generation of the steady-state structures and to discriminate
them from the transient distributions, the normalized fre-
quency scan velocity β was chosen rather small (β = 0.002)
and it was checked that dynamics of the considered processes
does not change if β decreases further. We also considered
the case of the ideal matching of the resonant frequencies
(δ = 0), thus α2 = 2α1. Simultaneous matching of FSRs and
resonant frequencies can be done by the correct choice of
the pumped mode and fine tuning of the microresonator
geometry [29,33]. Phase matching of the microresonator may
be realized through periodic poling [5,52]. Note that resonant
conditions for the different polarizations of the interacting
waves may correspond to the different combinations of the
signs of the GVD coefficients.

Similarly to the previously studied case of the SHG [50],
stable high-intensity branches were observed for the case of

the opposite signs of the GVD coefficients. The difference is
that while for the SHG process such branches were found for
both positive and negative detunings for both combinations of
the GVD coefficients, for the down-conversion process stud-
ied here such branches were observed at positive detunings for
b21 = 0.05, b22 = −0.05 and at negative detunings for b21 =
−0.05, b22 = 0.05. As it was shown in [50], this fact gives

FIG. 3. FW and SH intracavity powers U1 and U2 vs pump
frequency detuning α2 upon forward pump frequency scan α2 =
−11.0 + 0.002τ at b21 = 0.05, b22 = −0.05, f = 15, ε = 0.4. All
quantities are plotted in dimensionless units.
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FIG. 4. Platicon generation domains for different values of the modulation depth and fixed pump amplitude (left panel) and for different
pump amplitudes and fixed modulation depth (right panel) at b21 = 0.05, b22 = −0.05 and b21 = −0.05, b22 = 0.05. All quantities are plotted
in dimensionless units.

FIG. 5. FW field distribution evolution upon forward pump frequency scan α2 = −11.0 + 0.002τ at b21 = 0.05, f = 15, ε = 0.4 for
b22 = −0.02 (left panel) and b22 = −0.01 (right panel). All quantities are plotted in dimensionless units.

FIG. 6. U1(α2) (left) and FW spectrum (right) for different values of b22 at b21 = 0.05, f = 15, ε = 0.4. μ1 = 0 corresponds to the mode
nearest to the half pump frequency. All quantities are plotted in dimensionless units.
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FIG. 7. Profiles of the platicon components for different FSRs mismatch values at f = 15, ε = 0.4, b21 = 0.05, b22 = −0.05. All quantities
are plotted in dimensionless units.

us an opportunity for generation of the two-color localized
structures similar to the platicons in Kerr microresonators.

III. PLATICONS VIA PUMP MODULATION

First, we studied the method based on the pump am-
plitude modulation with the modulation frequency equal to

the microresonator FSR [42,44]. To take pump modulation
into account we replaced the homogeneous pump term f in
Eq. (1) by the modulated one f (1 + ε cos ϕ), where ε is the
modulation depth. Studying field distribution evolution for
b21 = 0.05, b22 = −0.05 upon frequency scan (see top panels
in Fig. 1) one may notice that, first, at negative detunings the
generation of some indented patterns may be observed. These

FIG. 8. FW (left panels) and SH (right panels) field distribution (upper line) and spectrum (bottom line, logarithmic scale) evolution
upon forward pump frequency scan α20 = −15.0 + 0.002τ at b21 = 0.05, b22 = −0.05, f = 15,  = 2κ2. μ1,2 are mode numbers, μ2 = 0
corresponds to the pumped mode, μ1 = 0 corresponds to the mode nearest to the half pump frequency. All quantities are plotted in
dimensionless units.
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FIG. 9. Profiles of the FW and SH components of the generated patterns for different detuning values at f = 15,  = 2κ2, b21 = 0.05,
b22 = −0.05. All quantities are plotted in dimensionless units.

structures look like amplitude-modulated Turing patterns (see
top left panel in Fig. 2). They experience modifications upon
detuning growth and approximately at α2 = −5 transform
into wide patterns with several deep oscillations at the ends
(see top right panel in Fig. 2). Then such pattern becomes
unstable at 2.3 < α2 < 3.1 (see bottom left panel in Fig. 2)
and turns into smooth amplitude-modulated profile. At α2 =
6.15 the generation of the wide localized state, platicon, takes
place.

In the frequency domain, one may notice a sudden sig-
nificant broadening of the spectrum at α2 > 6.15 (see bot-
tom panels in Fig. 1, where mode numbers μ2 are defined
relative to the pumped mode corresponding to μ2 = 0 and
μ1—relative to the mode with the eigenfrequency nearest to
the half pump frequency) at platicon generation. All these
stages of the field distribution evolution, including forma-
tion of periodic patterns, unstable regime, platicon excita-
tion, are also clearly visible in the dependencies U1,2(α2)
(see Fig. 3).

Interestingly, platicon profiles of the pumped wave (SH)
are characterized by the pronounced oscillating tails, while
they are absent at FW profiles (see bottom right panel in
Fig. 2). Platicons become narrower with the growth of the
detuning absolute value.

Platicon excitation occurs if the modulation depth is larger
than some critical value, depending on the pump ampli-
tude. Generation domain becomes wider with the growth
of the modulation depth (see the left panel in Fig. 4) and
shifts to the larger absolute values of the detuning with

the growth of the pump amplitude (see the right panel in
Fig. 4).

We found that the considered method is applicable for the
wide range of the material and pump parameters. Platicon
generation was observed for the different pump amplitudes
(at least for f = 5...25) and for different absolute values
of the GVD coefficients (|b21| = 0.025...0.25). The most

FIG. 10. FW and SH intracavity powers U1 and U2 vs pump
frequency detuning α20 upon forward frequency scan α20 = −15.0 +
0.002τ at b21 = 0.05, b22 = −0.05, f = 15,  = 2κ2. All quantities
are plotted in dimensionless units.
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FIG. 11. Platicon generation domains for different values of the pumped mode shift and fixed pump amplitude (left panel) and different
pump amplitudes and fixed pumped mode shifts (right panel) at b21 = 0.05, b22 = −0.05 and b21 = −0.05, b22 = 0.05. All quantities are
plotted in dimensionless units.

simulations were carried out for the same absolute values
of FW and SH GVD coefficients (|b21| = |b22|). However,
it was revealed that platicons can be generated if absolute
values of the GVD coefficients are not equal. For example
at f = 15, ε = 0.4, and |b21| = 0.05) platicon generation
was observed at 0.1 < |b22/b21| < 2.5. Interestingly, when
|b22/b21| < 1, we observed some kind of a transition from
platicon generation to soliton generation upon frequency scan
(see Fig. 5).

Such transition was confirmed by the change of the de-
pendence of the intracavity power on the pump frequency
detuning U1(α2) and by the spectrum transformation (see
Fig. 6). At b22 = −0.05 only the platicon generation occurs.
For other cases shown in the left panel in Fig. 5 soliton
steps are also observed. One may notice the “wings” at the
spectrum profile, characteristic for platicons, at b22 = −0.05
(blue curve in the right panel in Fig. 6) and their absence
at b22 = −0.02 (green curve) and b22 = −0.01 (red curve).
Transitions between different types of localized states are
actively studied in different nonlinear systems (see, e.g.,
[53–57]) and, thus, the observed phenomenon seems to be
very intriguing and deserves more detailed research in the
future. Earlier, coexistence of the dark and bright solitons
in Kerr microresonators was predicted in the case of the
normal GVD with the presence of the third-order disper-
sion [58]. Transformation of the squarelike profiles into
bellshaped was also observed in microring optical paramet-
ric oscillators due to the competition of the χ (2) and Kerr
nonlinearities [33].

We also checked that this method is very sensitive to
the matching of FSRs at the interacting harmonics. Platicon
generation was observed for |d| � 0.3 at f = 15, ε = 0.4 and
for |d| < 0.36 at f = 15, ε = 0.5. The repetition rate of the
generated platicons was equal to the modulation frequency,
but their profiles became asymmetric (see Fig. 7).

The condition of the resonant frequencies matching also
should be satisfied rather accurately, but the admissible mis-
match range is very asymmetric according to the point δ = 0.
At f = 15 and ε = 0.4 platicon generation was observed at
−40 < δ < 7 for b21 = 0.05, b22 = −0.05 and at −7 < δ <

40 for b21 = −0.05, b22 = 0.05.

IV. PLATICONS VIA CONTROLLABLE
MODE INTERACTION

The second method that we studied is based on the cou-
pling between different mode families [59–61]. Controllable
mode interactions may be realized, e.g., in a system of the
two coupled microresonators [48,61]. It is possible to de-
scribe such a system introducing the shift of the pumped
mode [41,43,60]. For numerical analysis, we introduced the
frequency shift  of the pumped mode eigenfrequency ω02:
ω̄02 = ω02 − . To take it into account, an additional phase
shift defined by  was applied to the central mode in
the frequency domain step of the split-step Fourier routine.
Thus, for the pumped mode, pump detuning α2 should be
replaced by the effective detuning α20 = α2 − (2/κ2). Plati-
con generation was also observed under the condition of
the pumped mode shift at positive shift and mostly positive
detunings at b21 = 0.05, b22 = −0.05 (see Fig. 8) and at
negative shift and mostly negative detunings at b21 = −0.05,
b22 = 0.05.

Besides the significant transformation of the field dis-
tribution at platicon generation (see Fig. 9), one may also
notice the drastic spectrum widening (see Fig. 8, bottom line).
Note that field distribution evolution upon pump frequency
scan at pumped mode shift and corresponding generated
patterns (Turing-like patterns shown at top panels in Fig. 9,
unstable pattern at bottom left panel in Fig. 9, homogeneous
solution, platicon) are quite similar to those observed at
amplitude modulation (compare Figs. 2 and 9 and Figs. 3
and 10).

The platicon SH component has pronounced oscillating
tails, while the FW component has a smooth profile (see
bottom right panel in Fig. 9).

Platicon excitation was observed for the pumped mode
shift with the absolute value larger than some critical value
depending on the pump power (see left panel in Fig. 11). For
 = 2κ2 we observed platicon generation for f = 7.5...25
(see right panel in Fig. 11). For smaller pump powers ( f =
5...7.5) more complex two-platicon structures were generated.
As for the GVD coefficients, platicon excitation was found
to be possible for the rather wide range of these parameters:
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FIG. 12. Profiles of the platicon components for different FSRs mismatch values at f = 15,  = 2κ2, b21 = 0.05, b22 = −0.05. All
quantities are plotted in dimensionless units.

for  = 2κ2, f = 15, |b21| = 0.05 it was observed for at
least 0.3 < |b22/b21| < 5.0. We also observed a transition
from platicons to bright solitons upon frequency scan for
|b22/b21| � 1.

We revealed that this method is less sensitive to the match-
ing of FSRs than the previous one since platicon generation
was observed for up to |d| ∼ 2 at f = 15,  = 2κ2, b21 =
0.05, b22 = −0.05. In contrast with the previous method, in
that case the platicon repetition rate may differ from FSRs
at the fundamental wave and the second harmonic due to
the nonlinear effects. However, their profiles also became
asymmetric (see Fig. 12). Also, there was a finite range of the
resonant frequency mismatch δ providing platicon generation.
At f = 15 and  = 2κ2 platicon generation was found at
−25 < δ < 6 for b21 = 0.05, b22 = −0.05 and at −6 < δ <

25 for b21 = −0.05, b22 = 0.05.

V. CONCLUSION

We demonstrated numerically that the generation of two-
color platicons is possible in microresonator-based optical
parametric oscillators via pump modulation or mode interac-
tion. The opposite signs of the group velocity dispersion coef-

ficients at interacting harmonics were revealed as a necessary
condition for platicon excitation. In contrast with platicons
at the SHG process, here platicon generation was observed
upon frequency scan only at positive pump detunings for
the normal GVD at pump frequency and only at negative
detunings in the opposite case. We also found the effect of
the transformation of the flat-top profile of the generated
platicon component into bellshaped. It was revealed that for
the efficient platicon excitation one needs simultaneous accu-
rate matching of both microresonator free spectral ranges at
interacting harmonics and resonant eigenfrequencies. Excita-
tion conditions and platicon generation domains were found
for different generation methods, and properties of generated
platicons were studied for different combinations of medium
parameters.

ACKNOWLEDGMENTS

This work was supported by the Russian Science Founda-
tion (Project No. 17-12-01413-П). The author acknowledges
personal support from the Foundation for the Advancement of
Theoretical Physics and Mathematics “BASIS.”

[1] T. Udem, R. Holzwarth, and T. W. Hänsch, Optical frequency
metrology, Nature (London) 416, 233 (2002).

[2] T. Fortier and E. Baumann, 20 years of developments in optical
frequency comb technology and applications, Commun. Phys.
2, 153 (2019).

[3] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R.
Holzwarth, and T. J. Kippenberg, Optical frequency comb
generation from a monolithic microresonator, Nature (London)
450, 1214 (2007).

[4] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams,
Microresonator-based optical frequency combs, Science 332,
555 (2011).

[5] D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel,
and G. Leuchs, Nonlinear and quantum optics with whispering
gallery resonators, J. Opt. 18, 123002 (2016).

[6] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S.
Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz,
P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti,

Micro-combs: A novel generation of optical sources, Phys.
Rep. 729, 1 (2018).

[7] G. Lin, A. Coillet, and Y. K. Chembo, Nonlinear photonics with
high-Q whispering-gallery-mode resonators, Adv. Opt. Photon.
9, 828 (2017).

[8] A. L. Gaeta, M. Lipson, and T. J. Kippenberg, Photonic-chip-
based frequency combs, Nat. Photon. 13, 158 (2019).

[9] T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M.
Gorodetsky, and T. Kippenberg, Temporal solitons in optical
microresonators, Nat. Photon. 8, 145 (2014).

[10] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L.
Gorodetsky, Dissipative Kerr solitons in optical microres-
onators, Science 361, eaan8083 (2018).

[11] P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts,
J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S.
Randel, W. Freude, T. J. Kippenberg, and C. Koos, Ultrafast
optical ranging using microresonator soliton frequency combs,
Science 359, 887 (2018).

013518-8

https://doi.org/10.1038/416233a
https://doi.org/10.1038/s42005-019-0249-y
https://doi.org/10.1038/nature06401
https://doi.org/10.1126/science.1193968
https://doi.org/10.1088/2040-8978/18/12/123002
https://doi.org/10.1016/j.physrep.2017.08.004
https://doi.org/10.1364/AOP.9.000828
https://doi.org/10.1038/s41566-019-0358-x
https://doi.org/10.1038/nphoton.2013.343
https://doi.org/10.1126/science.aan8083
https://doi.org/10.1126/science.aao3924


TWO-COLOR FLAT-TOP SOLITONS IN … PHYSICAL REVIEW A 102, 013518 (2020)

[12] S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J.
Vahala, and S. A. Diddams, Microresonator frequency comb
optical clock, Optica 1, 10 (2014).

[13] M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala,
Microresonator soliton dual-comb spectroscopy, Science 354,
600 (2016).

[14] N. G. Pavlov, G. Lihachev, S. Koptyaev, E. Lucas, M. Karpov,
N. M. Kondratiev, I. A. Bilenko, T. J. Kippenberg, and
M. L. Gorodetsky, Soliton dual frequency combs in crystalline
microresonators, Opt. Lett. 42, 514 (2017).

[15] M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G.
Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang,
D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and
K. Vahala, Searching for exoplanets using a microresonator
astrocomb, Nat. Photon. 13, 25 (2019).

[16] E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M.
Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M.
Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy,
T. J. Kippenberg, and T. Herr, A microphotonic astrocomb, Nat.
Photon. 13, 31 (2019).

[17] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle,
M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson,
R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and
C. Koos, Microresonator-based solitons for massively parallel
coherent optical communications, Nature (London) 546, 274
(2017).

[18] V. Ulvila, C. R. Phillips, L. Halonen, and M. Vainio, Frequency
comb generation by a continuous-wave-pumped optical para-
metric oscillator based on cascading quadratic nonlinearities,
Opt. Lett. 38, 4281 (2013).

[19] I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria,
P. De Natale, and M. De Rosa, Frequency comb generation in
quadratic nonlinear media, Phys. Rev. A 91, 063839 (2015).

[20] S. Mosca, M. Parisi, I. Ricciardi, F. Leo, T. Hansson, M.
Erkintalo, P. Maddaloni, P. De Natale, S. Wabnitz, and M. De
Rosa, Modulation Instability Induced Frequency Comb Gener-
ation in a Continuously Pumped Optical Parametric Oscillator,
Phys. Rev. Lett. 121, 093903 (2018).

[21] X. Xue, F. Leo, Y. Xuan, J. A. Jaramillo-Villegas, P.-H. Wang,
D. E. Leaird, M. Erkintalo, M. Qi, and A. M. Weiner, Second-
harmonic-assisted four-wave mixing in chip-based microres-
onator frequency comb generation, Light Sci. Appl. 6, e16253
(2017).

[22] T. Hansson, F. Leo, M. Erkintalo, S. Coen, I. Ricciardi, M.
De Rosa, and S. Wabnitz, Singly resonant second harmonic-
generation frequency combs, Phys. Rev. A 95, 013805 (2017).

[23] S. J. Herr, V. Brasch, J. Szabados, E. Obrzud, Y. Jia, S.
Lecomte, K. Buse, I. Breunig, and T. Herr, Frequency comb
up- and down-conversion in synchronously driven χ (2) optical
microresonators, Opt. Lett. 43, 5745 (2018).

[24] F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S.
Wabnitz, and M. Erkintalo, Frequency-comb formation in dou-
bly resonant second-harmonic generation, Phys. Rev. A 93,
043831 (2016).

[25] J. Szabados, D. N. Puzyrev, Y. Minet, L. Reis, K. Buse, A.
Villois, D. V. Skryabin, and I. Breunig, Frequency Comb Gen-
eration via Cascaded Second-Order Nonlinearities in Microres-
onators, Phys. Rev. Lett. 124, 203902 (2020).

[26] I. Ricciardi, S. Mosca, M. Parisi, F. Leo, T. Hansson, M.
Erkintalo, P. Maddaloni, P. De Natale, S. Wabnitz, and M.

De Rosa, Optical frequency combs in quadratically nonlinear
resonators, Micromachines 11, 230 (2020).

[27] I. Hendry, L. S. Trainor, Y. Xu, S. Coen, S. G. Murdoch, H.
G. L. Schwefel, and M. Erkintalo, Experimental observation of
internally pumped parametric oscillation and quadratic comb
generation in a χ (2) whispering-gallery-mode microresonator,
Opt. Lett. 45, 1204 (2020).

[28] T. Hansson, P. Parra-Rivas, M. Bernard, F. Leo, L. Gelens, and
S. Wabnitz, Quadratic soliton combs in doubly resonant second-
harmonic generation, Opt. Lett. 43, 6033 (2018).

[29] A. Villois and D. V. Skryabin, Soliton and quasi-soliton fre-
quency combs due to second harmonic generation in microres-
onators, Opt. Express 27, 7098 (2019).

[30] E. Podivilov, S. Smirnov, I. Breunig, and B. Sturman, Nonlinear
solutions for χ (2) frequency combs in optical microresonators,
Phys. Rev. A 101, 023815 (2020).

[31] P. Parra-Rivas, L. Gelens, and F. Leo, Localized structures in
dispersive and doubly resonant optical parametric oscillators,
Phys. Rev. E 100, 032219 (2019).

[32] P. Parra-Rivas, L. Gelens, T. Hansson, S. Wabnitz, and F. Leo,
Frequency comb generation through the locking of domain
walls in doubly resonant dispersive optical parametric oscilla-
tors, Opt. Lett. 44, 2004 (2019).

[33] A. Villois, N. Kondratiev, I. Breunig, D. N. Puzyrev, and D. V.
Skryabin, Frequency combs in a microring optical parametric
oscillator, Opt. Lett. 44, 4443 (2019).

[34] A. Sheng, C. Xi, Z. Yang, X. Jiang, and G. He, Quadratic
soliton combs in doubly resonant dispersive optical parametric
oscillators, IEEE Photon. J. 12, 6100607 (2020).

[35] W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu,
D. Seidel, A. B. Matsko, and L. Maleki, Generation of
a coherent near-infrared Kerr frequency comb in a mono-
lithic microresonator with normal GVD, Opt. Lett. 39, 2920
(2014).

[36] C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo,
Stability analysis of the spatiotemporal Lugiato-Lefever model
for Kerr optical frequency combs in the anomalous and normal
dispersion regimes, Phys. Rev. A 89, 063814 (2014).

[37] X. Xue, Y. Xuan, Y. Liu, P. - H. Wang, S. Chen, J. Wang,
D. E. Leaird, M. Qi, and A. M. Weiner, Mode-locked dark pulse
Kerr combs in normal-dispersion microresonators, Nat. Photon.
9, 594 (2015).

[38] P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, Dark
solitons in the Lugiato-Lefever equation with normal disper-
sion, Phys. Rev. A 93, 063839 (2016).

[39] P. Parra-Rivas, D. Gomila, E. Knobloch, S. Coen, and L.
Gelens, Origin and stability of dark pulse Kerr combs in normal
dispersion resonators, Opt. Lett. 41, 2402 (2016).

[40] X. Hu, W. Zhang, Y. Liu, Y. Feng, W. Zhang, L. Wang, Y. Wang,
and W. Zhao, Spatiotemporal evolution of continuous-wave
field and dark soliton formation in a microcavity with normal
dispersion, Chin. Phys. B 26, 074216 (2017).

[41] V. E. Lobanov, G. Lihachev, T. J. Kippenberg, and M.
L. Gorodetsky, Frequency combs and platicons in optical
microresonators with normal GVD, Opt. Express 23, 7713
(2015).

[42] V. E. Lobanov, G. Lihachev, and M. L. Gorodetsky, Generation
of platicons and frequency combs in optical microresonators
with normal GVD by modulated pump, Europhys. Lett. 112,
54008 (2015).

013518-9

https://doi.org/10.1364/OPTICA.1.000010
https://doi.org/10.1126/science.aah6516
https://doi.org/10.1364/OL.42.000514
https://doi.org/10.1038/s41566-018-0312-3
https://doi.org/10.1038/s41566-018-0309-y
https://doi.org/10.1038/nature22387
https://doi.org/10.1364/OL.38.004281
https://doi.org/10.1103/PhysRevA.91.063839
https://doi.org/10.1103/PhysRevLett.121.093903
https://doi.org/10.1038/lsa.2016.253
https://doi.org/10.1103/PhysRevA.95.013805
https://doi.org/10.1364/OL.43.005745
https://doi.org/10.1103/PhysRevA.93.043831
https://doi.org/10.1103/PhysRevLett.124.203902
https://doi.org/10.3390/mi11020230
https://doi.org/10.1364/OL.385751
https://doi.org/10.1364/OL.43.006033
https://doi.org/10.1364/OE.27.007098
https://doi.org/10.1103/PhysRevA.101.023815
https://doi.org/10.1103/PhysRevE.100.032219
https://doi.org/10.1364/OL.44.002004
https://doi.org/10.1364/OL.44.004443
https://doi.org/10.1109/JPHOT.2020.2966533
https://doi.org/10.1364/OL.39.002920
https://doi.org/10.1103/PhysRevA.89.063814
https://doi.org/10.1038/nphoton.2015.137
https://doi.org/10.1103/PhysRevA.93.063839
https://doi.org/10.1364/OL.41.002402
https://doi.org/10.1088/1674-1056/26/7/074216
https://doi.org/10.1364/OE.23.007713
https://doi.org/10.1209/0295-5075/112/54008


VALERY E. LOBANOV PHYSICAL REVIEW A 102, 013518 (2020)

[43] V. E. Lobanov, A. V. Cherenkov, A. E. Shitikov, I. A. Bilenko,
and M. L. Gorodetsky, Dynamics of platicons due to third-order
dispersion, Eur. Phys. J. D 71, 185 (2017).

[44] V. E. Lobanov, N. M. Kondratiev, A. E. Shitikov, R. R. Galiev,
and I. A. Bilenko, Generation and dynamics of solitonic pulses
due to pump amplitude modulation at normal group-velocity
dispersion, Phys. Rev. A 100, 013807 (2019).

[45] A. V. Cherenkov, N. M. Kondratiev, V. E. Lobanov, A. E.
Shitikov, D. V. Skryabin, and M. L. Gorodetsky, Raman-Kerr
frequency combs in microresonators with normal dispersion,
Opt. Express 25, 31148 (2017).

[46] S. Yao, Ch. Bao, P. Wang, and Ch. Yang, Generation of sta-
ble and breathing flat-top solitons via Raman assisted four
wave mixing in microresonators, Phys. Rev. A 101, 023833
(2020).

[47] X. Xue, P.-H. Wang, Y. Xuan, M. Qi, and A. M. Weiner,
Microresonator Kerr frequency combs with high conversion
efficiency, Laser Photon. Rev. 11, 1600276 (2017).

[48] B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C.
Joshi, M. Lipson, and A. L. Gaeta, Turn-key, high-efficiency
Kerr comb source, Opt. Lett. 44, 4475 (2019).

[49] A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason,
P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A.
Andrekson, A. M. Weiner, and V. Torres-Company, High-
order coherent communications using mode-locked dark-pulse
Kerr combs from microresonators, Nat. Commun. 9, 1598
(2018).

[50] Ó. B. Helgason, A. Fülöp, J. Schröder, P. A. Andrekson, A. M.
Weiner, and V. Torres-Company, Superchannel engineering of
microcombs for optical communications, J. Opt. Soc. Am. B
36, 2013 (2019).

[51] V. E. Lobanov, N. M. Kondratiev, A. E. Shitikov, and I. A.
Bilenko, Two-color flat-top solitonic pulses in χ (2) optical
microresonators via second-harmonic generation, Phys. Rev. A
101, 013831 (2020).

[52] B. Sturman, T. Beckmann, and I. Breunig, Quasi-resonant
and quasi-phase-matched nonlinear second-order phenomena
in whispering-gallery resonators, J. Opt. Soc. Am. B 29, 3087
(2012).

[53] G. Marcucci, D. Pierangeli, A. J. Agranat, R.-K. Lee, E. DelRe,
and C. Conti, Topological control of extreme waves, Nat.
Commun. 10, 5090 (2019).

[54] Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Soliton shape
and mobility control in optical lattices, Prog. Opt. 52, 63
(2009).

[55] Y. V. Kartashov, B. A. Malomed, and L. Torner, Solitons in
nonlinear lattices, Rev. Mod. Phys. 83, 247 (2011).

[56] B. A. Kochetov and V. R. Tuz, Induced waveform transitions of
dissipative solitons, Chaos 28, 013130 (2018).

[57] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V.
Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and
T. J. Kippenberg, Universal dynamics and deterministic switch-
ing of dissipative Kerr solitons in optical microresonators, Nat.
Phys. 13, 94 (2017).

[58] P. Parra-Rivas, D. Gomila, and L. Gelens, Coexistence of sta-
ble dark- and bright-soliton Kerr combs in normal-dispersion
resonators, Phys. Rev. A 95, 053863 (2017).

[59] Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf,
J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, Investigation
of mode coupling in normal-dispersion silicon nitride microres-
onators for Kerr frequency comb generation, Optica 1, 137
(2014).

[60] J. K. Jang, Y. Okawachi, M. Yu, K. Luke, X. Ji, M. Lipson, and
A. L. Gaeta, Dynamics of mode-coupling-induced microres-
onator frequency combs in normal dispersion, Opt. Express 24,
28794 (2016).

[61] X. X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M.
Qi, and A. M. Weiner, Normal-dispersion microcombs enabled
by controllable mode interactions, Laser Photon. Rev. 9, L23
(2015).

013518-10

https://doi.org/10.1140/epjd/e2017-80148-0
https://doi.org/10.1103/PhysRevA.100.013807
https://doi.org/10.1364/OE.25.031148
https://doi.org/10.1103/PhysRevA.101.023833
https://doi.org/10.1002/lpor.201600276
https://doi.org/10.1364/OL.44.004475
https://doi.org/10.1038/s41467-018-04046-6
https://doi.org/10.1364/JOSAB.36.002013
https://doi.org/10.1103/PhysRevA.101.013831
https://doi.org/10.1364/JOSAB.29.003087
https://doi.org/10.1038/s41467-019-12815-0
https://doi.org/10.1016/S0079-6638(08)00004-8
https://doi.org/10.1103/RevModPhys.83.247
https://doi.org/10.1063/1.5016914
https://doi.org/10.1038/nphys3893
https://doi.org/10.1103/PhysRevA.95.053863
https://doi.org/10.1364/OPTICA.1.000137
https://doi.org/10.1364/OE.24.028794
https://doi.org/10.1002/lpor.201500107

