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We report the spectral features of a phase-shifted parity and time (PT ) symmetric fiber Bragg grating and
demonstrate its functionality as a demultiplexer in the unbroken PT -symmetric regime. The length of the
proposed system is of the order of millimeters and the lasing spectra in the broken PT -symmetric regime
can be easily tuned in terms of intensity, bandwidth, and wavelength by varying the magnitude of the phase
shift in the middle of the structure. Surprisingly, the multimodal lasing spectra are suppressed by virtue of
judiciously selected phase and the gain-loss value. Also, it is possible to obtain sidelobe-less spectra in the
broken PT -symmetric regime without a need for an apodization profile, which is a traditional way to tame the
unwanted sidelobes. The system is found to show narrow-band single-mode lasing behavior for a wide range
of phase-shift values for given values of gain and loss. Moreover, we report the intensity-tunable reflection and
transmission characteristics in the unbroken regime via variation in gain and loss. At the exceptional point, the
system shows unidirectional wave transport phenomenon independent of the presence of phase shift in the middle
of the grating. For the right light-incidence direction, the system exhibits zero reflection wavelengths within the
stopband at the exceptional point. We also investigate the role of multiple phase shifts placed at fixed locations
along the length of the FBG and the variations in the spectra when the phase-shift and gain-loss values are tuned.
In the broken PT -symmetric regime, the presence of multiple phase shifts aids in controlling the number of
reflectivity peaks besides controlling their magnitude. The advantage of the proposed model is that it exhibits
multifunctional capabilities like demultiplexing, filtering, and lasing in a short length of the grating depending
on the different operating regimes.
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I. INTRODUCTION

From the invention of mirrors and lenses, and to optical
fibers of today, the quest to alter light propagation in a
medium seems to be an unceasing one. At present, the field
of refractive index engineering has witnessed one of its major
milestones in the form of introducing non-Hermitian notions
into the traditional optical structures [1–7]. Before familiar-
ization of parity-time-symmetric (PT -symmetric) concepts,
overcoming the inherent loss remained as one of the chal-
lenging aspects in designing any physically realizable optical
structure [8,9]. When most researchers were investigating
methodologies to nullify the intrinsic loss, non-Hermitian
physicists and mathematicians opted for the manipulation of
the inherent loss of the system with the aid of newly designed
artifacts known as PT -symmetric structures [2,3,10]. It was
figured out that, by judiciously controlling the inherent loss
and extrinsic gain, it is possible to realize PT -symmetric
systems that can breed many surprising optical phenom-
ena [4,9,11]. Mathematically, the PT -symmetric condition,
which is required to breed such optical behavior, is defined
in terms of the refractive index as n(z) = n∗(−z). Physically,
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this kind of complex refractive index profile is achieved in
any PT -symmetric structure by means of devising regions of
gain and loss built in a counterbalanced architecture [12–14].
Apart from fundamental aspects, research in the field of PT -
symmetric optics has strongly changed towards the possibility
of employing them in a wide range of applications in next-
generation light wave communication systems with larger
tunability and reconfiguration [15].

Fiber Bragg gratings (FBGs) are indispensable optical el-
ements extensively employed across diverse fields of physics
ranging from simple filters [16–21] to optical signal process-
ing [22,23]. Hill et al. discovered that the fiber is vulnera-
ble to intense UV radiation which results in an irreversible
alteration of the core index, and thus constituting a periodic
index variation in the core [19,24]. Such a repeated periodic
pattern composed of small sections of constant period � and
fixed index n is termed a “grating” [18,25]. It is known that,
due to the mismatch between the core and grating indexes,
a fraction of the optical signal is reflected at each period
[19]. These reflected signals get added up constructively at
one selective wavelength known as the Bragg wavelength
λb. FBGs are extremely wavelength-discriminative devices
which strongly reflect back the wavelengths satisfying the
Bragg condition (where the photonic band gap gets formed)
while the rest of the optical signals are transmitted [20]. Such
a wavelength-selective reflection (transmission) phenomenon
arises as a consequence of energy coupling between different
counterpropagating modes of the FBG.

2469-9926/2020/102(1)/013515(14) 013515-1 ©2020 American Physical Society

https://orcid.org/0000-0002-3063-3605
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.013515&domain=pdf&date_stamp=2020-07-29
https://doi.org/10.1103/PhysRevA.102.013515


S. VIGNESH RAJA et al. PHYSICAL REVIEW A 102, 013515 (2020)

The wavelength bands which are strongly reflected near
the Bragg wavelength are designated as the stopband of the
grating. The possibility to easily detune the stopband of the
grating stands out to be one of the distinct features of these
distributed feedback structures [26,27]. Without a doubt, this
must be regarded as the dominant reason which promoted
FBG to emerge as a separate research domain today. In
addition, it also offers numerous other intriguing features
like compactness, inexpensiveness, low insertion, high return
loss, and so forth [17–20]. The research field of fiber Bragg
gratings can be broadly categorized into two separate regimes,
namely, linear and nonlinear domains. The nonlinear domain,
which includes the study of gap soliton formation, steering
dynamics of the grating structures via optical bistability, and
multistability is a fascinating one in the perspective of con-
ventional [21,28–30] and PT -symmetric structures [31,32].
Nevertheless, we confine our investigation here to the study
of linear dynamics of phase-shifted periodic structures alone
by introducing gain and loss with the reason that the linear
system itself is less understood so far from the perspective of
PT symmetry.

Ever since the pioneering work of Agrawal and Radic
[16], the phase-shifted FBGs paved the way for the scien-
tific community to unearth many intriguing optical behaviors
from the perspective of both linear and nonlinear gratings
[16,22,33–36]. With the introduction of a phase shift into the
structure, a narrow range of wavelengths inside the stopband
of the FBG transmits the incoming optical field. This span of
wavelengths can be altered by fine tuning the amount of phase
shift [16]. Driven by these luxuries, these phase-shifted FBGs
are used to build all-optical demultiplexers [16], low-power
all-optical switches [22,33], and signal processing devices
[34].

Initially, Kulishov et al. [37] formulated the coupled-
mode theory of a Bragg grating with gain and loss in the
linear regime and also demonstrated the direction-dependent
transmission, reflection, delay, and dispersion characteristics
of the same system. They further made evident that, if the
light-launching condition is reversed, significant amplification
of spectra occurs under grating index modulation (real and
imaginary) mismatch conditions. Another significant contri-
bution in that work includes the demonstration of reflection-
less transmission when the real and imaginary parts of the
modulation index are equal. Some of the notable contribu-
tions in the field of distributed feedback structures (DFBs)
with gain and loss were given by Longhi, which include
the demonstration of spectral singularities [38], simultaneous
coherent lasing, and absorption behavior [39]. Subsequently,
Lin et al. demonstrated light propagation dynamics in the
context of linear PT -symmetric fiber Bragg grating (PTFBG)
at the exact PT -symmetric phase and coined the reflectionless
optical wave transmission mechanism as unidirectional invis-
ibility [4]. Later, Huang et al. extended this concept of PT -
symmetry to nonuniform chirped gratings in concatenation
with active and passive grating structures [40]. It is worth-
while to recall that the remarkable design of a frequency comb
in a supersymmetric (SUSY) DFB structure was exhibited
by Longhi [41]. Lupu et al. demonstrated the concept of
PT symmetry in an apodized grating with the aid of duty
cycle methods [42]. Quite recently, Correa et al. came up

with the possibility of designing Bragg gratings whose optical
dynamics can be described by a Dirac-like equation in the
presence of a PT -symmetric Hamiltonian [43]. Following
these works, we recently demonstrated that it is possible to
construct direction-dependent delay lines and dispersion com-
pensator in a chirped and apodized PTFBG [32]. Furthermore,
we would like to construct PT -symmetric FBG structures
which can provide narrow-band tunable lasing spectra in
terms of intensity, linewidth, and wavelength. Consequently,
it is favorable to control the spectra by simply fine tuning the
amount of phase shift in the middle section of the grating. This
gives the overall motivation and the necessity to investigate
the spectral features of phase-shifted PT -symmetric fiber
Bragg gratings (PPTFBGs).

Before we investigate the spectral characteristics of our
proposed model, we would like to clearly point out the
advantages of the system compared with the other config-
urations reported in the literature to realize a tunable all-
optical narrow-band lasing spectra [44–48]. In the context of
the aforementioned conventional systems, the insertions of
discrete components in the form of Fabry-Pérot filters and
saturable absorbers to achieve narrow-band wavelength selec-
tivity (bandpass) into the system contribute to insertion loss
[45,47]. The amplification at the sidelobes of the spectra need
to be eliminated by employing an apodized FBG. However, it
unnecessarily truncates the spectral response in the absence
of chirping [49–51]. These configurations demand the use
of an extra-gain fiber (Er3+) having a larger length in the
ring for stabilization which increases the overall length of
the system to the order of meters [44,45]. It is important to
remember that the higher the number of discrete components
in a system, the higher will be the loss, which reduces the
compactness and reconfigurability of the system. But a broken
phase-shifted PT -symmetric FBG model, illustrated in this
work, has an edge over the conventional systems to realize
a narrow-band lasing spectra, as illustrated in the following
sections. The same phase-shifted PTFBG itself will do the
filtering, amplification, and side-lobe suppression without a
need for additional discrete components. Moreover, the length
of the phase-shifted PTFBG proposed in this work is of the
order of millimeters. This has a definite role in increasing the
compactness of the overall system. Moreover, the same device
can be configured to function as a demultiplexer and phase-
shifted modulator in the unbroken PT -symmetric regime.

To accomplish our above motivation, we segment the re-
maining part of this article as follows: Section II illustrates
the mathematical model of the proposed system. In Sec. III A,
we investigate the grating characteristics of the proposed sys-
tem in the unbroken PT -symmetric regime followed by the
demonstration of unidirectional wave transport phenomenon
at the exceptional point in Sec. III B. The lasing behavior in
the broken PT -symmetric regime is elucidated in Sec. III C.
Finally, the article is concluded in Sec.V.

II. MATHEMATICAL MODEL

We consider a PT -symmetric refractive index distribution
n(z) that includes the effect of a discrete phase shift φ, which
is introduced in the middle of the periodic structure (z = 0).
The total distance L is divided into many small unit cells with
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FIG. 1. (a) Schematic of a phase-shifted PT -symmetric fiber
Bragg grating (PPTFBG) where two uniform PPTFBGs each having
a length of L/2 and separated by a phase shift φ in the middle of
the structures. (b) Each unit cell of the uniform structure with grating
period � consists of equal gain regions (green) and loss regions (red)
to maintain the PT -symmetric refractive index n(z).

each having a grating period � (see Fig. 1). The refractive
index distribution is given by

n(z) = n0 + n1R cos

(
2π

�
z + φ

)
+ in1I sin

(
2π

�
z + φ

)
,

(1)
where n0, n1R, and n1I represent the effective refractive index
of the core and the real and imaginary parts of the grating’s
modulation strength, respectively. It is to be noted that Eq. (1)
refers to the gradually varying sinusoidal profile that may
be hard to fabricate in a real situation. To overcome this,
one can employ square wave forms instead of sinusoidal
forms, as shown in Fig. 1(b). This will enable one to study
the entire structure consisting of each unit cell of length l
obeying sine and cosine modulations of the considered profile
in Eq. (1). Also, it is assumed that the real (n1R) and imaginary
(n1I ) parts of the modulation strength are weak perturbations
when compared with the uniform index of the background
material (n0), viz., n1R, n1I � n0 [4]. Hence, after neglecting
the higher-order terms, the equation resulting from squaring
Eq. (1) can be reduced to the final form,

n2(z) = n2
0 + 2n0n1R cos(2π/�z + φ)

+ 2n0n1I sin(2π/�z + φ). (2)

Equation (2) can be rewritten as

n2(z) = n2
0 + n0(n1R + n1I ) exp

(
2iπ

�
z + φ

)

+ n0(n1R − n1I ) exp

(−2iπ

�
z + φ

)
. (3)

The coupled-mode equations that describe the system of
interest can be found by substituting the refractive index dis-
tribution given in Eq. (1) into the time-independent Helmholtz
equation. It describes the propagation characteristics of the
incoming optical field inside the PT -symmetric optical struc-
ture [4], which can be given by

d2E

dz2
+ k2

(
n2(z)

n2
0

)
E = 0. (4)

In Eq. (4), k stands for the wave vector and E describes the
optical field as a superposition of forward and backward fields
traveling inside the grating, and it reads

E = E f (z) exp(ikz) + Eb(z) exp(−ikz), (5)

where E f and Eb refer to the slowly varying amplitudes of
forward and backward propagating fields, respectively. Note
that, based on the slowly varying envelope approximation, the
second derivatives of the forward (E ′′

f ) and backward field
(E ′′

b ) envelopes can be neglected. On substituting Eqs. (5)
and (3) together in Eq. (4) and averaging over the rapidly
oscillating terms exp[±i( 2π

�
z + φ + kz)] by synchronous ap-

proximation, the resulting equation reads

0 = 2ikE ′
f exp(ikz) − 2ikE ′

b exp(−ikz)

+ k2 (n1R + n1I )

n0
Eb exp

[
i

(
2π

�
z + φ − kz

)]

+ k2 (n1R − n1I )

n0
E f exp

[
−i

(
2π

�
z + φ − kz

)]
. (6)

We can check that Eq. (6) implies the following system
of first-order coupled linear differential equations for the
forward- and backward-propagating fields E f and Eb, respec-
tively:

0 = k
(n1R + n1I )

n0
Eb exp

[
i

(
2π

�
z + φ − kz

)]
(7)

+ 2iE ′
f exp(ikz),

0 = k
(n1R − n1I )

n0
E f exp

[
−i

(
2π

�
z + φ − kz

)]
− 2iE ′

b exp(−ikz). (8)

From the fundamental definition of wave vector, the stan-
dard forms of coupling (κ) and gain-loss coefficients (g) read
[4,31,32,52,53]

kn1R/2n0 = πn1R/λ = κ, kn1I/2n0 = πn1I/λ = g, (9)

where λ is the operating wavelength. Also, the detuning
parameter is given by

δ = 2πn0

(
1

λ
− 1

λb

)
, (10)

where λb = 2n0�. Substituting these standard notations into
Eqs. (7) and (8), Eqs. (7) and (8) can be rewritten as

dE f

dz
= i(κ + g)eiφe−2iδzEb, (11)

dEb

dz
= −i(κ − g)e−iφe2iδzE f . (12)
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The resulting coupled-mode equations that describe the
proposed system can be found out by substituting transforma-
tions, u, v = E f ,b exp(∓iδz) [32] in Eqs. (11) and (12), which
read [22,32]

0 = +i
du

dz
+ δu + (κ + g)eiφv, (13)

0 = −i
dv

dz
+ δv + (κ − g)e−iφu, (14)

where u, v, z, δ, κ , and g correspond to forward and backward
field amplitudes, the spatial coordinate, detuning, coupling,
and gain-loss parameter, respectively.

Since the central theme of the article is to demonstrate tun-
able spectral characteristics of a PPTFBG by varying the mag-
nitude of the phase-shift (PS) in the middle of the grating, it is
important to comment on the existing techniques for the fab-
rication of phase-shifted fiber Bragg gratings (PFBGs). This
includes the UV postprocessing [54], moving fiber-scanning
beam method [55], CO2 laser irradiation [56], shielded phase
mask method [57], Moiré method [58], and so on. A detailed
comparative study of various fabrication techniques to realize
a PFBG was outlined by Chehura et al., and they concluded
that the scanning beam method is comparatively advantageous
over other existing methods [59]. Even though this technique
is simple and more reliable, the magnitude of PS etched on the
structure cannot be varied, once it is fabricated. For some spe-
cific applications (as enumerated previously), the magnitude
of the PS needs to be tunable rather than remaining static.
Under such circumstances, one should opt for a fabrication
process that would allow dynamical variation in the PS value,
post the formulation of the device. Some of the widely used
techniques in this context includes the in-grating bubble tech-
nique [60], mechanical tuning with piezoelectric transducers
[61], and the heating element method [62]. Each one of the
aforementioned techniques possess some disadvantages and
the cost ineffectiveness is one of the major concerns among
all. Falah et al. came up with an idea of a four-point beam
bending arrangement, which would allow for tuning the PS
value via variation in the optical path by spatially varying the
strain within the periodic structure through the micrometer
screw adjustment [63]. This method was proven to possess
set-and-forget capability, consume less power, and be tunable
over the full scale range of PS from 0 to 2π . More impor-
tantly, the degree of accuracy of the PS value achieved with
respect to the micrometer screw variation was found to show
good agreement with theoretical results. Recently, a variable-
velocity scanning method was proposed by Zhou et al. which
allows fabrication of PFBGs with asymmetric uniform grating
section on either side of the PS region [64]. Even though
it is experimentally established that it is possible to obtain
tunable PFBGs, we confine our investigation to the symmetric
PFBGs (consisting of two uniform grating structures with
each a length of L/2 with PS placed in their middle) with
equal gain and loss as shown in Fig. 1. With this brief note, we
affirm that our proposed model is experimentally realizable,
and applications such as tunable lasing can be established with
ease, thanks to the ability of the structure to provide a tunable
phase shift.

Although the mathematical model (13) and (14) of the
system can be solved by the direct-integration technique with

standard FBG boundary condition, the phase-shifted FBG
with gain and loss shown in Fig. 1 can also be investigated
with the aid of the transfer-matrix method (TMM) (piece-
wise uniform technique) [16,32]. This is a most commonly
used technique to model a linear and nonuniform FBG, and
it also gives a clear picture of the practical realization of
these structures. Moreover, the investigation of the spectra
of the grating becomes a relatively simple task because this
method is faster than the direct-integration approach in the
case of more complicated grating physical structures. The
modeling of a phase-shifted FBG system relies on the fact
that the overall structure is formed by concatenating two
uniform and symmetric FBGs with a phase-shift value of φ

in between them [17]. The phase shift φ at z = 0 can be
inserted by simply multiplying the matrix corresponding to
the first uniform FBG (M1) with the diagonal matrix (Mph)
having elements exp(±iφ/2) followed by a second uniform
FBG (M2). Thus, the resultant second-order matrix F that
describes the overall system reads

F = M1 × Mph × M2. (15)

Hence, the input and output fields are related by[
un

vn

]
= M1 × Mph × M2

[
u0

v0

]
. (16)

Here un, vn represent the output amplitudes as a function
of input amplitudes u0, v0 and M1, M2 denote the matrices
which relate the input and output fields of two uniform FBGs
separated by the discrete phase-shift φ. Modeling the uniform
PT -symmetric grating (−L/2 � z < 0 and 0 < z � L/2) re-
quires dividing the length of the uniform grating (L̂ = L/2)
into n number of small sections of each of length l [32]. Each
piecewise section of length l is modeled by a corresponding
matrix m1, m2, . . . , mn and hence the uniform gratings of
length L̂ are represented by the product matrices

M1 = M2 = m1m2m3 · · · mn−1mn, (17)

m1 =
[

m11 m12

m21 m22

]
, (18)

where

m11 = m∗
22 = cosh (σ̂ l ) + i

(
δ

σ̂

)
sinh (σ̂ l ),

m12 = i

(
κ + g

σ̂

)
sinh (σ̂ l ),

m21 = −i

(
κ − g

σ̂

)
sinh (σ̂ l ). (19)

The procedure in which the TMM elements in Eq. (19)
are calculated is straightforward. By considering the harmonic
solutions in the form of u, v = A f , Ab exp(iσ̂ z), one arrives at
the dispersion relation for the common propagation constant
for m1, m2, . . . , mn as, σ̂ = (κ2 − g2 − δ2)1/2. Once the prop-
agation constant is found, the appropriate boundary values are
applied to the Bragg gratings to arrive at the matrix elements.
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FIG. 2. Schematics of the variation of real and imaginary parts
of refractive index for various phase-shift values are drawn in the left
and right panels, respectively. They are plotted at a phase of (a), (b)
φ = 90◦, (c), (d) φ = 180◦, (e), (f) φ = 270◦. In all the plots, one can
observe that the different phase values contribute to the various types
of refractive index profiles which predominantly get changed in the
middle of the device with respect to the phase values ranging from
90◦ to 270◦.

Also, the matrix that represents the phase-shift region is
given by [17]

Mph =
[

exp (iφ/2) 0
0 exp (−iφ/2)

]
. (20)

Note that the phase shift φ is introduced in the middle of
the grating such that, on either side of the phase-shift region,
we have two uniform FBGs, as indicated in Fig. 1(a). Each
uniform PTFBG features a number of alternating regions of
gain and loss. A single unit cell of period � is constituted
by having a real [n′

R = n1R cos(2πz/� + φ)] and imaginary
[n′

I = i n1I cos(2πz/� + φ)] modulation of the refractive
index, as shown in Fig. 4(b). Figures 2(a)–2(f) show the
corresponding variation in n′

R and n′
I when a particular value

of phase shift is included into the system. To elucidate further,
when z < 0, the modulations of refractive index profile are
unperturbed by the phase shift (φ = 0). At z = 0, the phase
term φ is added to the modulation profile in the middle of
the grating and thus we visualize discontinuities (exactly in
the middle) in the n′

R and n′
I profiles. For z > 0, these profiles

get changed with the modified phase and thus the two uni-
form PTFBGs feature a difference in the phases of φ. These

variations in n′
R and n′

I are responsible for the presence of a
narrow transmission band within the stopband of the grating,
as indicated in Fig. 4(a). The location of this transmission
band is dictated by the amount of phase shift φ in the middle.

The resultant matrix F reads

F =
[

F11 F12

F21 F22

]
, (21)

where

F11 = M2
11eiφ/2 + M12M21e−iφ/2,

F12 = M11M12eiφ/2 + M12M22e−iφ/2,

F21 = M21M11eiφ/2 + M22M21e−iφ/2,

F22 = M12M21eiφ/2 + M2
22e−iφ/2. (22)

Thus the reflected and the transmission amplitudes of full
PPTFBGs can be found from the final matrix F as

rL = −F21/F22 = −M11M21 exp (iφ) + M21M22

M12M21 exp (iφ) + M2
22

, (23)

rR = F12/F22 = M11M12 exp (iφ) + M12M22

M12M21 exp (iφ) + M2
22

, (24)

tL = tR = t = |F11F22 − F12F21|/F22 = 1/F22. (25)

After some mathematical manipulations, using Eq. (19), the
explicit relation for the reflection and transmission amplitudes
can be found as

rL = i(κ − g)
[
σ̂ r1(1 + eiφ ) − iδr2

1 (1 − eiφ )
]

κ2 − g2
(
1 + r2

1eiφ
) − δ2

(
1 + r2

1

) − 2iδσ̂ r1
, (26)

rR = i(κ + g)
[
σ̂ r1(1 + eiφ ) − iδr2

1 (1 − eiφ )
]

κ2 − g2
(
1 + r2

1eiφ
) − δ2

(
1 + r2

1

) − 2iδσ̂ r1
, (27)

t = eiφ/2σ̂ 2sech2(σ̂ z)

κ2 − g2
(
1 + r2

1eiφ
) − δ2

(
1 + r2

1

) − 2iδσ̂ r1
. (28)

In Eqs. (26)–(28), r1 = tanh(σ̂L).
Furthermore, if the applications pertaining to optical net-

work communications demand more than a few transmission
windows within the stop band of the spectra, one can make
use of the concept of introducing multiple phase shifts, as
discussed below [16].

The multiple phase-shift regions can be modeled math-
ematically by including the phase matrix at the respective
locations in the combined transfer matrix. As an example
shown in Fig. 3, the first, second, and third phase-shift regions
z1, z2, z3 are located at z = −L/4, 0, and L/4, respectively, and
the corresponding phase matrices are given by Mph1, Mph2,
and Mph3. Then we can identify a matrix M1 which represents
the matrix that accounts for the resultant of all the small
grating sections from z = −L/2 to z = −L/4. Similarly, M2

represents the combined matrix obtained by cascading all the
individual grating sections from z = −L/4 to z = 0. Like-
wise, M3, M4 represent the matrix acquired by cascading the
individual grating sections between z = 0 to z = L/4 and z =
L/4 to z = L/2, respectively. The resultant matrix M which
stands for the overall structure from z = −L/2 to z = L/2 is
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FIG. 3. (a) Schematic of multiple phase-shifted PTFBGs with
phase-shift regions located at z = −L/4, 0, L/4. (b) Portrays the
implementation of the transfer-matrix method for the multi-phase-
shift scheme.

given by

Mmulti = M1 × Mph1 × M2 × Mph2 × M3 × Mph3 × M4.

(29)

It is to be noted that the explicit mathematical form in the
case of multiple phase shift is cumbersome to find and hence
the reflection and transmission amplitudes are computed from
the transfer-matrix routine and are given by

rL = −M21multi/M22multi , rR = M12multi/M22multi ,

t = det (Mmulti )/M22multi . (30)

Finally, the reflection and transmission coefficients can be
expressed as

RL = |rL|2, RR = |rR|2, T = |t |2. (31)

Throughout this paper, the length L and the coupling coef-
ficient κ of the device are taken to be 4 mm and 10 cm−1,
respectively (unless specified).

III. SPECTRAL CHARACTERISTICS OF PPTFBG
WITH A SINGLE PHASE-SHIFTED REGION

A. Unbroken PT -symmetric regime

In this section, the value of the gain and loss parameter
is varied in the range 0 < g < 10 cm−1 to maintain the
unbroken PT -symmetric condition κ > g. We also recall that
a phase-shifted FBG behaves like a transmission filter with a
very narrow bandwidth. In this section, we consider such a
phase-shifted PT -symmetric FBG with a truncated spectral
response between 1549.6 to 1550.4 nm and thus the plots are
scaled between these wavelengths, as shown in Figs. 4 and 5.

The magnitude and phase response of an unbroken PT -
symmetric FBG (g = 8 cm−1) is very much similar to a con-
ventional phase-shifted FBG (g = 0) except that it is possible
to alter the transmittivity and reflectivity by tuning the value of
gain-loss. In the absence of phase shift (φ = 0), the device is
predominantly reflective rather than transparent for the wave-

FIG. 4. (a)–(f) Illustrates the reflection and transmission spectra
of an unbroken PPTFBG for different values of phase shift φ = 0◦,
90◦, 180◦, and 270◦, respectively. The intensity plots are given in
the left panel whereas the right panels correspond to phase plots.
(g) Shows the variation in λ1, λ2, and λ3 with increase in phase φ for
RL . The variations in the full width half maximum (FWHM) of the
spectra on either sides of λ2 (w1 and w2) with respect to change in
phase φ is shown in panel (h).

lengths between 1549.7 and 1550.3 nm, as indicated by the
dotted lines in Figs. 4(c) and 4(e). But with the introduction
of phase shift in the middle, a narrow band of wavelengths
within the stop band transmits the incoming light, as indicated
by the dashed (φ = 90◦), solid (φ = 180◦), and dash-dotted
lines (φ = 270◦) in Fig. 4(a). At one particular wavelength
λ2 [see inset of Fig. 4(g), which is same for T and RR also],
the transmittivity reaches its maximum (unity) inside the
stopband of the grating. At this wavelength, we can observe a
peak in the transmission spectra, as seen in Fig. 4(a), and a dip
in the corresponding reflection spectra, as shown in Figs. 4(c)
and 4(e). The response of the grating is asymmetric for all
the values of phase except for φ = 180◦ as referred from
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FIG. 5. The variation in the transmission and reflection charac-
teristics of a unbroken PPTFBG with respect to variation in the gain
and loss parameter g is plotted in panels (a)–(c). The continuous
variation of minimum of transmitted intensity (d1 and d2) against
the parameter g is plotted in panel (d). Panels (e) and (f) show the
continuous variation of maximum of reflected intensities (p1, p2, p3,
and p4) against variation in gain-loss parameter g.

these plots. For φ = 180◦, the narrow transmission window
occurs exactly in the middle of the spectra and on either
side of the transmission peak, the spectrum is symmetrical.
The wavelength λ2 at which maximum transmission within
the stopband occurs is shifted towards longer wavelengths
by increasing the phase. Moreover, the wavelengths λ1, λ3

at which peak reflection occurs on either side of λ2 are also
shifted towards higher wavelengths, as shown in Fig. 4(g).
The magnitude plots obtained for a phase of φ = 270◦ is
exactly the mirror image of the spectra obtained for a phase
of φ = 90◦, as shown in Figs. 4(a), 4(c), and 4(e).

To illustrate the spectral response further, we define an-
other useful parameter, namely, the full width at half maxi-
mum (FWHM). It indicates the difference between the two
wavelengths corresponding to R = 1/2 Rmax. For φ < 180◦,
the FWHM of the reflection spectra on the longer-wavelength
(w2) side of λ2 is broader than the one (w1) on the shorter-
wavelength side of λ2, as shown in Fig. 4(h). At, φ = 180◦,
these FWHMs are equal (w1 = w2). On the other hand, when
φ > 180◦, the FWHM of the spectra on the right side of λ2

(w2) is narrow compared with the one on the left (w1) of
λ2. A well-known application of phase-shifted FBG is that it
can be used as channel selector (demultiplexer). To implement

FIG. 6. Schematic of all-optical demultiplexer with m-array of
PPTFBGs having different phase-shift values (φ1, φ2, . . . , φm) for
selecting m individual wavelengths (λ1, λ2, ...λm) from a multiplexed
input.

such a scheme, a multiplexed signal emerging from a transport
fiber is then passed into the array of FBGs (m-FBGs for
m-channels) with each FBG having a particular phase shift
φ for selecting a particular channel. This is facilitated by the
inherent property of phase-shifted FBGs to allow a shift in λ2

and the wavelength of the peaks (λ1 and λ3) on either side
of λ2. An unbroken PPTFBG provides an additional degree
of freedom to tune the intensity of these peaks, as illustrated
in Fig. 5. From Figs. 4(b), 4(d), and 4(f), we find that the
phase (θT , θRL , and θRR ) responses of the system rely on the
gain-loss parameter g and the magnitude of the phase shift φ in
the middle. Physically, this would mean that the phase of the
reflected and transmitted signals is strongly influenced by the
changes in the energy of the wave packet as a consequence of
variation in gain-loss potential [4] and the value of phase shift.

Like any other PT -symmetric FBG configuration, our sys-
tem also demonstrates an increase (decrease) in the reflectivity
for right (left) light incidence with an increase in the value of
the gain-loss parameter g, as illustrated in Figs. 5(e) and 5(f).
For φ < 90◦, the magnitude of the reflection spectra on the
longer-wavelength side of λ2 is larger than the peak of reflec-
tion on the shorter-wavelength side and this is true for both
left (p2 > p1) and right (p4 > p3) light incidences. When
φ = 180◦, the magnitudes of these peaks are equal (p1 = p2

and p3 = p4). However, when φ > 180◦, the opposite effect
occurs (p1 > p2 and p3 > p4). The increase in the value
of gain-loss also contributes to the increase in the magnitude
of the dip (d1 and d2) with an increase in gain-loss in the
transmission spectra, as portrayed in Fig. 5(d). Thus, it is
possible to construct all-optical demultiplexers with tunable
intensity and spectral width with the proposed PT -symmetric
system as shown in Fig. 6.

B. Unidirectional wave transport at the exceptional point

Mathematically, if a PT -symmetric device satisfies the
condition κ = g, then it is known to be working at the ex-
ceptional point. It is reported in the literature that different
PT -symmetric FBGs, namely uniform [4], apodized [42],
and chirped and apodized FBGs [32] exhibit unidirectional
wave transport at the exact PT -symmetric phase. From the
numerical study presented here, we also confirm that this
phenomenon persists even in the presence of phase shift in
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FIG. 7. (a) Phase-independent unidirectional wave transport in
a PPTFBG. (b), (c) Phase dependent reflection spectra for the right
light incidence at the exceptional point of a PPTFBG. The continuous
variation of the reflection peaks (pl and pr) against variation in phase
φ is plotted in panel (d). The wavelengths λl , λr corresponding to the
peaks pl , pr in panel (d) and the dip wavelength λz are plotted in
panel (e).

the middle of the grating. The incident light travels inside
the device and emanates at the other end of the grating for
the left light incidence as if there is no grating present in the
propagating path to reflect the signal (T = 1 and R = 0), as
shown in Fig. 7(a). However, the right incident light shows
changes with respect to variations in the value of phase shift
φ, as depicted in the remaining plots from Figs. 7(b)–7(e).
The wavelength corresponding to zero reflectivity within the
stop band at the exceptional point is designated as λz. On
either side of this wavelength, the reflected spectra exhibit
peaks (pl and pr) which are very similar to the dynamics
obtained in the unbroken PT -symmetric regime, except that
the magnitude of these peaks are larger because the system
operates at a higher value of gain-loss (g = 10 cm−1). For
example, RRmax measures a magnitude of 54.72 at the excep-
tional point, whereas, in the unbroken regime (g = 9.5 cm−1),
it is measured to be 26.25 for a phase of φ = 90◦. Unlike the
reflection dynamics for the right light incidence reported in
other PTFBGs structures at the exceptional point [4,40,42],
these structures are not completely reflective to all wave-
lengths within the stopband, thanks to the presence of phase
shift in the middle of the grating. To illustrate this point, for
a phase of φ = 180◦ and λ = 1550.04 nm, RR is measured
to be zero. We designate the wavelength corresponding to the

 (nm)
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, T

R
R

T
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R

L

FIG. 8. Spectral characteristics of a broken PT -symmetric FBG
in the absence of phase shift (φ = 0◦).

zero-reflectivity dip within the stopband as λz, at the exact
PT -symmetric phase. The wavelengths corresponding to the
peaks pl and pr are given by λl and λr . All these wavelengths
shift toward longer wavelengths of the spectra with increasing
φ, as shown in Fig. 7(e).

C. Broken PT -symmetric regime

As well known, a broken PT -symmetric FBG needs to
obey the mathematical condition g > κ and hence the gain-
loss parameter value is kept at g = 20 cm−1 throughout this
section and the tuning is achieved by varying the phase (φ).
Before investigating the phase-shifted system, it is important
to look at the spectral response of the system in the absence
of phase shift (φ = 0◦). Instead of amplification at the center
wavelength, the maximum amplification occurs on both the
longer- and shorter-wavelength sides of the Bragg wavelength
and the amplification at λb is suppressed but not to zero. Also,
amplification at the side lobes is visible in Fig. 8.

1. Single-mode lasing behavior

When φ is increased to 45◦, the reflections in the side lobes
which were existing in the absence of phase shift (φ = 0◦)
are inhibited to a large extent, as shown in Fig. 9(a). But
some weak reflections still persist in the spectra corresponding
to the right incidence but it is comparably much less than
the maximum intensity (RRmax ). Even these weak reflections
are suppressed further when φ is increased (φ = 60◦) and
thus we obtain the pure single-mode lasing behavior shown
in Fig. 9(b). The maximum transmittivity (reflectivity) of the
single-mode lasing spectra is observed for φ = 90◦, as shown
in Figs. 9(c) and 9(d). It is important to mention that the side
lobes are significantly reduced by tuning the value of phase
shift without a need for an apodization technique. Tuning the
value of phase also has a drastic effect on the wavelength
λp corresponding to the peaks of the lasing spectra. From
Fig. 9(e), we confirm that λp is shifted to the longer wave-
lengths of the spectra with an increase in φ. The reflectivity
and transmittivity get increased proportionally to an increase
in φ, whereas the FWHM shows an inverse relationship with
the increase in φ, as shown in Fig. 9(f). This means that higher
the peak reflectivity Rmax and transmittivity Tmax, the narrower
the FWHM of the lasing spectra, and this is indeed the most
desired characteristic feature of a typical lasing spectrum.
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FIG. 9. Phase-controlled single-mode lasing behavior of a bro-
ken PTFBG against the variation in phase shift at g = 20 for different
phases φ = 45◦, 60◦, and 90◦ is shown in panels (a)–(c), respectively.
The continuous variation of maximum of transmitted (Tmax) and
reflected intensities (Rmax) with respect to change in φ is shown in
panel (d) and the wavelengths λ2 corresponding to the peaks are
shown in panel (e). The change in the FWHM of the transmitted and
reflected spectra against the variation in φ is plotted in panel (f).

2. Dual-mode lasing behavior

The peaks of reflectivity and transmittivity in the spectra
are found to occur at two wavelengths for values of phase
falling in the range 90◦ < φ < 270◦. To differentiate them,
they are designated here as dominant and secondary modes as
shown in Figs. 10(a)–10(c). The former has larger amplifica-
tion at the peak (Rmax and Tmax) compared with the latter one.
The reflectivity and transmittivity at the peaks between these
two modes are always asymmetrical except for certain values
of φ, say φ = 180◦. For a phase shift of φ = 120◦, the domi-
nant (secondary) mode occurs on the left (right) of the Bragg
wavelength (1550 nm), as illustrated in Fig. 10(a). On the
other hand, when φ = 150◦ the dominant and the secondary
modes are seen on the shorter- and longer-wavelength sides
of the Bragg wavelength, respectively, as shown in Fig. 10(b).
However, both these modes are equally amplified at the phase
φ = 180◦, as depicted in Fig. 10(c). Post the occurrence of
the symmetric amplification at 180◦, the asymmetric nature
of amplification between these two modes begins to appear.
As portrayed in Fig. 11(d), the appearance of dominant and
secondary modes at a phase of φ = 210◦ looks like the plots
obtained for a phase of φ = 150◦ in terms of intensity with
the center wavelength interchanged. It is confirmed from
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FIG. 10. Dual-mode lasing behavior exhibited by a broken PT -
symmetric FBG at g = 20 against the variation in phase shift with
φ = 120◦, 150◦, 180◦, 210◦, 240◦ is shown in panels (a)–(e), re-
spectively. The variation in the wavelengths corresponding to the
reflectivity peaks λl and λr of the spectra is plotted in panel (f).

Fig. 10(e) that the spectrum shown by the system for a phase
of φ = 240◦ is exactly the mirror image of the plot at φ =
120◦ about the Bragg wavelength (1550 nm). Finally, we
look into the impact of phase on the wavelength at which
peak reflectivity occurs in Fig. 10(f). The reflectivity and
transmittivity peaks on the shorter-wavelength side (λL) of
1550 nm are shifted towards the Bragg wavelength, whereas
the corresponding peaks on the longer-wavelength side (λR) of
1550 nm are shifted further away from the Bragg wavelength.
From the continuous variation of the intensity plots against the
variation in the value of phase φ depicted in Figs. 11(a)–11(d),
we infer that the PPTFBG system exhibits both increasing and
decreasing lasing behavior in both reflection and transmission
spectra depending on the phase shift φ. As stated in the
previous section, the FWHM is narrower for those values of φ

for which reflectivity and transmittivity of the spectra is larger
and vice versa, and this behavior is plotted in Fig. 11(e). For
some values of φ, the device shows lasing spectra with very
huge reflectivity of the order of 104 in its light propagation
characteristics (R and T ) when operated in the broken PT -
symmetric regime. Such behavior is plotted in Fig. 12(a) at a
phase of φ = 160◦. These types of uncontrollable amplifica-
tion in the lasing spectra are found to decrease upon increasing
the length of the grating, as shown in Fig. 12(b).

013515-9



S. VIGNESH RAJA et al. PHYSICAL REVIEW A 102, 013515 (2020)

FIG. 11. The continuous variation of transmitted (Tmax) and re-
flected intensity peaks (Rmax) with respect to change in φ is shown
in panels (a)–(c). Panels (d) and (e) show the decrease in the
peak reflectivity and transmittivity when length L of the system is
increased. The changes in the FWHM of the transmitted and reflected
spectra against the variation of φ are plotted in panel (e) and the
notations FWHML and FWHMR denote the full width half maximum
of the modes on the left and right side of the 1550 nm wavelength,
respectively.

3. Single-mode lasing behavior

If the phase is continuously tuned further, the secondary
modes are not observed in the lasing spectra, and the re-
flectivity and transmittivity peaks are found to appear only
in one distinct mode, as shown in Fig. 13(a). When φ =
270◦, the lasing spectra is centered at 1549.72 nm with the
FWHM of 0.008 nm is observed in the transmission as well
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FIG. 12. Reflection and transmission spectra of a broken PT -
symmetric FBG at g = 20 cm−1 and φ = 160◦ are shown in panel
(a). Panel (b) illustrates the decrease in the peak reflectivity for the
right light incidence and shift in the corresponding peak wavelengths
when length L of the system is increased.
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FIG. 13. (a), (b) Phase-controlled single-mode lasing behavior
of a broken PT -symmetric FBG at g = 20 against the variation in
phase-shift values φ = 270◦ and 300◦, respectively. The continuous
variation of maximum of transmittivity (Tmax) and reflectivity (Rmax)
with respect to change in the values of φ is shown in panel (c). The
wavelength λ2 corresponding to these peaks is shown in panel (d) and
the FWHM of the spectra is plotted in the inset.

as reflected spectra. The spectra also resemble the spectra
plotted at φ = 90◦ in terms of intensity and FWHM except
for a difference that it occurs on the shorter wavelength side of
the Bragg wavelength in the spectra. Any increase in the value
of φ leads to a decrease in the reflectivity and transmittivity
and increase in the FWHM as shown in Figs. 13(b) and
13(c). The wavelength over which the lasing spectrum is
centered is shifted towards the Bragg wavelength as depicted
in Fig. 13(c). Thus we can conclude that by carefully tuning
the value of the phase shift in the middle of the grating, it
is possible to control grating characteristics such as intensity,
FWHM and the wavelength over which the lasing spectra is
centered.

IV. SPECTRAL CHARACTERISTICS OF A PPTFBG
WITH MULTIPLE PHASE-SHIFT REGIONS

It is worthwhile to mention that FBGs find their main
application as channel selection filters in the light wave com-
munication systems. Investigations on improving the chan-
nels selection characteristics of FBGs are mainly targeted
at increasing the width of the stopband band in the middle.
However, the ranges of the stop band in practically realizable
FBGs are limited. The concept of cascading multiple PTFBGs
with different grating periods can give rise to a good solution
to improve the transmission characteristics significantly. But
it is limited by the difficulties in fabricating a compact system
[65]. It should be remembered that it is possible to tailor
the stop band of a PT -symmetric FBG by introducing the
concepts of chirping and apodization [32]. Furthermore, by
introducing multiple phase shifts in the middle, the spacing
between number of channels can be minimized without in-
flicting any additional penalties on the system.
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FIG. 14. (b)–(d) Reflection and transmission spectra of a unbro-
ken PPTFBG (g = 5 cm−1) with a phase shift (φ = 180◦) located
at −L/4, 0, L/4. Plot (a) is simulated in the absence of gain-loss
(g = 0).

A. Unbroken PT -symmetric regime

Figure 14 depicts the spectra of unbroken PPTFBG (g =
5 cm−1) for an identical phase shift of φ = 180◦ located at
three locations (z1, z2, and z3). Even though the locations of
the phase shifts can be varied according to the requirement
and thereby the position of peaks within the stopband can
be controlled, we fix the location of multiple phase shifts in
our investigations, as stated earlier in Sec. II. The distance
between each phase-shift region is one and the same by virtue
of positioning the phase shifts at −L/4, 0, L/4 along z.
Finally, the reflection and transmission spectra in the presence
of multiple phase shift can be found by using Eqs. (29)–
(31). The number of transmission peaks and the dips in the
reflectivity within the stop band is dictated by the number of
phase-shift regions along the length of PPTFBG. For instance,
one can find three transmission windows in Fig. 14(a) and
Fig. 15(a) which are plotted in the absence of PT symmetry
at φ = 180◦ and φ = 90◦, respectively. Our primary aim is
to tailor the spectra by varying the magnitude of phase shift
rather than varying the location of the phase shift provided
that the magnitude of phase shift at all the locations is same.
Also, the inclusion of PT symmetry paves the way to control
the magnitude of the peaks which is not reported so far in the
literature. It has already been proven that the usage of two or
three phase-shift regions inside a conventional FBG structure
is optimal for practical light wave communication systems
[65]. From our investigations, we proved that the above rule
of thumb holds true in the presence of gain-loss also. One
of the major improvements in the spectral characteristics of
the PT -symmetric systems is that these systems open a new
door toward tailoring of the spectra via an additional degree
of freedom in the form of gain and loss. In Figs. 14(b)–14(d),
we observe that the peaks in the middle of the stop band
are symmetric in nature because the magnitude of the phase
shift is φ = 180◦. If the same system is simulated at φ = 90◦,
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FIG. 15. (b)–(d) Reflection and transmission spectra of a unbro-
ken PPTFBG (g = 5 cm−1) with a phase shift (φ = 90◦) located
at −L/4, 0, L/4. Plot (a) is simulated in the absence of gain-loss
(g = 0).

these multiple peaks are asymmetric and also located to the
left side of the Bragg wavelength (1550 nm). Previously, we
have concluded that the plots simulated at φ = 270◦ will
resemble the mirror image of the plots drawn at φ = 90◦. This
conclusion holds true even in the presence of multiple phase
shifts. Like any other PTFBG system, multiple phase-shifted
PTFBGs also show the directional reflection characteristics
(reflectivity is different for the two light-incidence directions)
and this is portrayed in Figs. 14(c), 14(d), 15(c), and 15(d).
For the left incidence, the reflectivity gets decreased and it
increases for the light launching condition from the other side
(RR). Thus the system enables controlling the magnitude of
the peaks in two different approaches: First, by tuning the
magnitude of the phase shift and alternatively by varying the
value of g.

B. Exceptional-point dynamics

At the exceptional point, the phenomenon of unidirectional
wave transport also remains the same as before in the present
case of multiple phase shifts. This once again proves that
this phenomenon relies purely on the equality between the
coupling κ and gain-loss coefficient g and is independent of
any variation in other control parameters, including multiple
phase shifts. On the other hand, the reflection spectra for the
right incidence is influenced by the presence of multiple phase
shifts, i.e., their location and magnitude brings in notable
changes in the spectra. We identify that there are three dips
in the middle of the stop band in between two peaks on
either sides for φ = 180◦, as shown in Fig. 16(a). The same
reflectivity dips are seen on the lower-wavelength (higher-
wavelength) side of the Bragg wavelength when φ = 270◦
(90◦). This once again confirms that the magnitude of the
phase shift is a highly influential parameter in imposing the
variations in the spectra.
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FIG. 16. Reflection (right) spectra of a PPTFBG at the excep-
tional point (g = 10 cm−1) with phase shifts (equal) located at −L/4,
0, L/4. Plot (a) is simulated at φ = 180◦ and plot (b) is simulated at
φ = 90◦ and 270◦.

C. Broken PT -symmetric regime

Previously, we interpreted that operating the system at
φ = 180◦ leads to two symmetrical reflectivity peaks on either
side of the Bragg wavelength in the presence of the single
phase-shift region. In the case of multiple phase shifts, there
are two more symmetric reflectivity peaks closer to the Bragg
wavelength whose reflectivity is comparably very less than
those of the peaks far away from the Bragg wavelength, as
shown in the right panels of Fig. 17. For the case φ = 90◦,
there are two reflectivity peaks observed in the left panels of
Fig. 17, one with large reflectivity and the other with much
less reflectivity, which is contrasting with the results obtained
in the presence of the single phase-shift region, which is
characterized by single-mode lasing behavior when φ = 90◦.
The results for φ = 270◦ are simply the mirror image of plots
obtained in the left panels of Fig. 17.

V. CONCLUSIONS

In this paper, we have analyzed the spectral characteristics
of PPTFBGs in different regimes, namely, the unbroken, ex-
ceptional point, and the broken regimes. The spectral dynam-
ics in the unbroken regime was quite similar to the spectra of
a conventional phase-shifted FBG. However, we have showed
that it is possible to vary the intensity of the phase-shifted
spectra by varying the gain and loss parameter. Also, we made
evident that the phenomenon of unidirectional reflectionless
wave transport is exhibited by the proposed system. It was also
shown that the device is not fully reflective within the stop-
band, like other PTFBG systems. However, in the presence of
phase it possesses symmetrical or asymmetrical spectra about
one particular wavelength, where the reflection intensity is
zero inside the stopband. The broken PPTFBG was found to
exhibit single-mode lasing behavior for some range of phase-
shift values and dual-mode lasing behavior for the others.
Also, the broken PT -symmetric FBG system described in this
work has a length of just four mm, thus making it compact.
Moreover, it involves fewer discrete components to perform
filtering, amplification, and side lobe suppression. We have

FIG. 17. Reflection and transmission spectra of a PPTFBG at
the broken PT -symmetric regime (g = 20 cm−1) with phase shifts
(equal) located at −L/4, 0, L/4. The plots in the left panels are
simulated at φ = 90◦ and the plots in the right panels are simulated at
φ = 180◦ and 270◦. The top, middle, and bottom panels represent the
reflection right, transmission, and reflection left spectra, respectively.

also considered the multiple phase shifts introduced in various
locations of PPTFBGs and found that they aid in controlling
the number peaks in the reflection and transmission spectra.
Hence it can be used to realize a narrow-band single-mode
laser. The results presented here give conclusive evidence that
it is possible to realize a multifunctional device which can
operate as a demultiplexer and mode-selective laser from the
same system configuration without a need to design a specific
system for a particular application and thus simplifying the
manufacturing process. We strongly believe that the fabrica-
tion of such a PT device(s) in the future is not too far away
thanks to the current optical integration methodologies.
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