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Dirac equation on a square waveguide lattice with site-dependent coupling strengths
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The main objective of this work is to present a theoretical proposal for an implementation of the (2 + 1)-
dimensional Dirac equation in classical gravitational and electromagnetic backgrounds, in a two-dimensional
waveguide array. For this, a framework for achieving site-dependent effective coupling constants in two-
dimensional waveguide arrays is developed. Implementability of the Dirac equation under the proposed scheme
puts minor demands on gauge and spacetime backgrounds; however, a wide array of physical spacetimes, such
as all vacuum and static solutions, prove to be implementable. As an interesting and instructive example, we
discuss a tabletop realization of the gravitational Aharonov-Bohm effect: After devising a thought experiment
in which signatures of the gravitational Aharonov-Bohm effect could be detected, we briefly discuss how the
analog of such a setting can in principle be implemented using the proposed waveguide setup.
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I. INTRODUCTION

Physical effects stemming from global geometric or topo-
logical properties of a system have long been investigated in
physics. A premier example of such an effect is the celebrated
Aharonov-Bohm effect in quantum mechanics [1]. Similar
phenomena can occur in 2+1 dimensional gravity, where lo-
calized sources do not influence the curvature of the manifold
beyond their point of localization, but may effect the global
geometry [2]. In this work, we propose a classical optical
simulation of a gravitational analog of the Aharonov-Bohm
effect for fermions in 2 + 1 dimensions [3–6].

There exists a multitude of proposals and experimental
demonstrations of interesting physics in coupled waveguide
arrays [7–19]. Optical simulation of the (1 + 1)-dimensional
Dirac equation in binary waveguide arrays has long been pro-
posed [20,21] and experimentally demonstrated [22,23]. Sim-
ulations of Dirac dynamics in curved spacetime have also been
investigated. For approaches in graphene, see Refs. [24,25];
investigations using cold atoms, e.g., Refs. [26,27], are
also conducted. For the general simulation of the (1 + 1)-
dimensional Dirac equation in curved spacetime in coupled
waveguide arrays, see Ref. [28]. We now expand on this
work by elaborating on how the (2 + 1)-dimensional Dirac
equation may be simulated in coupled waveguide arrays and
then show how one can incorporate classical gravitational and
electromagnetic background fields.

This article is organized as follows: After discussing the
types of metrics and gauge fields we will consider, we recall
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the basics of the (2 + 1)-dimensional Dirac equation coupled
to background fields in Sec. II. Subsequently, generalizing an
idea proposed in Ref. [29], we show how one can achieve site-
dependent effective coupling constants in two-dimensional
coupled waveguide arrays in Sec. III. Section IV then explains
how one can use this to implement the Dirac equation in
square lattice waveguide arrays. Finally, in Sec. V, we de-
velop a scenario in which the phase shift of the gravitational
Aharonov-Bohm effect can be observed and discuss its poten-
tial realization in a coupled waveguide array.

II. THE MINIMALLY COUPLED DIRAC EQUATION IN
CURVED SPACETIME

In what follows, we shall always assume a global manifold
chart.

A. General considerations

Our starting point is the coordinate expression of the
minimally coupled Dirac equation in curved spacetime:

[iγ μ∇μ − m]ψ (x) = 0. (1)

Here we are using the vielbein eμ
a (x) to transform the local

gamma matrices γ a according to

γ μ(x) = eμ
a (x)γ a. (2)

The covariant derivative is given by

∇ν = ∂ν + �ν + iAν, (3)

with a gauge connection Aν and where �ν arises from the spin
connection [30]. For a brief introduction to the Dirac equation
in curved spacetime, the reader might want to consider the
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Appendix. For reasons that will become apparent shortly, we
assume that the metric is of the form

ds2 = e2�(x,y,t )dt2 − e2�(x,y,t )(dx2 + dy2) (4)

and that

�(x, y, t ) − �(x, y, t ) = ρ(x, y), (5)

where ρ is independent of time. These restrictions still allow
for all vacuum solutions, since, as argued in the Appendix,
vacuum solutions can be taken to be conformally flat, and
hence we may even choose � = �. Furthermore, we note that
any static spacetime may be represented in this form [25]. For
the gauge connection, we demand that the vector part may be
gauged away, i.e., that we may write

Aμdμx = φ(x, y, t )dt + ∂x�(x, y, t )dx

+ ∂y�(x, y, t )dy. (6)

Under these assumptions, after choosing γ 0 = σz, γ 1 =
−iσx, and γ 2 = iσy, and first neglecting the gauge part, the
Dirac equation can be written as

i(∂t + �t )ψ = −iσye�−�
(
∂x + 1

2�x + 1
2�x

)
ψ

− iσxe�−�
(
∂y + 1

2�y + 1
2�y

)
ψ

+ σze
�mψ. (7)

See the Appendix for calculations leading up to this. Recalling
that � − � = ρ and reinstating the gauge connection yield

i(∂t + �t + iφ)ψ

= +σze
�mψ − iσyeρ

(
∂x + 1

2�x + 1
2�x + i∂x�

)
ψ

− iσxeρ
(
∂y + 1

2�y + 1
2�y + i∂y�

)
ψ. (8)

Upon defining

χ := e[ 1
2 (�+�)+i�]ψ, (9)

Eq. (8) reduces to

∂tχ = − ieρ (σy∂x + σx∂y)χ

+ (σze
�m + 1[φ − ∂t�])χ. (10)

We have assumed the metric to be of the form (4) be-
cause this is precisely the form for which the resulting Dirac
equation is implementable with our proposed scheme in a
two-dimensional coupled waveguide array, below. As will be
explained in Sec. IV B, our scheme allows implementation of
partial differential equations precisely of the form

∂tχ = − ieρ(x,y)(σy∂x + eB(x)+C(y)σx∂y)χ

+ [σzĥ(x, y, t ) + 1h̃(x, y, t )]χ, (11)

in a two-dimensional square photonic lattice.
To see how (11) constrains metric and vector potential, it is

expedient to consider the gauge and gravity cases separately.
For the gauge part, note that while σz occurs independently
of any differential operator in Eq. (11), the Pauli matrices
σx,y are always multiplied by partial derivatives. Thus, we see
that we have to be able to gauge away the spatial part of the
vector potential. If this were not the case, there would be terms
in which the Pauli matrices σx,y would appear independently

of partial derivatives, since the gauge covariant derivative is
given by ∇μ = ∂μ + iAμ, which is contracted with the gamma
matrices {γ μ}. To be able to carry out a field redefinition
like (9) that cancels the x and y components of the gauge
potential in the differential equation, we indeed have to be
able to express the spatial part as ∂x�dx + ∂y�dy for some
function �.

For the gravity part, note that since each derivative term
is multiplied by a single Pauli matrix and not a linear com-
bination of them (at fixed position and time), the metric must
necessarily be diagonal for our choice of gamma matrices. If it
were not, the off-diagonal elements of the vielbein would give
rise to terms such as γ a∂b (a �= b). To ensure that possible
terms arising from the gravity part, where σx,y Pauli matrices
would appear independently of derivatives, can be absorbed
into a field redefinition such as (9), we have to demand that the
two nonvanishing entries in the spatial sector of the metric are
the same. This implies that the metric is of the form (4). Note
that this then also implies that we may without loss of gener-
ality consider the functions B and C in (11) to be identically
zero. Lastly, we note that after bringing the Dirac equation
into its Hamiltonian form, demanding that the function ρ =
ρ(x, y) that modifies the strength of the derivative terms be
time-independent is equivalent to assuming � − � = ρ to be
independent of time. This is precisely the demand in (5).

B. Example: Conical space and the gravitational
Aharonov-Bohm effect

Before ending this section, let us consider a specific exam-
ple. Setting the gauge connection to zero, we assume that the
metric is given by

ds2 = dt2 − r−2�(dr2 + r2dθ2)

= dt2 − (
√

x2 + y2)−2�(dx2 + dy2). (12)

A short discussion on the underlying geometry is provided in
the Appendix. Defining

f := 1

g
:= e−� = (

√
x2 + y2)�, (13)

the Dirac equation in this spacetime can be written as

ig∂tψ = − 1√
g

iσy

(
∂x + gx

2g

)
ψ

− 1√
g

iσx

(
∂y + gy

2g

)
ψ + gσzψ. (14)

Upon redefining χ := √
gψ , this further reduces to

i∂tχ = i f (σy∂x + σx∂y)χ + mσzχ. (15)

Let us now explore what happens to a spinor that is parallel
transported along a curve in this spacetime. Let us assume
that the curve is parametrized by ξ , in which case the tangent
vector to the curve be given by ξ̇ . To find the expression for a
parallel transported spinor, we have to solve the equation

∇ξ̇ψ = ξ̇ μ∇μψ = 0. (16)

With the help of (A29) and by writing ψ = V ψ0, where V :=
Vξ (τ ) is defined to be the operator that parallel transports a
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spinor along the curve ξ , we may write this as

−dV

dτ
= iσz

2
(ξ̇ y�x − ξ̇ x�y)V, (17)

where ξ̇ x/y is the x/y component of ξ̇ . Next, we note that in the
case at hand we have �(t, x, y) = �(r), with r =

√
x2 + y2.

Hence,

dV

dτ
V −1 = i∂r�σz

2r
(ξ x ξ̇ y − ξ yξ̇ x ), (18)

with r2 = (ξ y)2 + (ξ x )2.
Assuming that we parallel transport around a concentric

circle, we may write ξ 1 = r cos(τ ), ξ 2 = r sin(τ ), and hence
write the above equation as

dV

dτ
V −1 = ir∂r�σz

2
[− sin2(τ ) − cos2(τ )]. (19)

Noting that

r∂r� = −�, (20)

one readily obtains

V (τ ) = exp

(
�

iσz

2
τ

)
. (21)

It can in fact be shown that the assumption that we are on a
concentric circle is not necessary and this expression is valid
for general curves [3]. We thus note that parallel transport of
a spinor around the center once amounts to a multiplication
with

U (2π ) = cos(�π ) + iσz sin(�π ). (22)

In Sec. V, we will propose an experiment to observe this
nontrivial rotation in a tabletop experiment.

III. EFFECTIVE COUPLING CONSTANTS IN COUPLED
WAVEGUIDE ARRAYS

We want to construct an implementation of (10) in a
coupled waveguide array. Our starting point for this endeavour
is the usual description of the array in terms of coupled mode
equations. For a 2D square array, these are given by

i
∂ c̃ab

∂z
= k0(c̃(a+1)b + c̃(a−1)b + c̃a(b−1) + c̃a(b+1)) + σab(z)c̃ab,

(23)

assuming only nearest neighbor and negligible diagonal cou-
plings [31]. Here z is the Cartesian coordinate along the
waveguides, c̃ab denotes the amplitude in the waveguide at site
(ab), and σab(z) is the difference between the refractive index
of the waveguide and the bulk refractive index at site (ab) and
position z. The physical coupling strength determined by the
overlap between the transverse components of the modes in
adjacent waveguides is denoted by k0. Neglecting diagonal
couplings is justified if the overlap of the evanescent tails
between waveguides that are separated by

√
2δs is negligible

compared to the overlap for wave guides that are separated by
δs. In the Appendix, we derive a scheme to effectively cancel
any diagonal couplings in a general setting.

To allow for site-dependent coupling constants, we gener-
alize the idea proposed in Ref. [29] and introduce refractive
index modulations at every site:

σab(z) =
�∑

i=1

Ai
ab

2
cos(αiz). (24)

Then we apply the transformation

c̃ab = cab exp

⎡
⎣i

�∑
j=1

Aj
ab

2α j
sin(α j z)

⎤
⎦, (25)

which cancels the sinusoidal terms in the coupled mode
equations, and obtain

i
∂cab

∂z
= k∗

[a↔(a+1)]bc(a+1)b + k[(a−1)↔a]bc(a−1)b

+ k∗
a[b↔(b+1)]ca(b+1) + ka[(b−1)↔b]ca(b−1). (26)

Here we have defined

k[(a−1)↔a]b = k0 exp

⎡
⎣i

�∑
j=1

Aj
(a−1)b − Aj

ab

2α j
sin(α jz)

⎤
⎦ (27)

and

ka[(b−1)↔b] = k0 exp

⎡
⎣i

�∑
j=1

Aj
a(b−1) − Aj

ab

2α j
sin(α jz)

⎤
⎦. (28)

Next we assume that the refractive index is oscillating fast.
That is, the scale of variation in the z direction of the modes
cab(z) is much larger than 1/α j for all j. Furthermore, we
choose

α j = q jω, (29)

with q j positive natural numbers. Integrating (26) over one
modulation period T := 2π

ω
under these assumptions then

yields the effective coupling constant

keff
[(a−1)↔a]b := 1

T

z0+T∫
z0

k[(a−1)↔a]b(z)dz (30)

and similarly in the b direction. We now expand the integrand
using the generating function of the Bessel functions of the
first kind

exp [iσ sin(x)] =
∑
n∈Z

Jn(σ )einx, (31)

for each index j. In the Appendix, we show that one may
neglect contributions that contain Jn �=0(...) terms.

Therefore, we may approximate our coupling constants as

k[(a−1)↔a]b ≈ k0

�∏
j=1

J0

(
Aj

(a−1)b − Aj
ab

2α j

)
(32)

and

ka[(b−1)↔b] ≈ k0

�∏
j=1

J0

(
Aj

a(b−1) − Aj
ab

2α j

)
. (33)
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Later, we will need to make the coupling between neighboring
waveguides position dependent. Suppose we are given a scalar
function h on the lattice sites:

0 < h(a, b) � max
c,d

h(c, d ). (34)

For reasons that will become apparent soon, we would like
to choose the coupling between sites to be proportional the
geometric mean of the values given by the values the function
h takes at the respective sites times the original coupling
constant. This would, for example, require the coupling be-
tween cab and c(a+1)b to equal k

√
h(a,b)h[(a+1),b]
maxc,d h(c,d ) . To achieve

this, we introduce two refractive index modulations, whose
amplitudes we will denote by Aab and Bab respectively and
whose modulation speeds are denoted by α and β. For the A
modulations, we assign amplitudes according to[

0 A(a+1)(b+1)

Aab 0

]
, (35)

extended periodically over the entire lattice and where Aab is
chosen such that

J0

(
Aab

2α

)
=
√

h(a, b)

maxc,d h(c, d )
. (36)

For the B modulation, we assign amplitudes according to[
Ba(b+1) 0

0 B(a+1)b

]
, (37)

with

J0

(
Bab

2β

)
=
√

h(a, b)

maxc,d h(c, d )
. (38)

This then yields coupling constants according to

k[a↔(a+1)]b = k

√
h(a, b)h((a + 1), b)

maxc,d h(c, d )
(39)

and similarly in the b direction.

IV. WAVEGUIDE IMPLEMENTATION OF THE DIRAC
EQUATION

In this section, we describe how one may implement the
Dirac equation in a coupled waveguide array. Let us first
consider the case without gravity and electromagnetism.

A. The flat, uncharged case

The Dirac equation for a free particle in (2 + 1)-
dimensional flat spacetime can be written as

i∂t� = −i(σy∂x + σx∂y)� + mσz�. (40)

To bring this equation onto a square lattice, we will employ
Eqs. (32) and (33). We denote the discretized two-spinor
components as

jψ
m
n := � j (δx + nδx, δy + mδy). (41)

On a unit cell, let us try assigning spinor components as

⎡
⎢⎢⎢⎣

1ψ
m+2
n−1 2ψ

m+2
n 1ψ

m+2
n 2ψ

m+2
n+1

i2ψ
m+1
n−1 i1ψ

m+1
n i2ψ

m+1
n i1ψ

m+1
n+1

1ψ
m
n−1 2ψ

m
n 1ψ

m
n 2ψ

m
n+1

i2ψ
m−1
n−1 i1ψ

m−1
n i2ψ

m−1
n i1ψ

m−1
n+1

⎤
⎥⎥⎥⎦, (42)

which is to be periodically extended over the entire lattice.
The derivatives are discretized as

∂y�i ≈ �i[nδx, (m + 1)δy] − �i[nδx, (m − 1)δy]

2δy
(43)

and

∂x�i ≈ �i[(n + 1)δx, mδy] − �i(nδx, mδy)

δx
(44)

or

∂x�i ≈ �i(nδx, mδy) − �i[(n − 1)δx, mδy]

δx
, (45)

depending on the spinor component i and the column of the
lattice.

Now suppose that the coupling constants between any two
given lattice sites always have the same absolute value. Then,
to realize the discretized version of (40), we necessarily have
to set the absolute value of our coupling constant to

|k| = 1

δx
= 1

2δy
. (46)

A quick calculation shows that the signs of the coupling
constants have to vary as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ψ − ψ + ψ − ψ

+ + + +
ψ + ψ − ψ + ψ

− − − −
ψ − ψ + ψ − ψ

+ + + +
ψ + ψ − ψ + ψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (47)

As it turns out, it is impossible to achieve such a prescription
using only a single modulation of the refractive index. Since
our effective coupling constants scales with the number of
introduced modulations � as [J0(...)]�, we want to minimize
the number of introduced refractive index modulations.

To achieve this goal, we note that multiplying an entry in
(42) with (−1) changes the sign of the immediately surround-
ing coupling constants that need to be achieved. This means
that if we change (42) to

⎡
⎢⎢⎢⎣

−1ψ
m+2
n−1 2ψ

m+2
n 1ψ

m+2
n −2ψ

m+2
n+1

i2ψ
m+1
n−1 −i1ψ

m+1
n −i2ψ

m+1
n i1ψ

m+1
n+1

1ψ
m
n−1 −2ψ

m
n −1ψ

m
n 2ψ

m
n+1

−i2ψ
m−1
n−1 i1ψ

m−1
n i2ψ

m−1
n −i1ψ

m−1
n+1

⎤
⎥⎥⎥⎦, (48)
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(47) changes to

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ψ + ψ + ψ + ψ

− − − −
ψ − ψ − ψ − ψ

− − − −
ψ + ψ + ψ + ψ

− − − −
ψ − ψ − ψ − ψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (49)

which can be achieved with only one sinusoidal modulation

σmn(z) = Cmn

2
cos(γ z). (50)

To specify the required amplitude prescription, we note that
the relation

J0(ξ ) = −J0(3ξ ) (51)

has a nonempty set of solutions. The first few positive roots
are given by ξ1 ≈ 2.704, ξ2 ≈ 5.83, and ξ3 ≈ 8.97 and, e.g.,
J0(ξ1) = −J0(3ξ1) ≈ −0.144. We define C := ξ1/2γ and as-
sign the amplitudes as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 + 3C + 0 + 3C
− − − −
C − 2C − C − 2C
− − − −
0 + 3C + 0 + 3C
− − − −
C − 2C − C − 2C

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (52)

where the signs of the coupling constants follow from the
assigned amplitudes by Eqs. (32) and (33).

We have thus realized the discretized massless (2 + 1)-
dimensional Dirac equation with

J0(3ξ1) = |k| = 1

δx
= 1

2δy
. (53)

If we would like to take δx = δy, so that the discretization
lengths in the two directions coincide, it is obvious from
the above considerations that this corresponds to introducing
different coupling constants in the x and y directions:

kx = 1
2 ky. (54)

This can be achieved by changing the distance of the waveg-
uides in an experimental setup, or by introducing additional
refractive index modulation in the x direction similarly for
every y column, according to [0, E ] extended periodically so
that J0( E

2ε
) = 1

2 . This changes the effective coupling in the
x direction to one half of its original size, while leaving the
coupling in the y direction invariant. However, we will not do
so and instead work with different discretization lengths in
the x and y directions, so that the coupling constants in both
directions can have the same value. Including a mass term can
be achieved through the usual method of alternating high and
shallow refractive indices [22,23].

B. The general case

Our starting point is (10), which we repeat here for conve-
nience:

∂tχ = − ieρ (σy∂x + σx∂y)χ

+ (σze
�m + 1[φ − ∂t�])χ.

Just like the mass term, (σze�m + 1[φ − ∂t�]) can be easily
implemented by changing the refractive index of the respec-
tive waveguide appropriately. Hence, we turn to the derivative
term. For ease in notation, we define f := eρ . The relevant
part of the equation may thus be written as

i∂tχ = −i f (σy∂x + σx∂y)χ. (55)

If we want to put this on the lattice, we will have to make the
absolute values of the effective coupling constants position
dependent. Furthermore, we need to be careful to obtain
the correct differential equation in the limit of vanishing
discretization length. For this, the effective couplings of the
spinor components (as opposed to the amplitudes in waveg-
uides) to its neighbors are the determining factors.

It is easy to verify that in the discretized version of (55)
the coupling of a spinor component ψm

n to its neighbours jψ
l
k

must be local; i.e., the absolute value may only depend on
the tuple (nm) and must not depend on the coordinates of the
neighboring sites (kl ).

To achieve this, we will use the lattice constructed in the
previous subsection, superimposed with the modulation of
coupling constants that we introduced at the end of Sec. III.
Note that while we were considering a function h(a, b) on the
lattice sites {(ab)} there, we are now considering a function
f (n, m) on discretized space points {(nm)}. Given the pre-
scription (48) of spinor components, the two are related as

h(a, b) := f (�a/2	, b), (56)

as is easily seen. Here �·	 denotes the floor function that
assigns to each real number its closest smaller integer.

Additionally, we modify the assignment of spinor compo-
nents to our lattice by pointwise multiplication with

⎡
⎢⎣

Z(n−1)(m+2) Zn(m+2) Zn(m+2) Z(n+1)(m+2)

Z(n−1)(m+1) Zn(m+1) Zn(m+1) Z(n+1)(m+1)

Z(n−1)m Znm Znm Z(n+1)m

Z(n−1)(m−1) Zn(m−1) Zn(m−1) Z(n+1)(m−1)

⎤
⎥⎦ (57)

extended periodically. We now define√
f (n, m)

f (n + 1, m)
Znm = Z(n+1)m (58)

and likewise √
f (nm)

f (n, m + 1)
Znm = Zn(m+1). (59)

The consistency of these conditions is easily verified. We have
one degree of freedom left by choosing the initial Z value in
the inductive definition above. Let us fix

Z00 = 1√
f (0, 0)

. (60)

013514-5



KOKE, NOH, AND ANGELAKIS PHYSICAL REVIEW A 102, 013514 (2020)

Then we have

Zmn = 1√
f (0, 0)

n∏
i=1

√
f (i − 1, 0)

f (i, 0)

n∏
j=1

√
f (n, j − 1)

f (n, j)

= 1√
f (n, m)

. (61)

Note that we could have chosen any other path from (0,0)
to (nm). Plugging in the relations (57)–(59) into the effective
coupled mode equations that we constructed in Sec. IV A then
shows that we have indeed realized the discretized version
of Eq. (55) if we choose the initial coupling constant k0

according to

k0 := maxm,n f (n, m)

δx
= maxm,n f (n, m)

2δy
. (62)

Checking that the discretization scheme yields the correct
differential equation in the limit of vanishing stepsize is
straightforward, since the function multiplying the discretized
derivative term is local. Lastly, we note that our implemen-
tation scheme is able to precisely realize equations of type
(11). The only part that is not immediately obvious is the
relationship between the functions multiplying the spatial
derivative terms. To unravel this relationship, assume that the
x derivative is multiplied by f = eq(x,y) and the y derivative
is multiplied by g = ep(x,y). For consistency, we must then
require

gn,m

gn,m+1

fn,m+1

fn+1,m+1
= fn,m

fn+1,m

gn+1,m

gn+1,m+1
(63)

for arbitrary δx, δy. Taking the logarithm of this equation,
dividing by (δxδy), and taking the limits δx, δy → 0 then imply

∂x∂yq = ∂x∂y p (64)

by Taylor’s theorem. Hence,

p − q = B(x) + C(y), (65)

for some functions B and C of only a single variable. Thus, the
partial differential equations that are implementable indeed
take the form of (11).

Now that we have shown, in principle, how the Dirac
equation in classical backgrounds may be implemented in
waveguide arrays, we would like to draw the reader’s at-
tention to the considerable engineering challenge associated
with actually fabricating the waveguide arrays needed for
our implementation scheme: In addition to the nontrivial
coupling between the spinor components, we have encoded
the entire information about the mass of our test particle, the
background spacetime, and the electromagnetic background
it experiences into the refractive indices of the waveguides.
The limiting case of a flat spacetime and the gauge field set to
zero is certainly realizable, as there is only a single sinusoidal
refractive index modulation required (for an experimental
realization of a similar setup, see, e.g., Ref. [32]). It has to
be investigated on a case-by-case basis for any given more
complex background scenario if it might be realized with
state-of-the-art techniques.

V. GRAVITATIONAL AHARONOV-BOHM EFFECT

In this section, we devise a thought experiment to observe
the gravitational Aharonov-Bohm effect. We then show that
an analog can be implemented in a tabletop experiment with
the methods constructed above.

A. Theoretical considerations

Our starting point is the conical space. As argued in the
Appendix, we may write the metric as

ds2 = dt2 − (
√

x2 + y2)−2�(dx2 + dy2) (66)

in a global coordinate system. Going to polar coordinates, we
can write this as

ds2 = dt2 − R−2�(dR2 + R2dτ 2). (67)

The spacetime is locally flat, i.e., every point has an open coor-
dinate neighborhood on which the metric takes Minkowskian
form. While there is no such coordinate chart that covers all
of the cone, one may, however, introduce coordinate neighbor-
hoods in which the metric is Minkowskian and that cover the
entire cone except for a straight line starting at the tip of the
cone. For a fixed time, this can be understood geometrically as
cutting the cone along this line and flattening out the obtained
surface [33].

The result is a copy of R2 with a wedge of angular size
�2π removed. In such a coordinate system, the metric is
given by

ds2 = dt2 − dρ2 − ρ2dθ2 (68)

with

0 < θ < (1 − �)2π. (69)

The points for which θ = 0 and θ = (1 − �)2π , i.e., at the
edge of the removed wedge, would correspond to the line
along which we cut the cone and need to be excluded. This is
for the same reason that one excludes the values {0, 2π} in the
usual polar coordinates of R2. To be mathematically precise,
this ensures that our coordinate maps are diffeomorphisms
between open sets. Thus, we see that to describe the entire
cone using only flat coordinate systems, we need an additional
flat coordinate patch. This corresponds to cutting the cone
along a different line. To signify the difference between these
coordinate systems, we denote the angular variable by φ for
the second coordinate system. As before, we have

ds2 = dt2 − dρ2 − ρ2dφ2 (70)

with

0 < φ < (1 − �)2π. (71)

We make the cuts along the positive and negative x axes of
our global coordinate system (see Fig. 1).

The idea now is to mimic the Aharonov-Bohm effect for
U (1) gauge fields. For this, we want to create an input state
that corresponds to two separately localized parts �0,�0 of
a wave function with initial momenta chosen such that one
of the localized parts will travel above the tip of the cone at
(x = 0, y = 0), while the other travels below. Heuristically,
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FIG. 1. Coordinate systems. The colored sections of the x axis
mark the half-line on the cone which is not covered by the flat
coordinate systems.

we think of the two areas of localization of the wave function
as two separate particles.

In flat spacetime, it is well known how to create localized
states with Gaussian momentum distribution. For example,
one projects a plane-wave solution in momentum space onto
the positive energy subspace, multiplies with a Gaussian
centered around the desired momentum, and Fourier trans-
forms [34]. We understand the free time evolution of such
initial states in the flat spacetime and can easily calculate it
numerically. We can use this knowledge to understand the
dynamics in conical space, by making use of the fact that our
spacetime is locally flat. We initially work in the coordinate
system characterized by the angular variable θ and prepare an
input state

�flat := �0 + �0 (72)

normalized as ||�0|| = ||�0|| = 1√
2
. �0 is taken to be local-

ized in sector II and �0 in sector III (compare Fig. 2).
We choose the θ -coordinate system for the preparation

of the input states, since we heuristically think about the
two localized parts of the initial state as originating from
a common source located in the direction opposite to the

FIG. 2. Input state preparation in a flat coordinate system. The
input states �0, �0 are taken to be localized and centered around
momenta parallel to the half-line that corresponds to x < 0 in the
global coordinate system, signified by the arrows. Note that a half
line starting at zero in the global coordinate system still corresponds
to a half line in the flat coordinate system.

initial momenta of the two parts. Hence, we need a coordi-
nate patch that covers the entire geometry of such a setup,
including the point of the source, the parts of the spacetime
where the states �0,�0 are localized, and the trajectory
between the source and the state. We want to describe the sub-
sequent time evolution in the coordinate system characterized
by the angular variable φ, since we will mainly be concerned
with observations in the sectors I and IV and hence want a flat
coordinate system that is able to describe this patch.

To be able to do so, we require the time-evolved states to
not extend through the line along which we cut our cone to
go to the φ-coordinate system (i.e., {x < 0, y = 0} under the
identification of the constant time slice of the manifold with
the global coordinate system). Fortunately enough this can
be guaranteed: Let us first approximate the initial Gaussian
wave function by zero whenever the values fall below a certain
threshold. This can be done smoothly, if we subsequently mol-
lify around the cutoff. Since the time evolution in flat space is
implemented as a unitary operator, the time-evolved truncated
state approximates the time-evolved true state with the initial
error in norm at all times on the flat patch. Furthermore,
we note that the Dirac equation imposes a finite propagation
speed. That is, for continuously differentiable ψ ∈ C1(R2)
which is nonzero only within a ball of radius r centered at x0

[i.e., suppψ (0, ·) ⊂ Br (x0)], we have suppψ (t, ·) ⊂ Br+t (x0);
i.e., it is nonzero only within a Ball of radius (r + t ) [35].
Hence, if we prepare the initial states around large enough
initial momenta and far enough away from the half line {x <

0, y = 0}, we avoid the truncated states to reach this half line
before the expectation values have propagated beyond the tip
of the cone in this coordinate system.

Hence, we may change our coordinate system to the one
characterized by the angular variable φ and do the subsequent
calculations in this coordinate system. We have to first check
how the input states change under such a coordinate trans-
formation to find their form in the new coordinates. For this,
we need to know the angular change φ − θ . We obtain this
information by making reference to the angular variable τ of
the global coordinate system. From the relation of metrics in
the respective coordinate systems (cf. the Appendix), we can
infer that where the coordinate systems overlap

dφ = (1 − �)dτ = dθ. (73)

Furthermore, the half line

{ lim
τ↓0+

R(cos(τ ), sin(τ ))T | R > 0} (74)

in the coordinate system characterized by τ corresponds to

{ lim
θ↓0+

ρ(cos(θ ) sin(θ ))T | ρ > 0} (75)

in the flat coordinate system characterized by θ (see Fig. 1).
Here

ρ = (1 − �)−1R1−�. (76)

Strictly speaking, we need to take the limits on the man-
ifold itself and not in the coordinate representation, since as
argued above, the limits of the considered sequences are not
in the coordinate images anymore. However, we stick to this
notation since it is less cluttered and there is no room for
confusion.

013514-7



KOKE, NOH, AND ANGELAKIS PHYSICAL REVIEW A 102, 013514 (2020)

For y < 0, we know that the half line

{R(cos(π ), sin(π ))T | R > 0} (77)

in the coordinate system characterized by τ corresponds to the
half line

{ lim
φ↓0+

ρ(cos(φ), sin(φ))T | ρ > 0
}
. (78)

Integrating the differential equations (73) with these initial
conditions then yields

θ = (1 − �)τ, (79)

φ = (1 − �)(τ − π ). (80)

For the set where y > 0, we know that

{R( cos(π ), sin(π ))T | R > 0} (81)

corresponds to

{ lim
φ↑(1−�)2π

ρ( cos(φ) sin(φ))T | ρ > 0}. (82)

Together with (73), this then implies

θ = (1 − �)τ, (83)

φ = (1 − �)(τ + π ). (84)

An easy calculation then shows

[φ − θ ]mod2π = (1 − �)π =: α (85)

for y > 0, and

[φ − θ ]mod2π = (1 + �)π =: β (86)

for y < 0. Of course, we can infer the value of the change in
the angular variable only up to 2π . Since we are working with
spinors, this is not a triviality. As we will see momentarily, it
does not pose an obstacle though.

Under a Lorentz transformation �, infinitesimally charac-
terized by ωab(�), spinors change according to [36]

ψ (x) �−→ � 1
2
(ωab(�))ψ (�−1x). (87)

Here, we are working with the spin- 1
2 representation, denoted

by � 1
2
(·). Given the Clifford algebra structure of {γ0, γ1, γ2},

we can represent the effect of a Lorentz transformation �

through [36]

� 1
2
(ωab(�)) := exp

(
i

2
ωab(�)

i

4
[γ a, γ b]

)
. (88)

In our case of a rotation � = R2(η) in the plane, the only
nonvanishing entries of ωab are ω12 = −ω21 = η. This then
yields

V (η) := � 1
2
(ωab(η)) = exp

(
i

2
ησz

)
. (89)

The two coordinate systems dissect the underlying spatial
slice of our manifold into two open disjoint subspaces, the one
where y > 0 and the one where y < 0. Thus, we a priori do not
know to which of the two possible elements of {V (η),V (η +
2π )} the elements R2(η) ∈ SO(2), where η = α, β, need to be
lifted for a consistent prescription. However, we can infer this
by considering the case � → 0 for which the transformation

for η = α needs to coincide with the transformation for η =
β. As this is the case for the choice of representations of
the angular variables in (85) and (86), we see that we are
consistent in simply inserting η = α, β into (89). We therefore
infer that our input states must change according to

�0(x) �−→ V ((1 − �)π )�0
(
R−1

2 ((1 − �)π )x
)
,

�0(x) �−→ V ((1 + �)π )�0
(
R−1

2 ((1 + �)π )x
)
. (90)

Next, let us see how to describe the time evolution of
the input states that we have in the coordinate system with
angular variable φ. As was to be expected, we find that it
does not matter if one first time evolves and then changes
the coordinate system, or if one first changes the coordinate
system and then time evolves in the new coordinate system.
To see this rigorously, let us consider a Lorentz transformation
� : R1,2 → R1,2, mapping from the coordinates {y′μ} to {zμ}.
Recalling the covariance of the flat Dirac equation, we know
that [

iγ μ(�−1)νμ
∂

∂zν
− m

]
� 1

2
(ωab(�))ψ (t,�−1z)

= � 1
2
(ωab(�))

(
iγ μ ∂

∂y′μ − m

)
ψ (t, y′) = 0

(91)

holds for solutions ψ (t, x) [36]. In our case, t = z0 = y′0
and the transformation � is a pure rotation R2(η) : R2 →
R2. Since in this case [γ0,� 1

2
(ωab(η))] = 0, which in our

choice of representation is easily seen since γ0 = σz and
� 1

2
(ωab(R2(η))) = e

i
2 ησz , we have for the time evolution Uz(t )

in the z-coordinate system

Uz(t )V (η)�0
(
R−1

2 (η)z
) = V (η)�(t, R2(−η)z). (92)

where �(t, y′) = Uy′ (t )�0(y′) is the solution of the Dirac
equation in the y′-coordinate system.

Now first take two copies of R2 with coordinates

(y′1, y′2) := r( cos(θ ), sin(θ )) : 0 < θ < 2π, (93)

(z1, z2) := r( cos(φ), sin(φ)) : 0 < φ < 2π, (94)

Then we can think of the coordinate representations that
describe parts of our manifold [i.e., the ones where 0 <

φ, θ < (1 − �)2π )] as the open subsets of these copies of R2

in which the corresponding angular wedge is removed. If we
take η = α, we can completely describe the time evolution of
the initial �0 in this setting:

Uz(t )V (α)�0
(
R−1

2 (α)z
) = V (α)�(t, R2(−α)z). (95)

We only have to make sure that at no point, after transform-
ing the state to the z-coordinate system, are there nonzero
contributions in the wedge (1 − �)2π � φ � 2π in order to
maintain a consistent description. We argue similarly for the
case of the initial �0; only here we have to set η = β:

Uz(t )V (β )�0(R−1(β )z) = V (β )�(t, R2(−β )z). (96)

In total, assuming that neither state is nonzero in the
missing wedge in the z-coordinate system, we have as our total
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state at time t

�tot(t, z) = V (α)�(t, R2(−α)z) + V (β )�(t, R2(−β )z).

(97)

The probability density everywhere except on the half line
{y = 0, x < 0} and thus especially in the quadrants I and IV,
expressed in coordinates z1 = r cos(φ), z2 = r sin(φ), is then
given by

ρ�+�(t, z) = �̄�(t, R2(−α)z) + �̄�(t, R2(−β )z)

+ 2Re{�̄(t, R2(−α)z)eiσz�π�(t, R2(−β )z)}.
(98)

This dependence on the deficit angle is precisely what we
expected after our discussion in Sec. II B.

We note the similarity to the corresponding result for
the interference pattern of electrons under the influence
of the electromagnetic Aharonov-Bohm effect. There, the role
of the deficit angle is played by the magnetic flux: For the
Aharonov-Bohm effect, one can obtain time-dependent solu-
tions by time evolving initial states as if no gauge potential is
present as long as we do not have to consider paths encircling
the solenoid containing the magnetic field (i.e., in any region
of the space with vanishing fundamental group). Then, to
describe the interference pattern of parts of the wave function
that have “traveled” above and below the solenoid, we need
to gauge transform to a common gauge choice. Since the
gauge connection cannot be set to zero globally, this modifies
the time-evolved states by adding a phase corresponding to
whether the states traveled above or below the solenoid [37].

In the gravitational case, we time evolve initial states as if
our flat coordinate system extends indefinitely. This descrip-
tion is valid as long as we do not have to consider paths that
encircle the tip of the cone. To calculate the probability den-
sity on the side of the cone opposite to where we prepared the
initial state, we go to the coordinate system that completely
covers this side of the cone.

Spinors transform nontrivially under rotations; not only is
their argument transformed as x �→ R−1(η)x but they are also
multiplied with an element of Spin(2). In our representation,
this is given by

V (η) = e
iη
2 σz (99)

and can thus heuristically be understood as a generalized
phase factor. Depending on whether they traveled above or
below the cone, the respective localized parts of the wave
function are multiplied with different generalized phase fac-
tors, according to η = α or η = β.

We note that with our coupled waveguide array tuned to
host a conical geometry, we can realize such an interference
experiment directly, since the intensity in the lattice can be
used to infer the probability density, which transforms as a
scalar under a general coordinate change [30]. We now want
to detail how to achieve this.

B. Physical implementation in a waveguide array

Our starting point is (15), repeated here for convenience:

i∂tχ = i f (σy∂x + σx∂y)χ + mσzχ

Here

f = 1

g
= (
√

x2 + y2)�, (100)

and χ is a rescaled spinor, related to the true spinor as

χ := √
gψ = 1√

f
ψ. (101)

We discretize the space as(
x
y

)
�−→

((
1
2 + n

)
δx(

1
2 + m

)
δy

)
m, n ∈ Z, (102)

which is useful because

lim
x,y→0

g(x, y) −→ ∞, (103)

and we can cap this potentially singular behavior in the field
redefinition (101) using (102) since no space point is directly
placed in the center. We define

jχ
m
n := χ j

[(
1
2 + n

)
δx,
(

1
2 + m

)
δy
]
, (104)

as well as

f (n, m) := {[( 1
2 + n)δx]2 + [( 1

2 + m
)
δy
]2}�

2 , (105)

√
g(n, m) := 1

f (n, m)
, (106)

and

h(a, b) := f (�a/2	, b). (107)

We then take our waveguide lattice with three distinct
modulations of the refractive index. We assign rescaled spinor
components jχ

m
n according to (48), further rescaled by (57).

To fix the values {Zmn}, let us choose

Z00 = 1√
f (0, 0)

. (108)

Then we have by (61)

Zmn = 1√
f (m, n)

=
√

g(n, m). (109)

Denoting

(gjψ )m
n := g(n, m) jψ

m
n , (110)

we are thus assigning rescaled spinor components according
to⎡
⎢⎢⎢⎣

−(g1ψ )m+2
n−1 (g2ψ )m+2

n (g1ψ )m+2
n −(g2ψ )m+2

n+1

i(g2ψ )m+1
n−1 −i(g1ψ )m+1

n −i(g2ψ )m+1
n i(g1ψ )m+1

n+1

(g1ψ )m
n−1 −(g2ψ )m

n −(g1ψ )m
n (g2ψ )m

n+1

−i(g2ψ )m−1
n−1 i(g1ψ )m−1

n i(g2ψ )m−1
n −i(g1ψ )m−1

n+1

⎤
⎥⎥⎥⎦.

To achieve the correct signs of the effective coupling con-
stants, we employ an amplitude prescription according to
(52) for the first modulation. The two remaining modulations
are then used to achieve the necessary position-dependent
modulation of the absolute value of the coupling constants. As
detailed in (35) and (37), every site that has a nonzero ampli-
tude for one modulation has zero amplitude for the other and
vice versa. Furthermore, every nonzero amplitude of a given
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modulation is surrounded by sites that have zero amplitude
for this modulation. In the present case, the amplitudes on the
lattice site (ab) are then chosen such that

J0(�ab) =
√√√√ h(a, b)

max
n,m

f (n, m)
, (111)

where in the notation of Sec. III �ab = Aab
α

or �ab = Bab
β

,
depending on which amplitude is nonzero and the maximum
is taken over all {(mn)} considered in the actual setup. This
then yields the correct coupling constants for each wave guide
(a, b) to its neighbors to ensure the correct coupling of the
spinor component j�

m
n to its neighbors.

Next let us consider the input state preparation. Given
localized initial states �0(y′) and �0(y′) in the coordinate
system characterized by the angular variable θ , we need to
know how to express them in the global coordinate system
characterized by τ . We know

(1 − �)τ = θ, (112)

and hence

[τ − θ ]mod2π = �τ. (113)

Since the vielbein is diagonal, the combined initial state
�flat(y′) in the flat θ -coordinate system then simply corre-
sponds to the state

�initial = V (�τ (x, y))�flat(y′(x, y)). (114)

Here τ ≡ τ (x, y) is given by the relation

(x, y) =
√

x2 + y2(cos[τ (x, y)], sin[τ (x, y)]), (115)

and [cf. (A18)]

(y′1, y′2)(x, y) =
√

(y′1)2 + (y′2)2(cos(θ ), sin(θ ))

=
√

x2 + y2
1−�

(1 − �)
(cos[(1 − �)τ ],

sin[(1 − �)τ ]). (116)

As input state in our lattice, we then prepare the rescaled
discretized verion of (114), given by

j (�disc. )
m
n := g(nm) j (�initial )

m
n . (117)

The evolution along the waveguides then mimics the time
evolution of the approximated quantum system, i.e., that of
a particle governed by the Dirac equation in conical space, in
the global coordinate system. Hence, if we want to know the
probability density of the quantum system at a given time, we
can infer it from the intensity

Iab = |cab|2 (118)

in our waveguide system at the corresponding transverse
distance from the points where the input state was prepared.

To observe the “phase shift” of the gravitational Aharonov-
Bohm effect, let us now prepare the input state

�flat(y
′) := �0(y′) + �0(y′), (119)

as discussed above in Sec. V A (cf. also Fig. 2). Note that
the demands put on the waveguide system that need to be

fabricated by the requirements on the position of the localized
parts of the initial state can be mitigated by varying the
discretization length or the physical (noneffective) coupling
constants. The requirement of the input state being predomi-
nantly composed of modes corresponding to sufficiently large
momenta, however, leads to a potentially complicated phase
structure that might vary rapidly with the waveguide position
for the input state. This might add additional challenges to
the optical input-state preparation. After the input state is
prepared and some time has passed, the probability density
will then be given by (98) with z = z(x, y), since it simply
transforms as a scalar under coordinate changes [30]. Note
that

(z1, z2)(x, y) = r( cos(φ), sin(φ)),

=
√

x2 + y2
1−�

(1 − �)
{cos[φ(τ (x, y))],

× sin[φ(τ (x, y))]}. (120)

The relation φ(τ ) between the angular coordinates is given by
(80) and (84). These equations imply

lim
τ↓0

φ(τ ) = (1 − �)π = lim
τ↑2π

φ(τ ), (121)

and thus φ(τ ) is well defined.
In our waveguide array experiment, the amplitudes in the

respective waveguides correspond to the spatially discretized
version of the rescaled spinor components. Hence, we can
reconstruct the discretized probability density as

ρ�+�

{
t, z

([
1

2
+ n

]
δx,

[
1

2
+ m

]
δy

)}

= 1

[g(n, m)]2
[I(2n)m + I(2n+1)m]

= [ f (n, m)]2[I(2n)m + I(2n+1)m]. (122)

Obtaining these experimentally and subsequently plotting
them in the z-coordinate system [i.e., as a function of z and not
as a function of (x, y)] using the relation z(x, y) then precisely
yields a discretized approximation of (98).

Hence, we can observe the deficit angle as the �-dependent
shift of this interference pattern. One might obtain the numer-
ical value of � from the interference experiment described
above by numerically calculating or obtaining from a separate
waveguide experiment tuned to host flat space, the time evo-
lution of the initial states �0, �0 in the flat coordinate system.
Then the function

f�(z) := �̄�[t, R2( − (1 − �))z] + �̄�[t, R2( − (1 + �))z]

+ 2Re{�̄[t, R2( − (1 − �))z]eiσz�π

×�[t, R2( − (1 + �))z]} (123)

at fixed time t can be fitted to the data obtained in the
waveguide experiment detailed above. Here the fit proceeds
with parameter �. The resulting value of � yields the value
of the phase shift ei�π .
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VI. CONCLUSION

We developed a scheme to implement the Dirac equation
in 2 + 1 dimensions in curved spacetime and classical elec-
tromagnetic background in a coupled waveguide array. To
do so, we had to introduce effective, site-dependent coupling
constants. This was achieved by periodically varying the
refractive index of the respective waveguides. In the case of
flat spacetime, one modulation sufficed, since only varying
signs of the coupling constants needed to be achieved. For
the general case, two more modulations and a spinor rescaling
enabled the introduction of arbitrary site-dependent couplings
of spinor components. The electromagnetic potential was
encoded into the refractive index too. The implementation
scheme in principle allows for implementations of many
physically interesting settings. As an example, we devised
a thought interference experiment to observe a gravitational
analog of the Aharonov-Bohm effect in the spacetime of
a cone. The global geometry of this locally flat setting in-
troduced a generalized phase difference between the time
evolution of separately localized states. Finally, we briefly
explained how an analog of this setting might in principle be
implemented and how the associated generalized phase shift
could be observed in a waveguide array.
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APPENDIX

1. Introduction to gravity in 2 + 1 dimensions

Since certain aspects are quite different from the more
familiar (3 + 1)-dimensional case, it is expedient to briefly
discuss the most distinctive features of three-dimensional
gravity. We closely follow Ref. [33].

a. General remarks on (2 + 1)-dimensional gravity

Our starting point is a three-dimensional pseudo-
Riemannian manifold (M, g). One can show that in 2 + 1
dimensions, the Ricci tensor completely determines the Rie-
mann tensor [38]:

Rμνρσ = gμρRνσ + gνσ Rμρ − gνρRμσ − gμσ Rνρ

− 1
2 (gμρgνσ − gμσ gνρ )R. (A1)

Gravity is defined via Einstein’s field equations

Gμν = 8πTμν, (A2)

where we used the definition of the Einstein tensor,

Gμν := Rμν − 1
2 Rgμν, (A3)

and absorbed a possible cosmological constant into the stress-
energy tensor. Note that throughout this paper we work in

Planck units. Since the vanishing of Einstein’s tensor implies
a vanishing Ricci salar, it also implies that the Ricci tensor
vanishes. But in 2 + 1 dimensions, this now immediately
gives a vanishing Riemann tensor. There is thus no way that
matter can communicate gravitationally in three-dimensional
spacetime and curvature at a specific point of the manifold is
equivalent to matter being present at this point. All effects that
localized sources have are on the global geometry [2].

Another interesting feature for this dimensionality is the
fact that the Cotton tensor, given in coordinates by

Ci jk := ∇kRi j − ∇ jRik + 1
4 (∇ jRgik − ∇kRgi j ), (A4)

plays the role of the Weyl tensor of higher dimensional
pseudo-Riemannian manifolds: In 2 + 1 dimensions, the van-
ishing of the Cotton tensor is equivalent to conformal flatness,
while in higher dimensions, conformal flatness is equivalent
to the vanishing of the Weyl tensor. It is not hard to see that a
vanishing Ricci tensor implies a vanishing Cotton tensor [39].
Thus, vacuum solutions to Einstein’s field equations yield
conformally flat metrics. We now turn to a specific spacetime
we want to study in greater detail.

b. Example: The cosmic string solution: Conical space

In 3 + 1 dimensions, the simplest cosmic string solution is
a solution that is invariant under translations in one spatial
direction [33]. It is thus essentially a (2 + 1)-dimensional
system with a trivial dependence on a fourth spacetime co-
ordinate, to be called z in what follows. For reasons of gener-
ality, we first discuss it in the context of (3 + 1)-dimensional
gravity. Then we will discard the z coordinate and consider
the (2 + 1)-dimensional system.

During a symmetry-breaking phase, for example, in the
very early universe, topological defects may arise naturally
[40,41]. Cosmic strings are such hypothetical, almost one-
dimensional topological defects in spacetime, which are
analoguous to other linear defects that are familiar from
condensed matter systems [41]. The system of equations
governing the dynamics of the gravitating string can be made
tractable by assuming a vanishing string diameter, thus ap-
proximating it as a line of zero width through a distributional
δ-function energy-momentum tensor. Furthermore, one may
assume a sufficiently weak gravitational field, so that the
linearized Einstein equations provide a good approximation.
For a detailed derivation, the reader is referred to Refs. [42] or
[33], which we are following closely.

We consider a weak gravitational field in which the space-
time is almost Minkowskian,

gμν = ημν + hμν, (A5)

with |hμν | � 1. It is thus justified to linearize Einstein’s
equations in hμν . Using the harmonic gauge, specified by

∂ν

(
hν

μ − 1
2δν

μhσ
σ

) = 0, (A6)

one may find the solution of Einstein’s equations for a straight
string along the z axis, for which

T ν
ρ = μδ(x)δ(y)diag(1, 0, 0, 1). (A7)

The solution is found to be

h00 = h33 = 0, (A8)
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h := h11 = h22 = μ ln

(
r

r0

)
, (A9)

with r :=
√

x2 + y2 and r0 being a constant of integration.
Consistency with the condition |hμν | � 1 then limits the

domain of applicability of the weak field equations. However,
the current coordinate system is not a suitable one for this
purpose. Instead, we go to the cylindrical coordinates, in
which

ds2 = dt2 − dz2 − (1 − h)(dr2 + r2dθ2). (A10)

Introducing

(1 − 8μ)ρ2 = (1 − h)r2, (A11)

one obtains to linear order in μ,

ds2 = dt2 − dz2 − dρ2 − (1 − 8μ)ρ2dθ2. (A12)

Introducing a new angular coordinate

θ̃ = (1 − 4μ)θ, (A13)

the metric can be written in the Minkowskian form

ds2 = dt2 − dz2 − dρ2 − ρ2d θ̃2 (A14)

with

0 < θ̃ < 2π (1 − 4μ), (A15)

again to linear order in μ.
One therefore sees that to first order in μ, the presence of

the string introduces an azimuthal deficit angle 2π�, where
� ≡ 4μ, while the spacetime remains locally flat. The surface
of constants t and z thus has the geometry of a cone. The
weak-field approximation (with |hμν | � 1) is justified for
μ � 1. Observations constrain Gμ � 10−5 for cosmological
scenarios. The weak-field metric (A12) coincides with

ds2 = dt2 − dz2 − dρ2 − (1 − �)2ρ2dθ2 (A16)

to first order. The validity of this metric can be extended be-
yond linear perturbation theory by taking the spacetime metric
to be given by (A16) outside the domain of applicability of
linear perturbation theory [33].

The metric (A16) is locally Minkowskian and is thus an
exact solution of the vacuum Einstein equations. However, it
induces a nontrivial global geometry. We will now focus on
the study of the (2 + 1)-dimensional version of this metric,
which is obtained by discarding the dz2 term. At this point,
one might wonder which (2 + 1)-dimensional object could
play the role of a source for this metric. It turns out that
the metric for a spinning point source in (2 + 1)-dimensional
gravity and conformal coordinates is given by [2]

ds2 = (dt + 4Jdθ )2 − R−8μ(dR2 + R2dθ2), (A17)

with μ, J = const. and
√

gT 00 = μδ(x1)δ(x2), T i j = 0, and√
gT 0i = 1

2 Jεi j∂ jδ(x1)δ(x2). Here, x1, x2 are the Cartesian co-
ordinates corresponding to the cylindrical coordinate system
the metric is expressed in. Introducing a new radial coordinate

r := (1 − 4μ)−1R(1−4μ), (A18)

this can be written as

ds2 = (dt + 4Jdθ )2 − dr2 − (1 − 4μ)2r2dθ2. (A19)

It is then easy to see that the metric is flat outside the source.
As we have discussed before, this has to be the case in 2 + 1
dimensions. The spacetime outside an arbitrary distribution
of particles in the center-of-mass frame confined to a region
r < r0 can be described by this metric for r > r0 [33]. Within
this region, the curvature is not necessarily zero as there are
sources present.

It is not hard to see that for J > 0 the metric admits closed
timelike curves [for example, take t := t0, r := r0 < 4GJ (1 −
4gμ) and vary θ from 0 to 2π ]. To avoid this complication, we
set J := 0. Upon setting � := 4μ, we are thus left with metric
(A16) after discarding the z direction:

ds2 = dt2 − dρ2 − (1 − �)2ρ2dθ2. (A20)

This metric describes a conical space, which is a locally flat
space with a wedge of angular size 2π� removed and the two
lines, along which the wedge was cut out, identified. Note
that local flatness means that each point has an open coor-
dinate environment on which the metric in coordinates is the
Minkowski metric. This is different from simply introducing
normal coordinates, in which case the metric a priori only
takes Minkowski form at a single point. The metric in a global
coordinate system can be inferred from (A17) with J = 0:

ds2 = dt2 − R−2�(dR2 + R2dθ2)

= dt2 − (
√

x2 + y2)−2�(dx2 + dy2). (A21)

This is clearly of the form (4) with

e� = (
√

x2 + y2)−�. (A22)

Since the spacetime is locally flat, it is clear that a test particle
initially at rest relative to the string will stay at rest and there
is no Newtonian gravitational force. The global geometrical
difference with the Minkowski space however gives rise to
interesting nontrivial effects, for example, double images [33].

The situation is reminiscent of the Aharonov-Bohm effect
in electrodynamics. There, one considers a punctured plane
and a vector potential A that may be gauged away in any
region with vanishing fundamental group, but not globally.
For a string, the curvature is confined to its core. We have
chosen a vanishing diameter for simplicity; for the general
case, see Ref. [33]. The nontrivial global geometry, however,
influences particles propagating in the flat region outside
the core. A Minkowskian coordinate system can be chosen
locally, but not globally.

2. The Dirac equation in curved spacetime

In local coordinates, the Dirac equation is given by [30]

[iγ μ∇μ − m]ψ (x) = 0. (A23)

Here we are using the vielbein eμ
a (x), defined by

eμ
a eν

bη
ab = gμν, (A24)

with the Minkowski metric η to transform the local gamma
matrices γ a according to

γ μ(x) = eμ
a (x)γ a. (A25)
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Note that {γ μ(x), γ ν (x)} = 2gμν (x). The covariant derivative
is given by

∇ν := ∂ν + �ν + iAν, (A26)

where the Aν constitute the coordinate expression of the local
U (1) gauge connection. �ν is given by

�ν (x) = − i

4
ωabν (x)σ ab, (A27)

where σ bc = i[γ b, γ c]/2 and ωabν are the spin connection
coefficients given by

ωa
bν = ea

μ∂ν

(
eμ

b

)+ ea
μeσ

b �μ
σν. (A28)

Note that ωabν = −ωbaν . For a pedagogical introduction, the
reader is referred to Ref. [28].

Specifically, for the metric given in (4), the nonvanishing
Christoffel symbols for the metric are readily calculated to
be �0

00 = �t , �0
10 = �x, �0

11 = �t e2(�−�), �0
22 = �t e2(�−�),

�1
00 = �xe2(�−�), �1

10 = �x, �1
11 = �x, �1

12 = �y, �1
22 =

−�x, �2
00 = −�ye2(�−�), �2

11 = −�y, �2
21 = �x, and �2

22 =
�y. Here we denoted fα := ∂α f and omitted symbols that may
be recovered from the given ones by index symmetry. The
vielbein ea

μ is readily calculated to be e0
0 = e� e1

1 = e2
2 = e� .

Since the metric is diagonal, we have for the nonvanishing
spin connection components that numerically ωa

bc = �a
bc if

a �= b. From these, one obtains

�0 = 1
4 (ω010[γ 0, γ 1] + ω020[γ 0, γ 2])

= 1
4 (�xe�−�[γ 0, γ 1] + �ye�−�[γ 0, γ 2]),

�1 = 1
4 (ω011[γ 0, γ 1] + ω211[γ 2, γ 1])

= 1
4 (�t e

�−�[γ 0, γ 1] + �y[γ 2, γ 1]),

�2 = 1
4 (ω022[γ 0, γ 2] + ω122[γ 1, γ 2])

= 1
4 (�t e

�−�[γ 0, γ 1] + �x[γ 1, γ 2]). (A29)

Working with local gamma matrices {γ a}, we may write
down the Dirac equation as

ie−�∂tψ − γ 0mψ + ie−�γ 0γ 1∂xψ + ie−�γ 0γ 2∂yψ

+ i

(
e−�γ 0γ 1 [γ 0, γ 1]

4
+ e−�γ 0γ 2 [γ 0, γ 2]

4

)
�t e

�−�ψ

+ i

(
e−� [γ 0, γ 1]

4
�xe�−� + e−�γ 0γ 2 [γ 1, γ 2]

4
�x

)
ψ

+ i

(
e−� [γ 0, γ 2]

4
�ye�−� + e−�γ 0γ 1 [γ 2, γ 1]

4
�y

)
ψ =0.

(A30)

Choosing γ 0 = σz, γ 1 = −iσx, and γ 2 = iσy, this equation
becomes

i(∂t + �t )ψ = −iσye�−�
(
∂x + 1

2�x + 1
2�x

)
ψ

− iσxe�−�
(
∂y + 1

2�y + 1
2�y

)
ψ

+ σze
�mψ. (A31)

Lastly, we remark that while it is well known that under a
general diffeomorphism, a Dirac spinor can be taken to trans-
form as a collection of scalars [30], if we work in coordinates

and apply a change of coordinates from {xμ} to {yμ}, then
not only are we applying a diffeomorphism but we are also
implicitly changing the frame in each tangent space with the
help of which we express our Dirac spinor. This amounts to
going from the basis {∂/∂xμ} to the basis {∂/∂yμ}. In case the
change can be represented by a proper Lorentz transformation
in each tangent space, standard arguments yield that this can
be lifted to the spinor representation as

ψ (x) �−→ � 1
2
(ωab[�(x)])�[�−1(x)x], (A32)

where � is the corresponding matrix of the fundamental
representation,

� 1
2
(ωab[�(x)]) := exp

(
i

2
ωab(x)

i

4
[γ a, γ b]

)
. (A33)

� 1
2
(·) denotes the spin- 1

2 representation of the group element
� and the antisymmetric ωab characterizes our Lorentz trans-
formation [36].

3. Effective coupling constants: Justification for
neglecting quickly oscillating contributions

Our starting point is (30)

keff
[(a−1)↔a]b := 1

T

z0+T∫
z0

k[(a−1)↔a]b(z)dz, (A34)

where T := 2π
ω

, repeated here for convenience. We assume
that the scale of variation in the z direction of the modes cab(z)
is much larger than 1/α j for all j. Furthermore, we chose

α j = q jω, (A35)

with q j positive natural numbers. We expand the integrand
using the generating function of the Bessel functions of the
first kind

exp [iσ sin(x)] =
∑
n∈Z

Jn(σ )einx, (A36)

for each index j. To simplify notation, we write Aj :=
Aj

(a−1)b − Aj
ab. Interchanging summation and integration and

using that

1

2π

∫ 2π

0
exp

⎛
⎝i
∑

j

q jn jt

⎞
⎠dt =

{
1, if

∑
j q jn j = 0

0, otherwise,

(A37)

we see that

keff
[(n−1)↔n]m = k0

�∏
j=1

J0

(
Aj

2α j

)

+ k0

=:C�︷ ︸︸ ︷∑
(

�∑
j=1

n j q j = 0)

notalln j = 0

�∏
j=1

Jnj

(
Aj

2α j

)
. (A38)
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Since the convergence in (31) is absolute, we know that for
fixed x ∑

n∈Z
|Jn(x)| < ∞. (A39)

Furthermore, we note that |J−n(x)| = |Jn(x)|. We now show
by induction on � that by appropriately choosing the modula-
tion speeds α j , C� can be made arbitrarily small. For this, we
define

C|·|
� :=

∑
(

�∑
j=1

n j q j = 0)

notalln j = 0

∣∣∣∣ �∏
j=1

Jnj

(
Aj

2α j

)∣∣∣∣. (A40)

Clearly |C�| � C|·|
� and it suffices to show that C|·|

� can be
made arbitrarily small. For this, we choose the natural num-
bers in (A35) as

q j := 2 j�, (A41)

with a natural number �. Since the case � = 1 is trivial,
consider the case � = 2 as the base case. There we have

C|·|
2 =

∑
n2 �=0

∣∣∣∣J−2�n2

(
A1

2α1

)
Jn2

(
A2

2α2

)∣∣∣∣. (A42)

Thus, it follows that

C|·|
2 �

⎡
⎣∑

n �=0

∣∣∣∣Jn

(
A2

2α2

)∣∣∣∣
⎤
⎦ (A43)

×
⎡
⎣∑

k �=0

∣∣∣∣J(k2� )

(
A1

2α1

)∣∣∣∣
⎤
⎦ �→∞−→ 0. (A44)

Hence, we may make C2 arbitrarily small by choosing �

sufficiently large.

Now assume that C|·|
�

�→∞−→ 0 for � � p ∈ N and consider
the case � = p + 1. To proceed, note that one may split the
sum in C|·|

� into a part where no n j = 0 and a part where always
at least one n j = 0. The latter is then a sum of � = p + 1
terms of the form |J0(...)|C|·|

p with some of the summands in
C|·|

p set to zero. These terms have vanishing magnitudes by
assumption and the remaining term is

∑
(

p+1∑
j=1

n j 2 j� = 0)

n1, ..., np+1 �= 0

∣∣∣∣
p+1∏
j=1

Jnj

(
Aj

2α j

)∣∣∣∣ =: C̃|·|. (A45)

We note that summands where we have |nj | � 2� − 1 for all
1 � j � p + 1 do not occur, since in this case we have∣∣∣∣

p∑
j=1

n j2
j�

∣∣∣∣ � (2� − 1)
p∑

j=1

2 j�

= (2� − 1)

(
2�(p+1) − 1

2� − 1

)
= 2�(p+1) − 1 < 2�(p+1)

< |np+1|2�(p+1), (A46)

violating the summation condition

p+1∑
j=1

n j2
j� = 0. (A47)

Thus we in fact have

C̃|·| ≡
∑

( p+1∑
j=1

n j 2 j� = 0
)

some |n j | > (2� − 1)
n1, ..., np+1 �= 0

∣∣∣∣
p+1∏
j=1

Jnj

(
Aj

2α j

)∣∣∣∣. (A48)

From this we infer

C̃|·| �
p+1∑
k=1

∑
( p+1∑

j=1
n j 2 j� = 0

)
|nk | > (2� − 1)
n1, ..., np+1 �= 0

∣∣∣∣
p+1∏
j=1

Jnj

(
Aj

2α j

)∣∣∣∣. (A49)

But then clearly (implicitly keeping the summation over all nj

in the first row but not in the the second and third)

C̃|·| �
p+1∑
k=1

∑
|nk |>(2�−1)

∣∣∣∣
p+1∏
j=1

Jnj

(
Aj

2α j

)∣∣∣∣
=

p+1∑
k=1

⎛
⎝ ∑

|nk |>(2�−1)

∣∣∣∣Jnk

(
Ak

2αk

)∣∣∣∣
⎞
⎠

×
∏
j �=k

⎛
⎝∑

n j

∣∣∣∣Jnj

(
Aj

2α j

)∣∣∣∣
⎞
⎠. (A50)

This tends to zero as � tends to infinity.

4. Vanishing diagonal couplings

In this Appendix, we explain a possible method to realize
vanishing diagonal couplings in a two-dimensional square
lattice. To avoid a cluttered notation, we will mainly resort to
a pictorial representation. Our starting point are the approxi-
mate effective coupling constants (32) and (33) repeated here
for convenience:

k[(a−1)↔a]b ≈ k0

�∏
j=1

J0

(
Aj

(a−1)b − Aj
ab

2α j

)
, (A51)

ka[(b−1)↔b] ≈ k0

�∏
j=1

J0

(
Aj

a(b−1) − Aj
ab

2α j

)
. (A52)

We set � = 3 and define χ := A
2α1 = B

2α2 such that J0(χ ) =
0; e.g., χ ≈ 2.405. We then assign amplitudes according to[−A − 1

2 A 0 − 1
2 A

1
2 A A 1

2 A 0

]
(A53)

for the first modulation and[
1
2 B 0 1

2 B 0

0 − 1
2 B −B − 1

2 B

]
(A54)
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for the second modulation, periodically extended through the
lattice. As is easily verified directly, this implies that for the
coupling between sites that are diagonally adjacent, there is
always at least one Bessel function yielding the value zero.
The coupling in the y direction is so far then given by

ky = k0J0
(

3
2χ
)
J0
(

1
2χ
)
. (A55)

The coupling in x direction is given by

kx = k0
(
J0
(

1
2χ
))2

. (A56)

Note that ky < 0 < kx for ξ ≈ 2.405.

To rectify this, we can use the third modulation. We choose
C

2α3
such that

J0

(
C

2α3

)
< 0 (A57)

and prescribe amplitudes according to[
C C C C

0 0 0 0

]
. (A58)

This then leaves kx unchanged and ensures 0 < kx, ky.
The remaining mismatch between the effective couplings can
be absorbed into different discretization lengths in the two
directions.
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