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Detectors inherently capable of resolving photon numbers have undergone a significant development recently,
and this is expected to affect multiplexed periodic single-photon sources where such detectors can find their
applications. We analyze various spatially and time-multiplexed periodic single-photon source arrangements
with photon-number-resolving detectors, partly to identify the cases when they outperform those with threshold
detectors. We develop a full statistical description of these arrangements in order to optimize such systems with
respect to maximal single-photon probability, taking into account all relevant loss mechanisms. The model is
suitable for the description of all spatial and time multiplexing schemes. Our detailed analysis of symmetric
spatial multiplexing identifies a particular range of loss parameters in which the use of the new type of detectors
leads to an improvement. Photon number resolution opens an additional possibility for optimizing the system in
that the heralding strategy can be defined in terms of actual detected photon numbers. Our results show that this
kind of optimization opens an additional parameter range of improved efficiency. Moreover, this higher efficiency
can be achieved by using less multiplexed units, i.e., smaller system size as compared to threshold-detector
schemes. We also extend our investigation to certain time-multiplexed schemes of actual experimental relevance.
We find that the highest single-photon probability is 0.907 that can be achieved by binary bulk time multiplexers
using photon-number-resolving detectors.
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I. INTRODUCTION

Construction of periodic single-photon sources (PSPS) is
subject to intensive research due to the numerous applications
of such devices in quantum information processing [1–13] and
photonic quantum technology [14–18]. The most promising
realization of PSPS are the heralded single-photon sources
(HSPS) based on heralding one member (termed as the signal)
of a correlated photon pair generated in nonlinear optical
media by detecting the other member (referred to as the idler)
of the photon pair.

The most widely used processes applied for pair genera-
tion are spontaneous four-wave mixing (SFWM) in optical
fibers [19–22] and spontaneous parametric down-conversion
(SPDC) in bulk crystals [23–27] or waveguides [28–30]. The
latter process can yield highly indistinguishable single pho-
tons in an almost ideal single mode with known polarization
[23,25,29,31]. However, the probabilistic nature of photon
pair generation in nonlinear sources results in a limit of the
achievable single-photon probability. For example, for weaker
spectral filtering, the theoretically achievable maximal single-
photon probability of HSPS is 0.367 which corresponds to the
single-photon probability of Poissonian statistics. For a suf-
ficiently narrow filtering ensuring the photon indistinguisha-
bility, the photon statistics of the pairs is thermal resulting in
a lower single-photon probability of 0.25. To overcome this
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issue and for enhancing the single-photon probability while
simultaneously suppressing multiphoton noise in HSPS, var-
ious techniques of multiplexing, namely spatial multiplexing
[32–38] and time multiplexing [39–51], were proposed in the
literature.

The principle of multiplexing is to reroute heralded pho-
tons generated in a set of multiplexed units realized in time
or in space to a single output mode by a switching network.
The mean photon number of the generated photon pairs in
a multiplexed unit should be kept low ensuring that the
multiphoton events are negligible while the overall probability
of successful heralding in all the multiplexed units should be
high ensuring a high single-photon probability.

In the case of spatial multiplexing several individual pulsed
HSPS are used in parallel. After a successful heralding event
in the idler arm of a source (i.e., in a multiplexed unit),
the corresponding signal photon is directed by binary photon
routers (2-to-1) to a single output. The system of routers can
be either symmetric (log-tree) or asymmetric (chain) [52,53].
The periodicity of such PSPS stems from the period of the
pulsed pump laser. Spatial multiplexing has been successfully
demonstrated experimentally up to four multiplexed units by
using SPDC in bulk crystals [34,38] and waveguides [36],
and up to two multiplexed units by using SFWM in photonic
crystal fibers [35,37].

The idea of time multiplexing is based on the detection of
idler photons of a pulsed or continuous nonlinear photon pair
source in time slots within a time period. Hence, a multiplexed
unit is a possible time slot in this case. In case of a successful
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detection event the heralded signal photons are delayed to
leave the system at the end of the given time period resulting
in a periodic single-photon source. Timing of the arrival of
the output photons can be controlled by a switchable optical
storage cavity or loop [39,40,45,48], or using a binary division
strategy [41,42,50,51]. Time multiplexing based on a delay
loop has been realized experimentally in a fiber-integrated
system using SFWM up to four time slots [46,47]. Optical
storage cavities and SPDC sources were used in experiments
realizing PSPS via large-scale time multiplexing up to 40 time
slots [44,49]. The highest single-photon probability that has
been achieved in these latter experiments is 0.667 which is
the highest one realized in multiplexed PSPS until now [49].
Moreover, the generated photons collected into a single-mode
fiber were highly indistinguishable.

In principle, in an ideal lossless multiplexed system the
single-photon probability asymptotically tends to one by in-
creasing the number of multiplexed units and simultaneously
decreasing the mean photon number of the incoming photon
pairs. However, losses of nonideal optical elements in the
heralding stage as well as in the multiplexing system impose
a limitation on the performance of multiplexed PSPS [52,53].
Therefore a full statistical treatment taking into account all
relevant loss mechanisms is required for the analysis of such
systems. In Ref. [54] such a theoretical framework was pre-
sented for the description and optimization of spatially and
time-multiplexed systems built up with threshold (or on-off)
detectors.

The optimization has revealed that for a given set of losses
there is a number of multiplexed units and a mean photon
number of photon pairs in each multiplexed unit for which
the single-photon probability is maximal. The analysis also
showed that the highest single-photon probability can be
achieved by using bulk time multiplexers based on binary
division strategy. Using experimentally realizable optical ele-
ments in this system the achievable single-photon probability
is 0.85. In Ref. [55] the theoretical framework was extended to
describe combined multiplexers that apply both time and spa-
tial multiplexing in a single setup [56–58]. The optimization
showed that the combination of the two types of multiplexing
can lead to a decrease in the number of required nonlinear
sources and a possible increase in the achievable repetition
rate of the system as compared to the standalone use of the
optimized spatial or time multiplexer, while maintaining the
achieved single-photon probability.

Beside multiplexing, another way of avoiding the occur-
rence of multiphoton events at the heralding stage of these sys-
tems is the application of photon-number-resolving detection
and considering the events of detecting exactly one photon.
Accordingly, single-photon detectors with number resolving
capability (SPDs) were generally used in recent multiplexed
PSPS experiments [35,37,38,44,46,47,49]. A possible realiza-
tion of SPDs is based on simultaneous use of threshold de-
tectors with either a temporal or spatial multiplexing scheme
[59–70]. Such schemes can also be used as photon number
resolving detectors (PNRDs). Their performance and their
limitations in the presence of various imperfections and losses
are analyzed in Refs. [65–67,69,70].

Meanwhile, developing high-efficiency inherent PNRDs is
of great research interest due to their various applications

in photonic quantum technologies. The best known realiza-
tions of such devices are transition edge sensors [71–79],
quantum dot optically gated field-effect transistors [80,81],
superconducting nanowire detectors [82,83], and fast-gated
avalanche photodiodes [84,85]. Detector efficiencies as high
as 98% [76,77] have already been reported with almost ideal
photon-number discrimination at low photon numbers using
transition edge sensors in the near-infrared regime. Recently
it has been found that fiber coupled transition edge sensors are
capable of resolving photon number states up to 25 photons
[78]. A special advantage of transition edge sensors is their
negligibly small dark count rate [71–73,75,79].

The progress in the experimental realization of photon
detection with photon-number-resolving capability naturally
inspires the development of a theoretical framework for mul-
tiplexed PSPS equipped with PNRDs. As we saw before, in
the case of multiplexed PSPS employing threshold detectors,
a proper theoretical framework leads to a detailed understand-
ing as well as valuable information for the design of the
system. Motivated by these, in the present paper we develop
the full statistical description of such systems including all
relevant loss mechanisms. We incorporate into the model the
use of PNRDs with arbitrary detection strategy, that is, detect-
ing an arbitrary set of predefined number of photons in the
idler arm for which the generated signal photons are allowed
to enter the multiplexer. This model allows for the maxi-
mization of single-photon probabilities of multiplexed PSPS
under realistic experimental conditions via optimization in the
number of multiplexed units and the mean photon number
of photon pairs in each of them. We compare the achievable
single-photon probabilities of spatially multiplexed systems
equipped with PNRDs with the ones containing threshold
detectors over a wide range of the parameters describing the
various losses. This will make it possible to predict when the
use of PNRDs really pays off. We accomplish this comparison
for relevant time-multiplexed systems for selected sets of
experimentally feasible parameters. We do this with the aim of
identifying the feasible arrangement which is likely to prove
the most efficient.

The paper is organized as follows: In Sec. II we give a
short overview of spatial and time multiplexing. In Sec. III we
introduce the theoretical framework that can be used to carry
out the optimization and analysis of multiplexed PSPS. In
Sec. IV we present the results of the optimization for relevant
spatially and time-multiplexed systems. Finally, we conclude
in Sec. V.

II. SPATIAL AND TIME MULTIPLEXING

In this section we briefly review spatial and time-
multiplexed PSPS. The focus will be on those schemes which
bear experimental relevance and our model is applied to in the
rest of this paper.

Figure 1 shows a schematic depiction of a spatially multi-
plexed PSPS with a symmetric (log-tree) spatial multiplexer
most frequently used in experiments [34,36]. In the figure
MUi denotes a multiplexed unit where a signal photon can
enter the multiplexer given that its twin partner, that is, the
idler photon of a photon pair coming from a pulsed nonlinear
source is detected. In this case the spatial multiplexer built up
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FIG. 1. Schematics of spatially multiplexed PSPS with a sym-
metric (log-tree) spatial multiplexer. MUi denotes the ith multiplexed
unit; the PR js are binary (2-to-1) photon routers.

with binary (2-to-1) photon routers (PR) in a log-tree arrange-
ment where the N routers are arranged in m = log2 N levels.
After a successful heralding event in one of the multiplexed
units, the switching network is actively controlled to route the
heralded photon to the common output.

In this scheme it is generally assumed that photon routers
are symmetric, that is, the router transmission Vr does not de-
pend on the input ports of the individual routers [34,43,52,53].
The total probability of transmission V SSM

n for the nth mul-
tiplexed unit for such symmetric spatial multiplexers (SSM)
with symmetric routers reads

V SSM
n = VbV

log2 N
r , (1)

where N is the number of multiplexed units. Vb is a general
transmission coefficient independent of the number of multi-
plexed units, such as the collection efficiency at the heralding
stage or the transmission of the possible pre-delay.

Now let us turn our attention to time multiplexing. Figure 2
demonstrates its principle. The expected time period T of the
periodic single-photon source is divided into N time slots of
length �τ , which play the role of multiplexed units. In these
multiplexed units the idler part of the photon pairs emitted by
a pulsed or continuous nonlinear source are detected. After
a successful heralding event in the nth time slot the heralded
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FIG. 2. Schematics of time-multiplexed PSPS. MUi denotes the
ith multiplexed unit, that is, a time slot in this case. The heralded
signal photon emerging from one of the multiplexed units is delayed
to leave the system at the end of the expected time period T = N�τ .

photon is delayed by the time (N − n)�τ before it reaches the
output of the PSPS.

One way to realize a controllable time delay is to use a
switchable storage loop or storage cavity with a passage time
�τ [39,40,43–49]. The heralded photons generated in the nth
time slot will thus pass through the loop and cavity N − n
times before they are released. Denoting the transmission
coefficient of a single cycle of the storage loop by Vc, the total
transmission V LTM

n corresponding to the nth time slot can be
written as

V LTM
n = VbV

N−n
c . (2)

Here the general transmission coefficient Vb characterizes the
losses in the system independent of the number of multiplexed
time slots, such as, e.g., the collection efficiency or the loss
during the switching into and out from the storage loop.
We note that Eq. (2) also describes the total transmission
probability of the asymmetric spatial multiplexer proposed
in Ref. [52]: The role of the single-cycle transmission Vc is
played by the router transmission in that case.

Another way of implementing a controllable time delay is
to use a binary division strategy [41,42,50,51]. In this case,
the heralded photons are directed to switchable delay lines
with different time lengths (�τ , 2�τ , 4�τ . . . ) which are
multiples of powers of 2. The total number of slots N is also a
power of 2 and the period T of the source is T = N�τ . Signal
photons heralded in the nth time slot travel only through those
delay lines whose length corresponds to the nonzero digits
in the binary representation of the time delay (N − n)�τ .
A possible realization of such a system in bulk optics was
proposed in Ref. [54]. The delay lines of this scheme contain
Pockels cells and polarizing beam splitters with reflection and
transmission efficiency Vre and Vt , respectively (see Figs. 3
and 4 in Ref. [54]). The total transmission probability V BTM

n
corresponding to the nth time slot for such a binary bulk time
multiplexer reads

V BTM
n = VbV

h
reV

(l−h)
t V (N−n)/N

p , (3)

where h is the Hamming weight of N − n (the number of ones
in its binary representation), and l = log2 N . The transmission
coefficient Vb merges the effects independent of the nth time
slot. The transmission coefficient Vp characterizes the loss
due to the propagation through the whole medium of the
multiplexer, that is, the medium of the longest delay of the
binary time multiplexer.

III. MATHEMATICAL FRAMEWORK

In this section we present the statistical framework suitable
for describing all kinds of multiplexed PSPS equipped with
PNRDs. Throughout our calculations we consider PNRDs that
are capable of distinguishing the number of detected photons
up to a given value Jb, and they operate in a normal regime
without saturation. We do not consider other imperfections of
PNRDs than their finite efficiency; we neglect dark counts and
miscategorizations of the actual photon count for reasons that
will be detailed later.

Consider spatially or time-multiplexed PSPS having N
multiplexed units. (Our model is applicable to both choices).
In case of symmetric spatial multiplexing and also in that of
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N=4
N=8
N=16
N=32

FIG. 3. The single-photon probability P1 plotted against the input
mean photon number λ of a multiplexed unit for PSPS based on
symmetric spatial multiplexing with SPDs for detector efficiency
VD = 0.95, router transmission Vr = 0.98, and general transmission
coefficient Vb = 1. The different curves correspond to different
values of the number of multiplexed units N . The result of the
optimization: maximal single-photon probability PSPD

1,max = 0.9, the
optimal input mean photon number λopt = 0.45, and the optimal
number of multiplexed unit Nopt = 16.

binary time multiplexing, N is a power of 2. Assume that
in the nth multiplexed unit l photon pairs are generated by
a nonlinear source and the input ports of the multiplexer
are opened in case of detecting a predefined number of
photons j ( j � l) during a heralding event. The probability
that i signal photons reach the output of the multiplexer in

FIG. 4. The difference �P = PSPD
1,max − PTh

1,max between the maxi-
mal single-photon probabilities for PSPS based on symmetric spatial
multiplexing with two types of detectors: for those with SPDs
and for those with threshold detectors, as a function of the router
transmission Vr and detector efficiency VD. In the regions bounded
by dashed lines around Vr ≈ 1 and Vr ≈ 0.8 the absolute difference
|�P| < 0.004.

general reads

P(S)
i =

⎛
⎝1 −

∑
j∈S

P(D)( j)

⎞
⎠

N

δi,0 +
N∑

n=1

⎡
⎣

⎛
⎝1 −

∑
j∈S

P(D)( j)

⎞
⎠

n−1

×
∞∑
l=i

∑
j∈S

P(D)( j|l )P(λ)(l )Vn(i|l )

⎤
⎦, (4)

where P(D)( j) is the probability of detecting exactly j pho-
ton arms in a multiplexed unit, P(D)( j|l ) is the conditional
probability of detecting j photons given that l photons reach
the detector, P(λ)(l ) is the probability of generating l photon
pairs, and Vn(i|l ) is the conditional probability that i photons
reach the output of the multiplexer given that l signal photons
arrive from the nth multiplexed unit into the system. The set S
contains the predefined number of detected photons in a multi-
plexed unit for which the generated signal photons are allowed
to enter the multiplexer. Hence, it describes the application
of an optional heralding strategy that can be realized only by
PNRDs. The set S can be any subset of the set of positive
integers Z+ up to Jb. We note that for S = Z+ we obtain the
same formulas we had introduced in Ref. [54] for describing
multiplexed systems with threshold detectors, as PNRDs can
be also used as threshold detectors by ignoring the number of
detected photons.

The first term in Eq. (4) describes the case when none
of the detectors have detected a photon number in S. This
term contributes only to the probability P(S)

0 , that is, to the
case where no photon reaches the output. The second term
describes the case when, even though there are l photons
entering the multiplexer from the nth multiplexed unit after
heralding, only i of these reach the output due to the losses of
the multiplexer. The first factor in the second term in Eq. (4)
is the probability that none of the first n − 1 detectors have
detected a photon number in S. In this case the heralding event
occurs in the nth unit. Then the system shuts, and no further
photons are allowed to enter the multiplexer from subsequent
multiplexed units. This factor multiplies the factor describing
what happens to the heralded photons entering into the nth
branch of the multiplexer after the detection event. Thus the
summation over n in the second term of Eq. (4) takes into
consideration all the possible contributions to the probability
P(S)

i .
In Eq. (4) the conditional probability P(D)( j|l ) that a detec-

tor with efficiency VD detects j out of l photons ( j � l) in a
multiplexed unit reads

P(D)( j|l ) =
(

l

j

)
V j

D (1 − VD)l− j . (5)

The total probability P(D)( j) of detecting j photons out of the
incoming ones can be written as

P(D)( j) =
∞∑

l= j

P(D)( j|l )P(λ)(l ), (6)

where P(λ)(l ) is the probability that l photon pairs were
generated by a nonlinear source.

Any distribution can be substituted into Eqs. (4) and
(6) to get a valid model of the respective setup. The
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photon pairs produced in single-mode (i.e., spectrally narrow-
filtered) SPDC or SFWM follow the thermal distribution
[35,38,86–90]:

P(λ)(l ) = λl

(1 + λ)1+l
, (7)

where λ is the mean photon number of the generated photon
pairs. In multimode SPDC and SFWM processes (that is, in
case of weaker spectral filtering) the number of generated
photon pairs follows Poissonian statistics [35,38,86–90]:

P(λ)(l ) = λl e−λ

l!
. (8)

The reason for this is that the convolution of many thermal
distributions tends to a Poisson distribution in the appropriate
limit [87]. As a significant part of the experimental and
theoretical literature related to PSPS considers the Poissonian
distribution [33,34,40,41,51,52,54,55], we make the same
assumption by default in the detailed statistical treatment in
what follows. Meanwhile we present the results of the calcu-
lations also for thermal distribution in the cases we consider
as important.

The conditional probability Vn(i|l ) that i signal photons
reach the output of the multiplexer given that l signal photons
enter the multiplexer at the nth multiplexed unit can be
calculated as

Vn(i|l ) =
(

l

i

)
V i

n (1 − Vn)l−i. (9)

The subscript n is present for the possibility that the loss can
depend on the actual multiplexed unit the photons have arrived
at. When analyzing a particular setup, the corresponding Vn

has to be substituted here, for instance, the one in Eq. (1),
Eq. (2), or Eq. (3) for the schemes studied in this paper.

As declared earlier, our analysis does not take into account
all the possible detector imperfections. In addition to the finite
detector efficiency, dark counts and the miscategorization of
the actual photon count values of PNRDs could be consid-
ered. As for the dark counts, it appears to be common to
neglect them in theoretical papers on multiplexed PSPS (cf.,
Refs. [38,41,45,48,52–55]) and the reason for this is that
the experimentally reported dark count probabilities in such
systems during a heralding event in a multiplexed unit are
indeed very small because of the very short detection time. In
particular, Refs. [35,36,40,50] report dark count probabilities
of order 10−4–10−6 for a heralding event, while transition-
edge-sensor-based PNRDs have negligible dark count rates
[71,72]. In the view of these reports, though the inclusion
of dark counts into the model would generally lead to a
decrease in the achievable single-photon probabilities for the
considered PSPS, this decrease is not expected to be relevant
in practice. As for the photon number miscategorization,
that is, when the detector displays a wrong photon number,
experimental data quantifying this imperfection are scarce in
the literature. Reference [78] claims that the probability of
miscategorization is below 5% for all the resolved photon
numbers in the case of the studied transition edge sensor,
while for small photon numbers it is excellent in general
in the case of all detectors of this kind. As it is the small-
photon-number case which turns out to bear relevance in the

considered multiplexed PSPS, neglecting this imperfection
will still yield a meaningful analysis.

Concerning the detectors another remark is in order. In
the case of multiple modes (as in the case of our default
assumption of the Poissonian distribution) detecting n photons
distributed into more modes is considered as equivalent to
a single-mode n-photon event. The reason for this is the as-
sumption that the detector cannot distinguish between modes
in the given spectral range, and this is indeed the case in the
considered setups.

Finally, we note that for threshold detectors (S = Z+)
and SPDs (S = {1}), simple formulas can be derived from
Eq. (4). For instance, assuming a Poissonian distribution, for
the single-photon probabilities P(S)

1 we obtain

P(Z+ )
1 =

N∑
n=1

e−λVD (n−1)λVne−λ

×(eλ(1−Vn ) − (1 − VD)eλ(1−Vn )(1−VD ) ), (10)

P(1)
1 =

N∑
n=1

(1 − VDλe−VDλ)n−1[1 + (1 − VD)(1 − Vn)λ]

× λVDVne[(1−VD )(1−Vn )−1]λ. (11)

Using the formula in Eq. (4), the performance of an arbi-
trary multiplexed periodic single-photon source with arbitrary
detector or arbitrary detection strategy with PNRDs can be
analyzed in detail, including the optimization of the system to
maximize the single-photon probabilities.

IV. OPTIMIZATION OF MULTIPLEXED PSPS

In this section we present our results on the optimization of
various multiplexed PSPS equipped with PNRDs. The goal is
to achieve a maximal single-photon probability. Naively one
would expect that the use of more advanced detectors will
result in an overall performance improvement to the system,
as compared to using the simpler (i.e., threshold) detectors.
Having a description of both cases at hand, we can compare
the performance of this system to that of the ones operated
with threshold detectors. This analysis will result in nontrivial
consequences.

A. Symmetric spatial multiplexing with single-photon
or threshold detectors

Let us first consider PSPS based on symmetric spatial
multiplexing and containing either single-photon or threshold
detectors with detector efficiency VD in the idler arms of the
nonlinear photon pair sources. (Recall that by single-photon
detector we mean a detector capable of identifying exactly
one photon, e.g., it can be a PNRD so that only the outcome
corresponding to one photon is considered as a detection
event). Using the framework presented in the previous section
the optimization of the system consists of the following. We
fix the total transmission V SSM

n of the system, that is, the
transmission coefficients Vr and Vb, and the detector efficiency
VD. Recall that the spatial multiplexer under consideration
is built up from symmetric photon routers. Two parameters
are left which can be considered as decision variables of the
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TABLE I. Optimal PSPS based on symmetric spatial multiplexing with SPDs. Maximal single-photon probabilities PSPD
1,max and the required

number of multiplexed units Nopt and input mean photon numbers λopt at which they can be achieved, calculated for different Vr router
transmissions and five different values of the detector efficiency VD.

VD = 0.3 VD = 0.6 VD = 0.8 VD = 0.9 VD = 0.98

Vr Nopt PSPD
1,max λopt Nopt PSPD

1,max λopt Nopt PSPD
1,max λopt Nopt PSPD

1,max λopt Nopt PSPD
1,max λopt

0.30 2 0.236 3.117 1 0.221 1.000 1 0.294 1.000 1 0.331 1.000 1 0.361 1.000
0.40 4 0.290 4.754 2 0.258 1.704 1 0.294 1.000 1 0.331 1.000 1 0.361 1.000
0.50 8 0.326 6.482 2 0.288 1.515 2 0.298 1.228 1 0.331 1.000 1 0.361 1.000
0.55 8 0.352 5.510 4 0.309 2.088 2 0.320 1.195 1 0.331 1.000 1 0.361 1.000
0.60 8 0.368 4.384 4 0.341 1.870 2 0.342 1.162 2 0.352 1.078 1 0.361 1.000
0.65 8 0.380 3.256 4 0.371 1.655 4 0.366 1.309 2 0.377 1.063 2 0.388 1.012
0.70 8 0.393 2.337 4 0.400 1.456 4 0.411 1.225 4 0.412 1.109 2 0.417 1.010
0.75 8 0.408 1.713 8 0.430 1.641 4 0.456 1.144 4 0.466 1.072 4 0.471 1.014
0.80 16 0.431 1.316 8 0.479 1.116 4 0.503 1.068 4 0.522 1.035 4 0.535 1.007
0.85 16 0.477 0.850 8 0.534 0.864 8 0.569 0.871 8 0.584 0.919 4 0.602 1.000
0.88 16 0.508 0.713 8 0.568 0.770 8 0.618 0.786 8 0.641 0.851 8 0.659 0.962
0.90 32 0.544 0.444 16 0.604 0.483 8 0.652 0.740 8 0.680 0.812 8 0.704 0.948
0.92 32 0.584 0.396 16 0.645 0.445 8 0.687 0.701 8 0.721 0.777 8 0.751 0.934
0.94 64 0.639 0.226 32 0.692 0.252 16 0.736 0.407 8 0.763 0.745 8 0.799 0.920
0.95 64 0.672 0.215 32 0.724 0.243 16 0.763 0.396 16 0.787 0.429 8 0.824 0.913
0.96 128 0.712 0.123 64 0.728 0.172 16 0.792 0.386 16 0.818 0.419 8 0.850 0.906
0.97 128 0.759 0.118 64 0.798 0.133 32 0.827 0.214 16 0.850 0.409 16 0.876 0.545
0.98 256 0.818 0.066 128 0.846 0.074 32 0.867 0.209 32 0.885 0.219 16 0.912 0.534
0.99 1024 0.892 0.021 256 0.908 0.040 128 0.920 0.064 64 0.930 0.117 16 0.949 0.525

optimization procedure: the mean photon number λ of the
photon pairs generated by the nonlinear sources and arriving
at the detectors in the multiplexed units, and the number N of
these units. First, we calculate the single-photon probabilities
P1 as a function of the input mean photon number λ for each
reasonable value of the number N of multiplexed units. Some
instances of these functions are plotted in Fig. 3. Next, we
determine the maximum values for each of these functions
and select the optimal number Nopt of multiplexed units for
which the maximal single-photon probability P1 is the highest.
The input mean photon number corresponding to this maximal
single-photon probability P1,max is the optimal mean photon
number λopt.

In Table I we present a selection of results of the opti-
mization for spatially multiplexed PSPS with SPDs for de-
tector efficiencies 0.3 � VD � 0.98 and router transmissions
0.3 � Vr � 0.99. Here it is assumed that there are no generic
losses (Vb = 1). For comparison, the corresponding results on
the system equipped with threshold detectors are presented
in Table II. To visualize the results of our optimization, in
Fig. 4 we have plotted the difference �P = PSPD

1,max − PTh
1,max

as a function of the detector efficiency VD and the router
transmission Vr over the range [0.3,1] for both parameters.
Here PSPD

1,max is the maximal single-photon probability that can
be achieved with PSPS operated with SPDs, whereas PTh

1,max
is the maximal achievable single-photon probability for PSPS
with threshold detectors.

From the data in Tables I and II and in Fig. 4 one can
conclude that at values Vr > 0.81 of the router transmission,
PSPS based on symmetric spatial multiplexing with SPDs
outperform those with threshold detectors, for any detector
efficiency under consideration. In this range a decrease in
the detector efficiencies leads to a decrease in the difference

in the single-photon probabilities hence at lower detector
efficiencies the advantage of using SPDs decreases. For
router transmissions 0.92 � Vr � 0.99 and detector efficien-
cies 0.9 � VD � 0.98 the difference �P is at least 0.02, while
the highest value of the difference �P is 0.089 that can be
observed at detector efficiency VD = 0.98 and router trans-
mission Vr = 0.95. The maximal single-photon probability for
these parameters is PSPD

1,max = 0.824, which is achieved with
Nopt = 8 multiplexed units. We note that at the present state
of the art this router transmission is the highest one that
seems to be feasible for the ultrafast photon router used in the
experiment of Ref. [34]. In the domain of the parameters VD
and Vr bounded by dashed lines in Fig. 4, around Vr ≈ 0.8,
both the PSPS operated with threshold detectors and those
with SPDs achieve approximately the same performance, that
is, the absolute difference between the single-photon proba-
bilities |�P| < 0.004 over the whole range of VD. The sign
of the difference here depends on the particular values of the
parameters VD and Vr . For router transmissions 0.3 � Vr <
0.78, SSM-based PSPS operated with threshold detectors
outperform the ones built with SPDs. Thus there are cases
when the use of more advanced detectors does not pay off.
The physics behind this is that for lower values of the router
transmission Vr the incoming signal photons are lost in the
multiplexer, therefore the optimal strategy is to allow more
than one photon to enter the multiplexer in the signal arms
at the heralding event. In this range the highest value of the
absolute difference |�P| between the maximal single-photon
probabilities is as high as 0.158, belonging to a detector
efficiency of VD = 0.59 and router transmission of Vr = 0.3.

We have carried out the optimization of PSPS based on
SSM assuming thermal distribution of the generated photon
pairs in Eq. (7) as well, as this assumption also appears in the
literature. We have found that in this case the general behavior
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TABLE II. Optimal PSPS based on symmetric spatial multiplexing with threshold detectors. Maximal single-photon probabilities PTh
1,max

and the required number of multiplexed units Nopt and input mean photon number λopt at which they can be achieved, calculated for different
Vr router transmissions and five different values of the detector efficiency VD.

VD = 0.3 VD = 0.6 VD = 0.8 VD = 0.9 VD = 0.98

Vr Nopt PTh
1,max λopt Nopt PTh

1,max λopt Nopt PTh
1,max λopt Nopt PTh

1,max λopt Nopt PTh
1,max λopt

0.30 4 0.369 10.900 2 0.378 3.021 2 0.385 2.854 2 0.385 2.814 2 0.385 2.799
0.40 4 0.372 5.735 2 0.379 2.243 2 0.399 2.030 2 0.405 1.948 2 0.408 1.891
0.50 4 0.377 3.464 4 0.381 3.354 2 0.411 1.594 2 0.423 1.517 2 0.432 1.462
0.55 4 0.376 2.833 4 0.392 2.494 2 0.416 1.443 2 0.432 1.374 2 0.443 1.324
0.60 8 0.379 3.819 4 0.405 1.910 2 0.420 1.319 2 0.439 1.258 2 0.453 1.214
0.65 8 0.388 2.663 4 0.420 1.537 4 0.430 1.376 2 0.446 1.162 2 0.462 1.124
0.70 8 0.401 1.908 4 0.435 1.285 4 0.455 1.124 4 0.461 1.062 2 0.471 1.048
0.75 8 0.415 1.453 4 0.449 1.103 4 0.480 0.961 4 0.491 0.906 4 0.499 0.868
0.80 16 0.431 1.089 8 0.477 0.809 4 0.504 0.843 4 0.521 0.797 4 0.532 0.765
0.85 16 0.475 0.750 8 0.520 0.658 8 0.546 0.561 8 0.556 0.525 4 0.565 0.689
0.88 32 0.502 0.465 16 0.551 0.418 8 0.581 0.510 8 0.594 0.479 8 0.604 0.458
0.90 32 0.538 0.406 16 0.585 0.384 16 0.605 0.322 8 0.621 0.454 8 0.632 0.435
0.92 32 0.576 0.364 16 0.620 0.356 16 0.646 0.300 16 0.656 0.280 16 0.663 0.267
0.94 64 0.632 0.211 32 0.672 0.211 32 0.690 0.175 16 0.702 0.264 16 0.711 0.252
0.95 128 0.664 0.123 32 0.701 0.204 32 0.722 0.169 32 0.729 0.157 16 0.735 0.246
0.96 128 0.707 0.117 64 0.739 0.119 32 0.754 0.164 32 0.763 0.153 32 0.769 0.145
0.97 256 0.754 0.066 128 0.780 0.067 64 0.796 0.095 64 0.801 0.088 64 0.805 0.083
0.98 512 0.814 0.036 128 0.834 0.065 128 0.844 0.053 128 0.848 0.049 64 0.852 0.081
0.99 1024 0.890 0.020 512 0.901 0.020 256 0.907 0.029 256 0.909 0.027 256 0.911 0.025

and characteristics presented in Tables I and II and in Fig. 4
remain the same. There are quantitative differences though.
The maximal single-photon probabilities are always less, and
the optimal number of multiplexed units is generally higher
than in the case of the Poissonian distribution. For example,
with the state-of-the-art parameters Vr = 0.95 and VD = 0.98
and assuming thermal distribution, we have PSPD

1,max = 0.797
achieved with Nopt = 16 multiplexed units.

We note that for detector efficiencies VD close to 1 and
router transmissions 0.3 � Vr < 0.6127 the maximal single-
photon probabilities PSPD

1,max for the systems with SPDs tend to
exp(−1), that is, to the maximum single-photon probability
of the Poisson distribution. In this case the optimal number
of multiplexed units is Nopt = 1 (see Table I) so there is no
multiplexing at all. Therefore the maximum single-photon
probability is the one that can be achieved by a single her-
alded nonlinear source. For detector efficiencies VD < 1 the
maximal single-photon probabilities PSPD

1,max are smaller than
this value in the considered range of router transmissions. For
the thermal distribution the behavior is the same, however,
as the detector efficiency VD tends to 1, the single-photon
probability PSPD

1,max will tend to 0.25, that is, to the maximum
single-photon probability of the thermal distribution. The
range of router transmission for which this behavior holds is
0.3 � Vr � 0.571.

From the results in Tables I and II one can also conclude
that in the case of both detector types, at low detector efficien-
cies the optimal number of multiplexed units Nopt is higher
than in the case of high detector efficiency. In Fig. 5 we have
plotted the difference �m = mTh

opt − mSPD
opt between the optimal

number of router levels for systems with SPDs and for the
ones with threshold detectors. The figure shows that in most

cases, the optimal number of router levels for SSM-based
PSPS built with SPDs is less than or equal to the one for the
systems with threshold detectors except for a special small
range of the loss parameters. Hence, the advantage of using
the more advanced type of detectors can also appear when it
is important to keep the number of units of the system as low
as possible. Tables I and II used along with Fig. 5 can help
with implementing this design consideration.

B. Symmetric spatial multiplexing with optimized
heralding strategy

In this subsection we consider the optimization of the
heralding strategy incorporated into the model described in
Sec. III. Let us assume that the PNRDs in the idler arms of
the nonlinear sources allow the signal photons to enter the
symmetric spatial multiplexer whenever the number of the
detected photons is in a prescribed set, which we assume to
consist of numbers from 1 to J � Jb: S = {1, 2, . . . , J}. (We
shall see later that actually this is the most general form of
sets worth considering). Jb is the maximal number of photons
the PNRDs are capable of distinguishing. Thus the set S is
the definition of the heralding strategy, which is uniquely
determined by J in the current setting.

We can determine the optimal value of the maximum
accepted photon number Jopt by calculating the maximal
single-photon probabilities PJ

1,max for all the possible values
of the maximum accepted photon numbers J and for detector
efficiencies VD and router transmissions Vr considered in the
previous subsection. Figure 6 shows the optimal maximum
accepted photon number Jopt as a function of the detector
efficiency VD and the router transmission Vr . Decreasing the
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FIG. 5. The difference �m = mTh
opt − mSPD

opt = log2 NTh
opt − log2

NSPD
opt between the optimal number of router levels using SPDs

and using threshold detectors, in PSPS based on symmetric spatial
multiplexing.

router transmission Vr , that is, increasing the router losses
in the multiplexer leads to an increase in the optimal max-
imum accepted photon number Jopt: The optimal heralding
strategy gradually shifts from single-photon detection toward
threshold detection. Note, however, that the value of Jopt also
depends on the detector efficiency VD.

In Fig. 7 we have plotted the maximal single-photon
probabilities PJ

1,max as a function of the detector efficiency
VD, for router transmission Vr = 0.35 and various values of
J , in particular, for those maximum photon numbers which
appear as Jopt in Fig. 6 for the given Vr . It appears that the
curves intersect, and thus it changes which curve is above
the other. Consequently, the optimal maximum number of
accepted photons Jopt can alternate in Fig. 6. The peak points
at a given Vr and Vd in Fig. 6 correspond to cases when a

FIG. 6. Optimal maximum accepted photon number Jopt as a
function of the detector efficiency VD and the router transmission Vr

for PSPS based on symmetric spatial multiplexing with PNRDs.

0.3 0.4 0.5 0.6 0.7 0.8 0. 19
0.36

0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4

FIG. 7. Maximal single-photon probability PJ
1,max as a function of

detector efficiency VD for various values of the maximum accepted
photon number J . Router transmission of this setup is Vr = 0.35.

curve like those in Fig. 7 for a given Jopt is tangential to
one for Jopt + 1. Interestingly, the functions plotted in Fig. 7
are not monotonous: Rather counterintuitively it occurs that
increasing the detector efficiency causes a decrease in the
single-photon probability. The intuition behind this is the fact
that as the detector gets more accurate, it is more successful
in limiting the number of the entering photons, while the
optimal operation would probably require more of them in the
given parameter range. Therefore at some point a bigger J
will become optimal. Another interesting feature of Fig. 7 is
the presence of breakpoints in the curves. These correspond
to the changes in Nopt. For the first part of the curves the
corresponding optimal number of multiplexed units is Nopt =
4, while after the breakpoint the optimal number is Nopt = 2.

In Fig. 8 we present the difference �
Jopt

P = P
Jopt

1,max −
max (PTh

1,max, PSPD
1,max) as a function of the detector efficiency VD

and the router transmission Vr over the range [0.3,1] for both
parameters. Here PSPD

1,max is the maximal single-photon prob-
ability when the optimal detection strategy is used, whereas
max (PTh

1,max, PSPD
1,max) is the best achievable single-photon prob-

ability in either setup (i.e., with threshold or single-photon
detectors) studied in Sec. IV A.

The figure shows that the parameter domain where using an
optimal heralding strategy leads to a relevant enhancement is
limited to the router transmissions of 0.65 � Vr � 0.85 and
detector efficiencies of 0.7 � VD. In this range the optimal
heralding strategy consists of letting up to two photons enter
the system, that is, the optimal maximum accepted photon
number Jopt is 2. The highest difference in the single-photon

probabilities is �
Jopt

P = 0.022 at VD = 1 and Vr = 0.795. Nev-
ertheless, this parameter range still extends the domain where
the use of PNRDs is a better option than that of threshold
detectors. (This domain is the union of the domains in Figs. 4
and 8 where the use of PNRDs was found to be better).

Assuming a thermal distribution of the number of incoming
photon pairs instead of the Poissonian, the general behavior
presented in Fig. 8 remains the same. The range of parameters
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FIG. 8. Difference �
Jopt
P = P

Jopt
1,max − sup (PTh

1,max, PSPD
1,max) as a func-

tion of the router transmission Vr and detector efficiency VD, for
comparison of the use of an optimal detection strategy in PSPS
with symmetric spatial multiplexing, and the scenarios studied in
Sec. IV A.

where �
Jopt

P is relevant is the same, however, the enhancement
is slightly larger. The highest difference in the single-photon
probabilities is �

Jopt

P = 0.032 that can be achieved at VD = 1
and Vr = 0.779.

Finally, we note that we have considered setups with
detection strategies defined by more general sets S, e.g., by
choosing the set of the accepted photon numbers as, e.g., S =
{2} or S = {2, 3}. With those choices we found significantly
lower single-photon probabilities in the whole range of the
parameters, even as compared to single-photon probabilities
obtainable by using threshold detectors.

C. Time multiplexers with single-photon
and threshold detectors

In this subsection we consider PSPS based on time mul-
tiplexing schemes described in Sec. II. Similarly to the case
of spatial multiplexing, we compare schemes equipped with
SPDs with those containing threshold detectors. We do this
to get a clear picture of the possible benefits of using more
advanced detectors. In this case, however, we restrict our
analysis to a selected set of feasible loss parameter values of
the optical elements, which are available by state-of-the-art
technology.

First we optimize PSPS based on storage loop time mul-
tiplexing. In these systems the optimal operation strategy is
to release the latest heralded photon which appeared in the
time slot closest to the end of the time period of the periodic
source. Hence, the loss due to the necessary time delay is
minimized. In this case the total transmission probability for
the nth multiplexed time slot introduced in Eq. (2) should be
modified as follows:

V LTM
n = VbV

n
c . (12)

Recently, such a time-multiplexed system was realized in
Ref. [49] where a single-photon probability of 0.667 was
reported by using 40 time slots. Motivated by this result,

TABLE III. Optimal PSPS based on a storage loop time multi-
plexing with SPDs and threshold detectors. Maximal single-photon
probabilities P1,max and optimal input mean photon number λopt at
which they can be achieved, calculated for different values of the
detector efficiency VD, two values of the number of multiplexed time
windows N , the transmission of a single cycle of the storage loop
Vc = 0.988, and the general transmission term Vb = 0.88.

VD PTh
1,max N λTh

opt PSPD
1,max N λSPD

opt

0.60 0.732 40 0.210 0.762 40 0.267
0.60 0.737 100 0.186 0.764 100 0.248
0.80 0.759 40 0.186 0.803 40 0.307
0.80 0.761 100 0.174 0.803 100 0.303
0.85 0.765 40 0.183 0.814 40 0.340
0.90 0.770 40 0.180 0.826 40 0.398
0.90 0.771 100 0.171 0.826 100 0.397
0.95 0.775 40 0.177 0.840 40 0.522
0.95 0.776 100 0.170 0.840 100 0.522
0.96 0.776 40 0.177 0.844 40 0.567
0.97 0.777 40 0.177 0.848 40 0.625
0.98 0.778 40 0.176 0.852 40 0.706
0.98 0.779 100 0.169 0.852 100 0.706

we perform the optimization for the loss parameters of this
particular experimental arrangement. Accordingly, the trans-
mission corresponding to one cycle in the cavity and the
generic transmission coefficient corresponding to switching
the heralded photons into the time multiplexer are chosen to
be Vc = 0.988 and Vb = 0.88, respectively. We checked that
for this set of parameter values single-photon detection is the
optimal detection strategy.

Table III presents the results of the optimization for SPDs
and threshold detectors for various values of the detector effi-
ciency VD. For the described operation strategy (i.e., releasing
the last heralded photon) the achievable single-photon prob-
ability P1 increases and saturates with increasing the number
of time slots N , therefore one cannot find a particular optimal
value Nopt for this quantity. Hence, we assumed N = 40 time
slots, as it has been realized in the cited experiments. We
also show results for N = 100 in order to demonstrate the
saturation of the single-photon probability. From the results
it is clear that single-photon sources equipped with SPDs
outperform sources equipped with threshold detectors for the
considered set of loss parameters. The enhancement in the
single-photon probability is bigger at high detector efficien-
cies.

We note that the data of Table III were obtained assuming
a Poissonian distribution for the number of generated photon
pairs in order to compare the results of the optimization with
those of other multiplexers presented previously. However,
in case of strong spectral filtering at the heralding stage the
number of generated photon pairs follows a thermal distri-
bution, as it is the case described in Ref. [49]. Hence, we
carried out the optimization of the same system, with the
same loss parameters, for N = 40 and VD = 0.6, and under the
assumption of thermal instead of Poissonian input distribution
this time. This resulted in a single-photon probability PSPD

1,max =
0.713, which corresponds to the ones achieved in the reported
experiments. In the cited experiment, however, the photon
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TABLE IV. Optimal PSPS based on a binary bulk time multi-
plexing with SPDs and threshold detectors. Maximal single-photon
probabilities P1,max and the required number of multiplexed units
Nopt and input mean photon numbers λopt at which they can be
achieved, calculated for different detector efficiencies VD, and a fixed
set of the loss parameters of the multiplexer, that is, transmission
and reflection efficiencies Vt = 0.97 and Vre = 0.996, respectively,
propagation transmission Vp = 0.95, and basic generic transmission
Vb = 0.996.

VD PTh
1,max NTh

opt λTh
opt PSPD

1,max NSPD
opt λSPD

opt

0.60 0.838 256 0.042 0.849 128 0.080
0.80 0.847 128 0.058 0.868 64 0.130
0.85 0.849 128 0.056 0.874 32 0.226
0.90 0.851 128 0.054 0.883 32 0.241
0.95 0.853 128 0.053 0.895 16 0.481
0.96 0.853 128 0.053 0.898 16 0.506
0.97 0.854 128 0.052 0.902 16 0.542
0.98 0.854 128 0.052 0.907 16 0.600

number resolving detection was realized with spatially mul-
tiplexed detectors. Considering the same arrangement with an
inherent PNRD of efficiency as high as VD = 0.98 [77] and
with N = 100 time slots offers a single-photon probability
PSPD

1,max = 0.829.
Finally, let us turn our attention to the analysis of PSPS

based on binary bulk time multiplexing described in Sec. II.
Table IV contains results of the optimization of such systems
for state-of-the-art loss parameters, that are the transmission
efficiency of Vt = 0.97, the reflection efficiency of Vre =
0.996, and the propagation transmission of Vp = 0.95 [54].
Also in this case, we compare the use of PNRDs with that of
threshold detectors.

Similarly to the previously analyzed system, we found that
single-photon detection is the optimal detection strategy for
this particular set of parameters. These results clearly show
that such PSPS built with single-photon detectors have higher
achievable single-photon probabilities than the same construc-
tions built with threshold detectors. As the detector efficiency
increases, the difference between the single-photon probabili-
ties achieved with threshold detectors and those achieved with
single-photon detectors increases as well. In these systems the
optimal number of multiplexed time slots Nopt is significantly
lower when PNRDs are applied. From Tables I to IV one can
conclude that from amongst all multiplexed PSPS considered
in this paper, in the case of experimentally feasible values
of the loss parameters, the system with binary bulk time
multiplexing and single-photon detectors offers the highest
single-photon probability which is PSPD

1,max = 0.907 assuming
Poissonian distribution of the incoming photon pairs. This
probability decreases to PSPD

1,max = 0.842 in the case of the
thermal distribution.

V. CONCLUSIONS

We gave a full statistical description of spatial or time-
multiplexing-based periodic single-photon sources realized
with photon-number-resolving detectors. This model facili-
tates the optimization of the system by determining the opti-
mal system size and input photon numbers in order to achieve
a maximal single-photon probability at the output, given the
losses of the system and the photon number distribution of the
source to be heralded.

In our analysis of the symmetric spatial multiplexing-based
schemes of this kind we have found that the use of the
more advanced photon-number-resolving detectors does not
necessarily lead to an improvement as compared to the use
of threshold detectors; we have identified the range where an
improvement has been achieved. We also found that this range
can be further extended by introducing an appropriate herald-
ing strategy defined in terms of detected photon numbers at
the detectors.

The analysis of time-multiplexed arrangement has been
focused on particular value sets of the parameters which
are either typical in current experimental realizations or
would at least be feasible at the current state of art. In
case of these systems we have found that photon-number-
resolving detectors always offer an improvement. The optimal
approach is actually the detection of exactly one photon.
Modeling a particular recent experiment based on time-loop
multiplexing, the results of our detailed analysis were in
line with the experimentally observed ones, and we have
assessed the potential further improvement via optimiza-
tion. In another case, that for binary bulk time multiplex-
ing, we have found that if the application of an efficient
inherently photon-number-resolving detector were feasible,
the single-photon probability could reach a value as high as
0.907, the best that we have found among all the studied
systems.

Our analysis leads to a detailed understanding of an impor-
tant line of experimental arrangements: multiplexed periodic
single photon sources, which are essential ingredients of many
applications. Our quantitative analysis can serve as a guidance
for the optimal design of these.
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