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To date, the concept of topological order relies heavily on the properties of single-particle bands. Only recently
it has been realized that interactions can have a dramatic impact on topological properties, not only modifying the
topology of the bands but also creating a topological order in an otherwise trivial system. Applying an extended
version of the Bose-Hubbard model, we investigate a system which, being topologically trivial in the single-
particle regime, harbors topologically nontrivial edge and interface states of repulsively bound photon pairs.
Whereas binding of the photons in this model is captured by the standard local interaction term, an additional
direct two-photon hopping renders the system topologically nontrivial. Besides their interaction-induced origin,
predicted two-photon edge states exhibit a range of other unexpected features, including the robustness to
collapse of the corresponding bulk band and the ability to coexist with the continuum of two-photon scattering
states forming a bound state in the continuum. Performing rigorous calculation of the Zak phase for bound
photon pairs, we prove the topological origin of the two-photon edge states.
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I. INTRODUCTION

Topological photonics offers a rich variety of remarkable
functionalities including disorder-robust routing of light on a
chip [1–6]. While topological states in classical optical sys-
tems form an established area of research [1–6], the emphasis
is currently shifting towards topological states of quantum
light [7–12] with the potential of applications in topologically
protected quantum information transfer, quantum computa-
tions, and manipulation of entangled photons with quantum
metasurfaces [13].

Within just one year, the first realizations of single-photon
topological states [8,9] and topologically protected sources
of nonclassical light [10] have been reported. Moreover, pre-
vious theoretical analysis of entangled photon propagation
in a topological system [14,15] has been followed by recent
experiments [11,12]. In this context, it is especially important
to investigate the implications of topological protection for
more complex quantum states of light which can potentially
uncover further exciting applications of topological photonics.

One such intriguing state of quantum light is represented
by doublons, which are bound photon pairs arising in dis-
crete nonlinear arrays due to repulsive Kerr-type nonlin-
earity [16,17]. Quite counterintuitive properties of doublon
quasiparticles were analyzed in a series of theoretical papers
in the context of bulk [18–22] and edge [23–29] doublon
states including more advanced concepts of doublons in two-
dimensional (2D) geometries [30,31], Thouless pumping of
doublons [32,33], and dissipatively bound photon pairs [34].

Driven by the ambitious goal to realize topological doublon
edge states, we and several other groups have investigated the
well-celebrated Su-Schrieffer-Heeger (SSH) model [35] in the
two-photon regime with an effective on-site repulsive photon-
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photon interaction [36–38]. However, since the analyzed
model is topologically nontrivial even in the single-particle
case, the emergence of two-photon edge states [37] is not so
surprising. Therefore, it is much more exciting to demonstrate
topological states of doublons induced by interactions in an
otherwise topologically trivial system.

Interestingly, such interaction-induced topological states
are already known for classical systems characterized by
intensity-dependent coupling constants between some of the
sites which give rise to self-induced topological transi-
tions [39–41]. To demonstrate interaction-induced topological
states of photon pairs, we have recently proposed [42] a
one-dimensional (1D) system which includes two main ingre-
dients: on-site interactions to ensure the formation of bound
photon pairs and direct two-photon hopping incorporated
between the sites of the system in an alternating manner
[Fig. 1(a)]. Note that the latter mechanism does not affect
single-particle eigenstates and energies becoming effective in
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FIG. 1. (a) Sketch of the system under study. Straight connecting
lines represent the single-photon tunneling amplitude J , whereas
wavy lines illustrate direct two-photon hopping P, which enters the
extended Bose-Hubbard Hamiltonian Eq. (1). (b) In the limit of
strong interactions U � J the dynamics of a bound photon pair
is governed by the effective Su-Schrieffer-Heeger model, with the
detuned edge resonators highlighted in red.
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the presence of two photons, while the alternating pattern of
the two-photon hoppings renders our system analogous to the
well-celebrated SSH model with two sites in the unit cell
[Fig. 1(b)].

In this article, we investigate and advance the concept of
interaction-induced topological doublon states in the pres-
ence of direct two-photon hopping, deriving the dispersion
of bulk doublons and calculating the Zak phase for them.
Our results prove the topological origin of the interaction-
induced doublon states and provide valuable insights into the
problem of topological characterization of few-body states.
Quite importantly, topological states of doublons studied here
should not be mixed with solitonlike nonlinear topological
states of classical light arising in waveguide lattices with
Kerr-type nonlinearity [43,44] or mean-field solutions of the
nonlinear Gross-Pitaevskii equation in the form of vortices
[45] because of the few-body nature of topological states in
our proposal.

The rest of the paper is organized as follows. In Sec. II
we summarize our model and provide simple arguments to
prove the existence of interaction-induced topological states.
Section III contains an in-depth analysis of the bulk prop-
erties of bound photon pairs including an analytical model
for their dispersion and diagrams showing the evolution of
doublon bands when the parameters of the model are varied.
The properties of the edge and interface doublon states are
examined in Sec. IV, whereas our conclusions and outlook
for future studies are reported in Sec. V. Technical details
regarding calculation of the bulk doublon dispersion and Zak
phase are summarized in Appendixes A and B, respectively,
while Appendix C discusses the distinction between trivial
and topological doublon edge states.

II. SUMMARY OF THE MODEL
AND DOUBLON EDGE STATES

We search for the eigenstates of the system described by
the extended version of the Bose-Hubbard Hamiltonian:

Ĥ = ω0

∑
m

n̂m − J
∑

m

(â†
mâm+1 + â†

m+1âm)

+U
∑

m

n̂m(n̂m − 1)

+ P

2

∑
m

(â†
2mâ†

2mâ2m+1â2m+1 + H.c.), (1)

where we assume that h̄ = 1, â†
m and âm are creation and

annihilation operators for the photon in the mth cavity, n̂m =
â†

m âm is a local photon number operator, ω0 is a cavity eigen-
frequency, and J is the photon tunneling amplitude. The term
∝ U describes local photon-photon interaction mediated by
the nonlinearity of the medium, whereas the additional term
∝ P captures direct two-photon hopping. The latter two terms,
obviously, do not come into play provided single-particle
dynamics is studied, and hence no single-photon topological
states are expected.

What is more remarkable, however, is the two-particle
sector of this Hamiltonian. It is straightforward to verify that
the Hamiltonian Eq. (1), conserves the number of particles
and thus the two-photon wave function can be searched in the

form

|ψ〉 = 1√
2

∑
m,n

βmn â†
m â†

n |0〉 (2)

with the usual normalization 〈ψ |ψ〉 = 1 and unknown su-
perposition coefficients βmn. As a consequence of bosonic
symmetry, βmn = βnm for any indices m and n. Inserting
Eqs. (1) and (2) into the Schrödinger equation

Ĥ |ψ〉 = (ε + 2 ω0) |ψ〉,
with 2 ω0 used as an energy reference, we derive the linear
system of equations:

(ε−2U )β2m,2m =−2Jβ2m+1,2m − 2Jβ2m,2m−1+Pβ2m+1,2m+1,

(3)
(ε−2U )β2m+1,2m+1 = −2Jβ2m+2,2m+1

− 2Jβ2m+1,2m + Pβ2m,2m, (4)

εβm,n =−Jβm+1,n−Jβm−1,n−Jβm,n+1−Jβm,n−1 (m �= n).
(5)

In the case of a finite array of length N we additionally impose
open boundary conditions β00 = βm0 = 0 and βN+1,N+1 =
βm,N+1 = 0 with m = 1, 2, . . . N . As pointed out in Refs.
[27], [36], and [37], these equations can be reinterpreted as
an eigenvalue problem for the single particle in a 2D tight-
binding lattice. In the latter model, photon-photon interactions
U are emulated by the detuning of the resonance frequency
for the diagonal cavities, whereas the two-photon hopping P
is represented as an additional coupling between the diagonal
sites.

While the outlined 1D two-particle model can be imple-
mented with optical lattices [46] or with arrays of transmon
qubits [47–49], the range of parameters attainable in both
types of realization is quite limited, the constraints on the
magnitude of direct two-photon hopping being especially
strict [46,50]. However, in view of the discussed 1D-2D
mapping, the same physics can be emulated with 2D classical
arrays free of such limitations [51], including, for instance,
coupled waveguide lattices [52] or LC circuits [42]. Therefore
we do not restrict our analysis by a particular realization of
the proposed model and examine the arbitrary ratios U/J and
P/J revealing a full plethora of available effects. The only
assumption that is made is the repulsive nature of nonlinearity,
U > 0. The spectrum for U < 0 is immediately recovered by
calculating the two-photon states for the system with param-
eters −U and −P and by inverting the sign of the derived
energy. Furthermore, to analyze both possible terminations of
the array simultaneously, we focus our attention on the case
of odd N when the array starts and terminates with different
tunneling links.

To grasp the main features of the proposed system, we
start from a simplified model valid in the limit U � J . In
this strong-interaction limit the doublons are tightly bound,
i.e., βmm coefficients are the dominant ones in the expansion
Eq. (2). As such, we can rewrite the system Eqs. (3)–(5) in
terms of βmm coefficients, treating βm+1,m as a perturbation
and fully neglecting the coefficients βm+p,m for p � 2. This
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approach yields the eigenvalue problem,

(ε − 2U − 2 j)β2m,2m = jβ2m−1,2m−1 + ( j + P)β2m+1,2m+1,

(6)

(ε − 2U − 2 j)β2m+1,2m+1 = ( j + P)β2m,2m + jβ2m+2,2m+2,

(7)

with the boundary conditions

(ε − 2U − j)β11 = jβ22, (8)

(ε − 2U − j)βN,N = ( j + P)βN−1,N−1, (9)

where j = J2/U is the effective doublon hopping rate asso-
ciated with two consecutive single-particle tunnelings to the
neighboring cavity.

Equations (6) and (7) suggest that in the strong-interaction
limit the dynamics of a doublon is governed by the SSH
Hamiltonian [35] as illustrated in Fig. 1(b). This model is
known to give rise to the two topologically nontrivial bands
with the dispersion

ε±(k) = 2U + 2 j ±
√

j2 + ( j + P)2 + 2 j( j + P) cos 2k.

(10)

Here, periodic boundary conditions are implied and the Bloch
wave number k is defined such that the first Brillouin zone
spans the range [−π/2, π/2]. According to Eq. (10), the
bandgap closing occurs for | j + P| = | j|, since this condition
renders the two tunneling amplitudes equal. Specifically, for
P = 0 and

P = −2J2/U (11)

the bandgap closes at k = ±π/2 and k = 0, respectively.
Furthermore, under a suitable parameter choice, doublon

bands can be made dispersionless. As a condition for the flat
band, we require that ε+(0) = ε+(π/2), i.e., |2 j + P| = |P|,
which can happen in two situations: (i) the trivial case P � j
or U P � J2, which implies both strong photon-photon inter-
action and strong two-photon hopping, and (ii) the nontrivial
case where j + P = 0 or

P = −J2/U . (12)

In the latter case half of the tunneling links in the array vanish,
turning it into a collection of uncoupled dimers.

Besides the intuition about the properties of bulk doublon
bands, the developed model also provides some insights into
the properties of edge and interface states. While in the canon-
ical SSH model the edge state arises at the center-of-bandgap
frequency being localized at the weak-link edge, this case is
a bit different because of the interaction-induced detuning of
the edge sites by j evident from the comparison of Eqs. (6)
and (7) vs (8) and (9).

Solving Eq. (9) together with Eqs. (6) and (7) for N � 1,
we do not find any localized states near site (N, N ). At the
same time, a similar analysis for the (1,1) site yields two states
with the degree of localization given by

z1,2 = e2ik = j + P

2 j3
[2 j P + P2 ±

√
(2 jP + P2)2 + 4 j4],

(13)

where localized states correspond to |z| < 1. The energies of
the edge states read

ε1,2 = 2U + j − 1

2 j
[2 jP + P2 ±

√
(2 jP + P2)2 + 4 j4].

(14)

Equation (13) shows that the higher-energy state ε2 is local-
ized for any P �= 0, while the lower-energy state ε1 is possible
provided that

−2 J2

U
< P < 0. (15)

Equation (15) is equivalent to the condition j > | j + P|,
which guarantees that the (1,1) site is the strong-link edge.
Hence, for parameter values given by Eq. (15), both of
the edge states are trivial. In the opposite case, P > 0 or
P < −2J2/U , site (1,1) becomes a weak-link edge and sup-
ports a single state with energy ε2. Thus, for P outside of the
interval Eq. (15) state ε2 is a topological one, transforming to
a trivial state when the condition Eq. (15) is fulfilled. State
ε1 is always a trivial state. Note also that the boundaries of
the interval in Eq. (15) coincide with the points of closing
and reopening of a bandgap between two doublon bands,
which illustrates the bulk-boundary correspondence for the
two-photon topological states in the strong-interaction limit.

To further exemplify the topological nature of the two-
photon modes, we analyze interface states localized at the
defect formed by the two repeated tunneling links, which can
be viewed as the boundary of two 1D arrays with opposite
dimerizations. If, for instance, the interface defect is formed
by the two repeated tunneling links j, similarly to the reason-
ing above we obtain the interface condition in the form

(ε − 2U − 2 j) β00 = j (β11 + β−1,−1), (16)

while two repeated j + P links (Fig. 3) yield the interface
condition:

(ε − 2U − 2 j) β00 = ( j + P) (β11 + β−1,−1). (17)

Hence, the interface site is not detuned with respect to the
bulk ones [cf. Eqs. (6) and (7)], and as a consequence the
topological interface state is located exactly in the middle of
the bandgap εint = 2U + 2 j. If the interface defect is formed
by the two consecutive strong links, the topological state is
also accompanied by two trivial modes lying outside of the
doublon bandgap [53].

The developed model is only valid in the limit of U � J .
In Sec. III we derive a rigorous solution for the dispersion
of bound photon pairs based on the Bethe ansatz method and
capture a range of intriguing phenomena beyond the canonical
SSH model including the interaction of doublon bands with
the continuum of scattering states.

III. DISPERSION OF BULK DOUBLONS

To solve an infinite set of equations (3)–(5), and extract
the dispersion of photon pairs, one needs some analytic ex-
pression for βmn coefficients. A powerful approach to this
problem is provided by the Bethe ansatz technique [54,55].

013510-3



ANDREI A. STEPANENKO AND MAXIM A. GORLACH PHYSICAL REVIEW A 102, 013510 (2020)

The standard Bethe ansatz has the form

βmn = C exp

[
i
k

2
(m + n) + i

κ

2
(m − n)

]
(18)

for m � n. In this expression, k is the Bloch wave number
describing the motion of the photon pair as a whole, whereas
κ captures the relative motion of particles. Bound photon
pairs are characterized by a complex κ, in which case the
wave function decays with the increase in separation (m − n)
between the photons.

While this simple ansatz captures the properties of bound
pairs in the limiting case P = 0, it is inconsistent with
Eqs. (3)–(5) in the general case of P �= 0 and arbitrary k. To
proceed with the analytical solution, we need to incorporate
into the ansatz the presence of two sites in the unit cell. This
extended unit cell shrinks the first Brillouin zone for doublons
from [−π, π ] (as is the case for P = 0) to [−π/2, π/2],
mixing the states with wave numbers k and k + π . Therefore,
we introduce the following modification of the Bethe ansatz:

βmn = C1 eik(m+n)/2 eiκ1(m−n)/2

+ C2 ei(k+π )(m+n)/2 eiκ2(m−n)/2 (19)

with m � n and Im κ1,2 > 0. The modified ansatz Eq. (19)
appears to be consistent with the full system of equations
(3)–(5), and determines the doublon dispersion as further
detailed in Appendix A.

Omitting the details of the derivation, we would like to
stress here several simple but illuminating results. The ener-
gies of doublon bands in the limiting case k = ±π/2 can be
found analytically:

ε+ = sgn [2U + P]
√

(2U + P)2 + 8J2, (20)

ε− = sgn [2U − P]
√

(2U − P)2 + 8J2. (21)

Thus, bound photon pairs are always stable for wave num-
bers near the boundaries of the first Brillouin zone. In the
strong-interaction limit, the energies of the two bands scale
as (2U + P) and (2U − P), which means that the effective
photon-photon interaction U defines the average energy of
the bound pair, whereas the two-photon hopping P controls
energy splitting between the two bands.

For k = 0, the energies of the doublon states read

ε′
+ = sgn [2U + P]

√
(2U + P)2 + 16J2, (22)

ε′
− = 2U − P, (23)

where ε− and ε′
− (ε+ and ε′

+) can correspond to the same or to
different doublon bands. Note that Eqs. (20)–(23) agree with
the simplified model Eq. (10), up to first order in j. Further-
more, the doublon band associated with ε′

− can collapse, inter-
secting with the continuum of two-photon scattering states for
nonzero k sufficiently far from the Brillouin zone boundaries.
As we show in Appendix A, collapse of the doublon band
occurs in the range of parameters

−4J < 2U − P < 4J. (24)

To illustrate the obtained solution further, we explore
the dispersion of doublons in two characteristic situations
with the same two-photon hopping P/J = −0.5 and different

magnitudes of the effective photon-photon interaction: strong
interactions U/J = 6 [Fig. 2(a)], and moderate interactions
U/J = 1 [Fig. 2(b)]. The former case, shown in Fig. 2(a),
exhibits a remarkable agreement with the effective SSH model
[Eq. (10)], in terms of both the boundaries of the upper
12.5 < εup/J < 12.8, and lower 11.8 < εl/J < 12.2, bulk
bands and the spectral position of the topological edge state
εedge/J 	 12.2. However, when the strength of the interaction
U is decreased, one of the doublon bands intersects with the
continuum of scattering states and collapses [Fig. 2(b)]. In
agreement with our previous analysis, both doublon bands are
stable near the edges of the Brillouin zone, while one of the
bands becomes unstable in the vicinity of k = 0. At the same
time, the edge states near the first site persist, coexisting with
the continuum of scattering states.

It is also instructive to trace the evolution of doublon bands
when the parameters of the model U and P are varied. The
situation with a fixed P is illustrated in Fig. 2(c). In accordance
with Eqs. (20) and (21), we observe that the continuum of
scattering states can be located right between two doublon
bands provided (2U + P) and (2U − P) have different signs,
which happens for U/J < 0.2. The decreased spectral width
of the lower band inside the continuum of scattering states
for 0.3 < U/J < 1.75 serves as evidence of doublon col-
lapse. In agreement with the simplified model developed in
Sec. II, doublon bands become dispersionless for U/J = 2
[cf. Eq. (12)] and the gap between them closes at U/J = 4
[cf. Eq. (11)]. In fact, such close agreement is not occasional,
since the conditions for the flat band and for gap closing pre-
dicted by the simplified model coincide with those obtained
from the rigorous solution as discussed in Appendix A.

In the strong-interaction limit, two-photon hopping P is
the only parameter controlling the separation of two doublon
bands. Figure 2(d) shows an almost linear dependence of
doublon energies on the magnitude of P featuring two band
touching points. This indicates closing and reopening of the
bandgap as discussed in Sec. II and hints towards the topolog-
ical transitions occurring in the system. For other parameters,
we observe that the width of doublon bands decreases to 0,
giving rise to the flat bands anticipated from our analysis in
Sec. II. The situation appears to be more complicated for mod-
erate interactions U/J = 1, when doublon bands interact with
the scattering continuum collapsing and reviving [Fig. 2(e)].
In this case, the scattering continuum occupies the doublon
bandgap for most of the considered values of P.

The doublon state with energy (2U − P), shown by the
dashed red line in Figs. 2(c) and 2(e), appears to be especially
robust crossing the entire scattering continuum. The stability
of this state is explained by the structure of its wave function
|ψ〉 = (2N )−1/2 ∑

n(−1)n â†
nâ†

n|0〉, which includes only states
with two photons sharing the same cavity and which does not
overlap with the remaining Fock states â†

mâ†
n|0〉 (m �= n). As

a result, this doublon mode is a typical symmetry-protected
bound state in the continuum (BIC) [56].

IV. EDGE AND INTERFACE TOPOLOGICAL
DOUBLON STATES

The closing and reopening of a bandgap between two
doublon bands demonstrated in Sec. III hints at topological
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FIG. 2. Dispersion of two-photon excitations in the extended
Bose-Hubbard model Eq. (1). Doublon dispersion for two represen-
tative cases: (a) the strong-interaction limit U/J = 6, P/J = −0.5;
and (b) moderate interactions U/J = 1, P/J = −0.5. While the
lower doublon band collapses, intersecting with the continuum of
scattering states, two trivial doublon edge states, shown by black
horizontal lines, coexist with the scattering continuum shown in light
green. (c) Evolution of doublon bands shown in red when two-photon
hopping P/J = −0.5 is fixed and the interaction strength U is varied.
Vertical black lines indicate the values of U used in (a) and (b). The
green band shows the range of energies of the two-photon scattering
states when they exist for all k (between dashed green lines) or only
for some k (above and below dashed green lines). [(d),(e)] Evolution
of doublon bands when the photon-photon interaction U/J is fixed
and the two-photon hopping P/J is varied. Vertical lines indicate the
magnitude of P corresponding to (a) and (b). (d) Strong interactions
U/J = 6. (e) Moderate interactions U/J = 1. The dashed red line in
(c) and (e) shows the energy 2U − P of the doublon state coexisting
with the continuum.

transitions occurring in the system. While the strong-
interaction limit U � J is well understandable in terms of the
effective SSH-type model, the case of moderate interaction
appears to be less intuitive. A characteristic example is pre-
sented in Fig. 2(b), where one of the doublon bands partially
collapses and the edge state appears in the continuum of scat-
tering states. These observations demonstrate two important
features of our system.

First, the problem of bulk-boundary correspondence in
two-particle topological models becomes more involved,
since the corresponding doublon band can collapse, leaving
the Berry connection undefined, whereas the topological state
persists. Second, similarly to the bulk state ε = 2U − P dis-
cussed above, the two-particle bound edge state can coexist
with the continuum of scattering states as has been previously
pointed out for a different two-particle model [25,26] provid-
ing a realization of the two-particle BIC [56].

To gain further intuition about the doublon BIC arising in
this system, we analyze two geometries: (i) a finite array with
the edge state localized near the first site and (ii) a domain
wall between the two arrays with different dimerizations
hosting the interface state. In the first scenario, illustrated in
Figs. 3(a)–3(d), we observe two edge states of bound photon
pairs. The state with a higher energy, shown in Figs. 3(a) and
3(b), still retains quite good localization close to exponential.
At the same time, the lower-energy state [Figs. 3(c) and 3(d)],
which lies deeper in the scattering continuum, clearly exhibits
nonexponential localization caused by the stronger interaction
with the continuum. In turn, the interface state [Fig. 3(e)]
exhibits a symmetric profile with respect to the domain wall,
thus resembling the interface state at a defect formed by
two consecutive tunneling links in the canonical SSH model
[53]. However, in contrast to the SSH case, the localization
of the interface state is nonexponential [Fig. 3(f)] due to its
hybridization with the scattering states.

To examine the topological protection of the predicted
doublon edge and interface states, we evaluate the topological
invariant for bound photon pairs. While the definition of
topological invariants in multiparticle systems is generally a
complicated task, the doublon can be viewed as an effectively
one-dimensional quasiparticle and hence the standard Zak
phase [57] can be calculated. However, the problem here is
that the unit cell for the doublon includes an infinite set of the
two-photon Fock states illustrated in Fig. 4(a). Whereas the
center-of-mass position (m + n)/2 for these states is restricted
by the interval [−1/2; 3/2] [Fig. 4(a)], the separation between
the two photons can take any values from 0 to ∞. Still, the unit
cell can be chosen to be inversion symmetric, which ensures
that the Zak phase γ can take only two values modulo 2π :
either 0 or π [57].

We evaluate the Zak phase for the full range of U and P
parameters encoding the value of the topological invariant by
color in Fig. 4(c): the red-shaded area corresponds to γ = π

and the rest of the domain corresponds to γ = 0. This means
that in the absence of interaction-induced detuning of the edge
sites, the (N, N ) site of the array hosts the edge state for U and
P, which fall in the domain with γ = π .

As is typical for 1D systems, the Zak phase depends
on the unit cell choice. For instance, if we shift the unit
cell by a half-period such that its boundaries are given by
the lines m + n = 1 and m + n = 5, the Zak phase will
take the opposite value: γ ′ = γ − π mod 2π (see details in
Appendix B). Hence, in the absence of interaction-induced
detuning, the edge site (1,1) of the array hosts the topological
edge state for those U and P values which fall in the range
γ ′ = π (γ = 0), i.e., do not satisfy the inequality Eq. (15).

Thus, for any parameters U and P, one could expect
a single topological edge state on one or another edge
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FIG. 3. Realization of doublon edge and interface states in the
continuum for two geometries illustrated in insets. [(a),(c)] Proba-
bility distributions |βmn|2 for trivial doublon edge states localized
near the first site of the array of the N = 31 cavity with energies
ε(edge)/J = 3.66 and ε(edge)/J = 2.29, respectively. [(b),(d)] Proba-
bility distributions |βnn|2 versus n at logarithmic scale for the same
states as in (a) and (c), respectively. Both edge states feature non-
exponential localization. (e) Probability distribution for topological
interface state of a doublon with energy ε(int)/J = 3.53 localized at
the boundary between the two arrays with different dimerizations
and overall length of the N = 61 cavity. (f) Probability distribution
|βnn|2 versus n at logarithmic scale for the interface state in (e). The
decay of the interface state with distance is not captured by a simple
exponential formula. The calculations are performed for U/J = 1,
P/J = −0.5 as in Fig. 2(b).

of the array. However, both edges of the array do expe-
rience an interaction-induced detuning equal to j = J2/U
in the strong-interaction limit. As we discuss in detail in
Appendix C, this detuning destroys the topological edge state
at the N th site and gives rise to the trivial states localized near
the first site of the array.
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C

FIG. 4. (a) Illustration of various two-photon Fock states
â†

m â†
n |0〉 comprising the two-photon wave function on a 2D map.

Boundaries of the inversion-symmetric unit cell used for the Zak
phase calculation for doublon bands are shown by dashed green
lines. (b) Sketch of the reduced 1D model. Two choices of the unit
cell are demonstrated. u1,2 are the components of the wave function.
(c) Phase diagram showing the magnitude of the Zak phase as a
function of the model parameters U/J and P/J calculated for the
unit cell choice shown in (a). The Zak phase is equal to π in the red-
shaded area of the diagram and equal to 0 elsewhere. Areas shaded
in light green and light purple indicate the parameters giving rise
to the collapse of lower and upper doublon bands, respectively. The
dashed black line corresponds to the condition P = 2U . Points A, B,
and C mark the parameters corresponding to Fig. 2(a), Fig. 2(b), and
Fig. 5(b), respectively.

V. DISCUSSION AND CONCLUSIONS

To summarize, we have investigated a system with
interaction-induced topological order. Even though the single-
particle model is topologically trivial, the two-particle bands
feature a topological bandgap with doublon edge and interface
states inside it. Quite interestingly, the observed two-particle
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edge states remain stable under the collapse of the bulk
doublon band, and moreover, they can coexist with the scat-
tering continuum, providing a realization of the two-photon
interaction-induced BIC.

By performing rigorous calculation of the Zak phase, we
have revealed the topological transitions occurring in this
system and have extended the bulk-boundary correspondence
principle towards our interacting two-particle model.

We believe that the physical realization of the proposed
model can be based on cold atomic gases in optical lattices,
arrays of coupled transmon qubits, or other systems featuring
a significant anharmonicity of the on-site potential. At the
same time, mapping of the interacting 1D two-body problem
onto the 2D classical setup possible for the class of Bose-
Hubbard models opens another experimentally feasible route
to probe the topological states in interacting systems.
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APPENDIX A: CALCULATION OF THE BULK
DOUBLON DISPERSION

In this Appendix, we outline the rigorous solution for the
dispersion of bulk doublons based on the modified Bethe
ansatz Eq. (19). We seek the solution of the equations

εβm,n = −Jβm+1,n − Jβm−1,n

− Jβm,n+1 − Jβm,n−1 (m �= n), (A1)

(ε − 2U )β2m,2m = −2Jβ2m+1,2m

− 2Jβ2m,2m−1 + Pβ2m+1,2m+1, (A2)

(ε − 2U )β2m+1,2m+1 = −2Jβ2m+2,2m+1

− 2Jβ2m+1,2m + Pβ2m,2m, (A3)

assuming that

βmn = C1 eik(m+n)/2 eiκ1(m−n)/2

+ C2 ei(k+π )(m+n)/2 eiκ2(m−n)/2 (A4)

for any m � n and Im κ1,2 > 0. Inserting Eq. (A4) into the
system Eqs. (A1)–(A3), we get

ε = −4J cos
k

2
cos

κ1

2
, (A5)

ε = 4J sin
k

2
cos

κ2

2
, (A6)

C1

[
ε − 2U + 4J cos

k

2
eiκ1/2 − P eik

]

+ C2

[
ε − 2U − 4J sin

k

2
eiκ2/2 + P eik

]
= 0, (A7)

C1

[
ε − 2U + 4J cos

k

2
eiκ1/2 − P e−ik

]

+ C2

[
ε − 2U − 4J sin

k

2
eiκ2/2 + P e−ik

]
= 0. (A8)

Here, Eqs. (A5) and (A6) are obtained from the single
Eq. (A1) due to the linear independence of eiκ1 (m−n)/2 and
eiκ2 (m−n)/2 for m �= n. The system of four equations (A5)–
(A8), defines four unknowns — ε, κ1, κ2, and the ratio
C1/C2 — while the absolute values of C1 and C2 are de-
termined from the normalization of the two-photon wave
function.

Excluding the doublon energy from Eqs. (A7) and (A8)
with Eqs. (A5) and (A6) and further rearranging them, we
arrive at the linear system with respect to C1 and C2:

C1

[
4iJ cos

k

2
sin

κ1

2
− 2U − P cos k

]
+ iC2 P sin k = 0,

(A9)

− iC1 P sin k

+ C2

[
−4iJ sin

k

2
sin

κ2

2
− 2U + P cos k

]
= 0. (A10)

Setting the determinant of this system to 0, we recover that

8J2 sin k sin
κ1

2
sin

κ2

2
− 4iJ cos

k

2
sin

κ1

2
(2U − P cos k)

+ 4iJ sin
k

2
sin

κ2

2
(2U + P cos k) + 4U 2 − P2 = 0.

(A11)

To provide an efficient numerical algorithm to calculate the
dispersion of doublons, we introduce two auxiliary dimen-
sionless variables:

x ≡ −i cos
k

2
sin

κ1

2
, (A12)

y ≡ −i sin
k

2
sin

κ2

2
. (A13)

Making use of Eqs. (A5), (A6), and (A11), we get the follow-
ing closed-form system of equations:

f (x, y, k) ≡ x2 − y2 + cos k = 0, (A14)

g(x, y, k) ≡ −16J2 x y + 4Jx (2U − P cos k)

− 4Jy (2U + P cos k) + 4U 2 − P2 = 0. (A15)

Separating the real and imaginary parts for κ1 and κ2 and
taking into account that Im κ1,2 > 0, we can show that the
real parts of x, y, and ε satisfy the following condition:

sgn ε = − sgn x = sgn y. (A16)

Hence, to find the doublon dispersion one has to solve the
system of algebraic equations (A14) and (A15) numerically,
keeping only those pairs of x and y which satisfy an additional
constraint Eq. (A16). The doublon energy is then given by

ε = −4J sgn x

√
cos2

k

2
+ x2. (A17)

Note that bound pairs coexist with the continuum of two-
photon scattering states. The bulk dispersion of such states is
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captured by the simple formula (A5), where both parameters
k and κ are real.

In some limiting cases, the expression for the doublon
energy simplifies considerably. For instance, if k = ±π/2,
x = −(2U ± P)/(4J ), whereas the doublon energy

ε± = sgn (2U ± P)
√

(2U ± P)2 + 8 J2. (A18)

Hence, doublons with k at the edge of the Brillouin zone are
always stable.

Another limiting case is k = 0 when one of the doublon
bands has C2 = 0 and the Bethe ansatz in the standard form
Eq. (18), can be applied. In this case, the energy of this
particular doublon band is given by

ε′
+ = sgn(2U + P)

√
(2U + P)2 + 16J2, (A19)

whereas the second doublon solution corresponds to fully
colocalized photons and has the energy

ε′
− = 2U − P. (A20)

Note, however, that the latter doublon band is unstable for
nonzero k far enough from the Brillouin zone boundaries.

With the obtained rigorous solution, we can also find the
condition for closing of the gap between two doublon bands.
To this end, two roots for ε(k = 0) given by Eqs. (A19) and
(A20) should coincide, i.e.,

UP = −2J2. (A21)

In a similar manner we examine the condition for a flat
band. Inspecting Eqs. (A18), (A19), and (A20), we find out
that ε+ = ε′

− and ε− = ε′
+ provided

UP = −J2. (A22)

Note that ε+ and ε′
+ can correspond to the same or to different

doublon bands depending on the parameter choice, and the
subscript ± is used here just to label the solutions.

Quite interestingly, both of these results, Eqs. (A21) and
(A22), coincide with those obtained from the simplified SSH-
type effective model, Eqs. (11) and (12). Additionally, we can
find the conditions for collapse of the doublon state. The col-
lapsing band is characterized by the decreased colocalization
of photons, i.e., x → 0. Solving Eqs. (A14) and (A15) for
k = 0 with x = 0, we find the following condition:

2U − P = ±4J. (A23)

In a similar manner one can also examine the collapse of the
doublon with arbitrary wave number k.

APPENDIX B: CALCULATION OF THE ZAK PHASE FOR
BULK DOUBLON BANDS

The obtained analytic solution for the dispersion of dou-
blons allows us to evaluate the Zak phase for bulk doublon
bands. To this end, we take the periodic part |uk〉 of the full
doublon wave function in the form

|uk〉=β0,0|20〉 + β1,1|21〉 +
√

2
∞∑

n=1

βn,−n|1n1−n〉

+
√

2
∞∑

n=2

βn,2−n|1n12−n〉 + 1√
2

∞∑
n=1

βn−1,−n|1n−11−n〉

+
√

2
∞∑

n=1

βn,1−n|1n11−n〉+ 1√
2

∞∑
n=1

βn+1,2−n|1n+112−n〉,

(B1)

where |1m1n〉 ≡ â†
m â†

n |0〉 for m �= n and |2m〉 ≡
2−1/2 (â†

m)2 |0〉. The corresponding choice of the unit cell
is illustrated in Fig. 4(a). Importantly, this unit cell is
inversion symmetric, which ensures quantization of the Zak
phase in units of π [57].

In turn, the coefficients βmn are defined from Eq. (A4) and
hence

|uk〉 = C1|v1〉 + C2|v2〉, (B2)

|v1〉 = |20〉 + eik|21〉 +
√

2
∞∑

n=1

eiκ1n|1n1−n〉

+
√

2
∞∑

n=2

eiκ1(n−1)eik|1n12−n〉

+ 1√
2

∞∑
n=1

eiκ1(n− 1
2 )

[
e− ik

2 |1n−11−n〉

+2e
ik
2 |1n11−n〉 + e

3ik
2 |1n+112−n〉

]
, (B3)

|v2〉 = |20〉 − eik|21〉 +
√

2
∞∑

n=1

eiκ2n|1n1−n〉

−
√

2
∞∑

n=2

eiκ2(n−1)eik|1n12−n〉

+ 1√
2

∞∑
n=1

eiκ2(n− 1
2 )

[ − ie− ik
2 |1n−11−n〉

+2ie
ik
2 |1n11−n〉 − ie

3ik
2 |1n+112−n〉

]
. (B4)

The Zak phase is defined in terms of the Berry connection
as

γ =
∫ π/2

−π/2
A(k) dk, (B5)

where the Berry connection A(k)

A(k) = i

〈
uk

∣∣∣∣∂uk

∂k

〉
= iC∗

1
∂C1

∂k
〈v1|v1〉 + iC∗

1
∂C2

∂k
〈v1|v2〉

+iC∗
1C1

〈
v1

∣∣∣∣∂v1

∂k

〉
+ iC∗

1C2

〈
v1

∣∣∣∣∂v2

∂k

〉

+iC∗
2
∂C1

∂k
〈v2|v1〉 + iC∗

2
∂C2

∂k
〈v2|v2〉

+iC∗
2C1

〈
v2

∣∣∣∣∂v1

∂k

〉
+ iC∗

2C2

〈
v2

∣∣∣∣∂v2

∂k

〉
. (B6)

Using Eqs. (B3) and (B4), we calculate the scalar products

〈v1|v1〉 = 2(1 + x11) + 3
√

x11

1 − x11
, (B7)

〈v1|v2〉 = 〈v2|v1〉∗ = i
√

x12

1 − x12
, (B8)
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〈v2|v2〉 = 2(1 + x22) + 3
√

x22

1 − x22
, (B9)〈

v1

∣∣∣∣∂v1

∂k

〉
= iκ′

1

8x11 + 3
√

x11(1 + x11)

2(1 − x11)2

+i
2(1 + x11) + 3

√
x11

2(1 − x11)
, (B10)〈

v1

∣∣∣∣∂v2

∂k

〉
= −2i(1 + x12) + √

x12

2(1 − x12)

−κ
′
2

√
x12(1 + x12)

2(1 − x12)2
, (B11)〈

v2

∣∣∣∣∂v1

∂k

〉
= −2i(1 + x21) − √

x12

2(1 − x21)

+κ
′
1

√
x21(1 + x21)

2(1 − x21)2
, (B12)〈

v2

∣∣∣∣∂v2

∂k

〉
= iκ′

2

8x22 + 3
√

x22(1 + x22)

2(1 − x22)2

+i
2(1 + x22) + 3

√
x22

2(1 − x22)
, (B13)

where xαβ = (eiκα )∗eiκβ .
The scalar products 〈 ∂vi

∂k |v j〉 are obtained by complex con-
jugation of 〈v j | ∂vi

∂k 〉. Calculating the Berry connection, we
need to determine five quantities: ∂C1

∂k , ∂C2
∂k , ∂κ1

∂k , ∂κ2
∂k , and ∂ε

∂k .
Differentiation of the identities, Eqs. (A5)–(A8), with respect
to k yields only four equations. One more equation can be
obtained differentiating the identity

〈uk|uk〉 = 1, (B14)

which is the normalization condition for the periodic part
of the wave function. In these calculations, the gauge of the
wave function should be fixed. To ensure smooth behavior of
coefficients C1 and C2 with k, we choose their phases such that
(C1 + C2)eiφ is real, where

eiφ =
√

−Pe−ik − 2U + 4iJ sin κ1/2 cos k/2

Peik + 2U − 4iJ sin κ1/2 cos k/2
. (B15)

This choice ensures, in particular, that the Berry connection
is a smooth function of the wave number k. The Zak phase
calculation is then accomplished in several steps:

i. Complex coefficients C1,2 are calculated using the nor-
malization condition, Eq. (B14), and Eqs. (A9) and (A10).

ii. The derivatives ∂C1
∂k , ∂C2

∂k , ∂κ1
∂k , ∂κ2

∂k , and ∂ε
∂k are evaluated

from the differentiated identities Eqs. (A5)–(A8) and (B14).
iii. The obtained quantities are inserted into Eq. (B6) and

the Berry connection is evaluated numerically in the entire
Brillouin zone. The Zak phase is recovered by numerical
integration.

Performing the calculation of the Zak phase for different
values of model parameters U and P, we plot the phase
diagram shown in Fig. 4(b) and analyze topological transitions
occurring in the system. For the unit cell choice shown in
Fig. 4(a), the link with the direct two-photon hopping is
located inside the unit cell. For U > 1, γ = π is achieved
exactly in the same range of parameters when | j + P| < j,
i.e., the weak tunneling link appears inside the unit cell. This
is consistent with the result expected from the effective SSH
model with coupling constants equal to j = J2/U and j + P.

Quite importantly, the value of the Zak phase depends on
the unit cell choice. Below, we briefly discuss what happens
if the unit cell is chosen such that the P link is outside
of the unit cell. To analyze this without repeating lengthy
calculations, we note that the doublons in our problem are
effectively 1D and hence their Hamiltonian can be effectively
reduced to a 1D model sketched in Fig. 4(b). Assume that
the periodic part of the wave function corresponding to the
original unit cell choice reads |ψ〉 = (u1, u2)T . Then, if the
unit cell is shifted by half a period, the wave function is
modified as |ψ ′〉 = (u2, u1eik )T , where −π < k < π , and the
wave function is normalized to unity. As a result, the Berry
connection calculated for the new wave function reads

A′(k) = A(k) − |u1|2. (B16)

Furthermore, since the unit cell is inversion symmetric and
the inversion operator has the form P̂ = σx, the periodic part

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0 0.10.05
V/J

0.15

ε /J

12.2

12.0

12.4

12.6

● ● ●

ε/J 12.2

11.8

12.4

12.8

12.0

12.6
(a)

(b)

FIG. 5. Energies of doublon edge states versus additional poten-
tial V applied to the first site to compensate the interaction-induced
detuning. Red-shaded areas highlight the range occupied by bulk
doublon bands, dashed black lines show the prediction of the effec-
tive SSH model, and dots depict the results of exact diagonalization
of the Hamiltonian for a finite array of 19 sites. (a) Topological
case with U/J = 6 and P/J = −0.5 shown by point A in Fig. 4(c).
(b) Trivial case with U/J = 6 and P/J = −0.1 shown by point C in
Fig. 4(c).
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of the wave function satisfies the condition(
u2(k)
u1(k)

)
= eiα(k)

(
u1(−k)
u2(−k)

)
, (B17)

i.e., |u2(k)| = |u1(−k)|. Hence, the Zak phase for the shifted
unit cell choice

γ ′ = γ −
∫ π

−π

|u1(k)|2 dk

= γ −
∫ π

0
[|u1(k)|2 + |u1(−k)|2] dk

= γ −
∫ π

0
[|u1(k)|2 + |u2(k)|2] dk = γ − π, (B18)

i.e., the Zak phase calculated for the shifted unit cell choice
changes its value from π to 0 or from 0 to π modulo 2π .

Finally, it should be highlighted that, besides the analogy
with the effective SSH model, our system also exhibits some
distinctive properties. First, even if one of the doublon bands
collapses, the Zak phase can still be defined using the wave
functions for the remaining band. Furthermore, despite the
collapse of the bulk doublon band, the doublon edge state can
persist, which provides an interesting feature of two-photon
edge states.

Even though this model is just a particular example, we be-
lieve that the present analysis provides valuable insights into
the topological properties and bulk-boundary correspondence
in nonlinear topological models.

APPENDIX C: DRAWING THE DISTINCTION BETWEEN
TRIVIAL AND TOPOLOGICAL DOUBLON EDGE STATES

Since the considered model features both trivial and topo-
logical doublon edge states, it is important to draw a clear
distinction between them. For this purpose, we calculate the
spectrum of our model applying an additional detuning po-
tential V to the first site of the array such that its two-photon
energy is equal to 2U + j + V [cf. Eq. (8)]. Next we trace the
evolution of doublon edge states when the magnitude of the
detuning is gradually increased, reaching j and compensating
the interaction-induced detuning of the edge site [cf. Eq. (6),
(7)]. Two characteristic situations are observed.

In the first case, depicted in Fig. 5(a), the doublon edge
state shifts towards the center of the doublon bandgap and
appears exactly in the midgap position for V = j. This im-
mediately clarifies the topological nature of this edge state,
highlighting the analogy with its counterpart in the SSH
model.

In the second scenario, shown in Fig. 5(b), two doublon
edge states are present simultaneously, and one of them is
again located inside the doublon bandgap. However, when the
detuning V is increased, both of the edge states disappear,
merging with the bulk doublon bands. Therefore, this pair
of edge states should be identified with the trivial Tamm-like
states.

Note that this analysis complements the Zak phase calcula-
tion highlighting the validity of the bulk-boundary correspon-
dence principle for our two-particle model.
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