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The formalism of quantum estimation theory, focusing on the quantum and classical Fisher information, is
applied to the estimation of the coupling strength in an optomechanical system. In order to estimate the optome-
chanical coupling, we have considered a cavity optomechanical model with non-Markovian Brownian motion
of the mirror and employed input-output formalism to obtain the cavity output field. Our estimation scenario is
based on balanced homodyne photodetection of the cavity output field. We have explored the difference between
the associated measurement-dependent classical Fisher information and the quantum Fisher information, thus
addressing the question of whether it is possible to reach the lower bound of the mean-squared error of an
unbiased estimator by means of balanced homodyne detection. We have found that the phase of the local
oscillator in the homodyne detection is crucial; certain quadrature measurements allow very accurate estimation.
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I. INTRODUCTION

Inverse problems play an important role in science because
they are able to inform us about relevant parameter values of
a dynamical system that we cannot directly observe [1]. The
objective of an inverse problem is to estimate these unknown
parameters by extracting information from measurement data
and assessing the uncertainty in these data, making use of
all information known prior to the measurement process and
a mathematical model of the dynamical system. In this ap-
proach, the parameters to be estimated are treated as random
variables and they must be assigned a joint prior probability
distribution function; this is the Bayesian formulation of the
estimation problem. The qualities of estimators acting on
the space of measurement data are evaluated through cost
functions or, conversely, by maximizing or minimizing a cost
function over the set of all possible estimators that leads to
an optimal estimator. In this case, calculus of variations is
applied, which is not always an easy mathematical task, espe-
cially when the estimation problem is formulated in quantum
mechanics [2–4]. Applications to quantum mechanical sys-
tems do not always result in an experimentally implementable
optimal estimator [5–9].

Optimal estimators, in general, are likely to be compli-
cated, as is observed in our previous investigation on the esti-
mation of the nonlinear optomechanical coupling strength [7].
Furthermore, solving the variational problem for the average
cost function imposes limits on the use of models with many
types of decoherence sources. In order to work with more
effective models of cavity optomechanical systems [10] and
to consider experimentally relevant estimation strategies [11],
one has to turn to the investigation of the lower bounds of
some convenient measure of the estimation accuracy. The
mean-squared error—the average squared difference between
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estimated values and true values of the unknown parameters—
is usually employed as a measure of accuracy. In the case of
classical systems, there are some complicated lower bounds
of the mean-squared error [12,13]; however, the Cramér-Rao
inequality [14,15], which defines an inferior but a simpler
lower bound, can be extended to quantum systems [16]. Here,
the lower bound is inversely proportional to the quantum
Fisher information (QFI), irrespective of whether the estima-
tor is biased or unbiased; see Ref. [9]. The chosen estimation
strategy, expressed as a positive-operator valued measure
(POVM), provides probability distributions of the parameter
to be estimated, conditioned on the true value of this param-
eter. These conditional probabilities determine the classical
Fisher information (CFI), which is inversely proportional to
the lower bound of the mean-squared error in the classical
postprocessing of measurement data. As the CFI is always
smaller than or equal to the QFI, which defines the smallest
value of the lower bound, it is worthwhile to investigate the
circumstances where the CFI is as close as possible to the
QFI [17]. If the QFI is saturated by some POVM and the con-
ditional probability distributions belong to a one-parameter
exponential family, which is a requirement that our theoretical
approach fulfills, then there exists a suitable classical unbiased
estimator on the measurement data [18] which saturates the
CFI and thus yields the most precise measurement.

In this paper, we follow the above-described methodology,
which allows us to consider a detailed model of a cavity
optomechanical system. We consider a single mode of the
radiation field inside a cavity and also a single vibrational
mode of the mechanical resonator. The two modes interact
via a radiation-pressure interaction Hamiltonian [19]. The
single-mode field assumption is justified when the cavity is
driven by an external laser with a bandwidth significantly
narrower than the separation among the different electro-
magnetic field modes. The laser populates only one mode,
allowing us to neglect the others. There are many mechanical
modes, but describing only one of them has proven to be
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a valid approximation in experiment [10]. The mechanical
oscillator is subject to quantum Brownian motion [20,21] and
the single-mode cavity field is coupled to the electromagnetic
field outside of the cavity [22]. Finally, balanced homodyne
photodetection with nonideal detectors [23] is carried out on
the output field; this automatically defines the set of POVMs,
i.e., the estimation strategy, that we explore. We investigate
the QFI of the output field state depending on the unknown
value of the nonlinear optomechanical coupling and compare
with the CFI obtained from the data provided by the balanced
homodyne photodetection. We identify those cases where CFI
is as large as possible, where the lower bound of the estimation
accuracy is therefore smallest.

This paper is organized as follows. In Sec. II, we discuss
the cavity optomechanical model and determine the stationary
state of the output field. In Sec. III, the QFI of the output field
state is determined. A brief overview of balanced homodyne
photodetection and the related POVM is presented and con-
ditional probabilities of these measurements are given, which
allows us to calculate the CFI. A numerical investigation and
the maximization of CFI with respect to QFI are addressed in
Sec. IV. Finally, in Sec. V, we draw conclusions and make
some remarks on our work. Detailed derivations supporting
the main text are collected in the two appendices.

II. MODEL

The optomechanical system we have in mind is formed by
a Fabry-Pérot cavity with a moving-end mirror and we focus
on a case where only a single mode of the radiation field and
a vibrational mode of the mechanical oscillator, i.e., moving
mirror, are considered. The model can be used to describe
several alternative systems [10]. The free Hamiltonian of the
system reads

Ĥ0 = h̄ωcâ†â + p̂2

2m
+ 1

2
mω2

mq̂2, (1)

where q̂ and p̂ are position and momentum operators for the
mechanical oscillator of effective mass m and which oscillate
at frequency ωm. The annihilation and creation operators of
the single-mode radiation field with frequency ωc are denoted
by â and â†. The two subsystems are coupled by the optome-
chanical interaction [19], which is the radiation pressure on
the oscillating mirror, which is well described by a nonlinear
Hamiltonian term [10],

ĤI = −h̄gâ†âq̂, (2)

with coupling strength g. The use of the term “nonlinear”
here refers to the equation of motion of the system operators,
at least one of which is nonlinear, and is related to the
Hamiltonian being of third order in these operators.

In order to describe this optomechanical system effectively,
one has to consider decoherence and excitation losses, i.e.,
the concept of open quantum systems has to be applied. The
single-mode field is affected by a decay with rate κ = κin +
κloss, where κin is the loss rate associated with the input-output
fields and κloss is related to what are commonly called internal
losses [24]. The latter quantity could, for example, originate
from the fact that the cavity mirrors act to scatter photons from
the cavity mode of interest to other modes or to the outside

environment. The mechanical oscillator is in contact with a
phonon bath at temperature T and experiences a friction or
decay rate γ . The dynamics is given in the Heisenberg picture
with the use of the quantum Langevin equations,

˙̂a = −iωcâ + igâq̂ − κ

2
â + √

κinâin + √
κlossâloss, (3)

˙̂a† = iωcâ† − igâ†q̂ − κ

2
â† + √

κinâ†
in + √

κlossâ
†
loss, (4)

˙̂q = p̂

m
, (5)

˙̂p = −mω2
mq̂ − γ p̂ + h̄gâ†â + ξ̂ , (6)

where âin is the input noise operator associated with the modes
of the radiation field outside the cavity. âloss is the operator
describing the internal losses and ξ̂ represents the quantum
Brownian noise operator. Making use of the spectral density
J (ω) of the phonon modes in the bath and the weak coupling
of the mechanical oscillator to the bath [25], one can define
the following functions [26]:

DR(τ ) =
∫ ∞

0
dωJ (ω) cos(ωτ ) coth

(
h̄ω

2kBT

)
, (7)

DI (τ ) =
∫ ∞

0
dωJ (ω) sin(ωτ ). (8)

Now, we are able to calculate the two-time correlation func-
tion of ξ̂ (t ),

〈ξ̂ (t )ξ̂ (t ′)〉 = h̄[DR(t − t ′) − iDI (t − t ′)]. (9)

The mean of ξ̂ (t ) is zero and its non-Markovian nature allows
us to preserve the correct commutation relations between p̂
and q̂ during the time evolution [26]. An extensively studied
case is the ohmic spectral density with a Lorentz-Drude cutoff
function,

J (ω) = 2mγ

π
ω

�2

ω2 + �2
,

where � is the high-frequency cutoff. An ohmic spectral
density with exponential cutoff [27],

J (ω) = 2mγ

π
ω exp

(
− ω

�

)
, (10)

leads to very similar behavior to one with a Lorentz-Drude
cutoff function, albeit with the advantage that the integrations
in Eqs. (7) and (8) have analytical solutions in closed form,

DR(τ ) = 2mγ

π

�2(�2τ 2 − 1)

(�2τ 2 + 1)2

+ 2mγ

π h̄2 (kBT )2[	 (1)(z) + 	 (1)(z∗)],

z = 1 − i�τ

h̄�
kBT, DI (τ ) = 2mγ

π

2�3τ

(�2τ 2 + 1)2
,

with 	 (1)(z) being the polygamma function [28]. The cavity
operates at optical frequencies, i.e., h̄ωc/kBT � 1 holds to
a very good approximation at reasonable temperatures, and
therefore the operators âin(t ) and â†

in(t ′) commute for t 	= t ′.
Their correlation functions in the vacuum state |0〉 read

〈0|âin(t )â†
in(t ′)|0〉 = δ(t − t ′), 〈0|â†

in(t ′)âin(t )|0〉 = 0.
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The operators âloss(t ) and â†
loss have similar commutation

relations and, furthermore, they commute at all times with
âin(t ) and â†

in(t ′).
Usually the single mode of the cavity is driven by a

laser with frequency ωL and intensity ε. This process can be
modified through the addition of the following term to the
Hamiltonian:

HL = ih̄ε(â†e−iωLt − âeiωLt ), (11)

whose phases ±ωLt can be easily absorbed after going into
a rotating frame, with a resulting detuning for the optical
frequency �0 = ωc − ωL. In terms of the power P of the laser,
the driving intensity is ε = √

2κinP/h̄ωL.
It is worth noting that the driving of the field is a neces-

sary condition to obtain an effectively linear optomechanical
interaction [10]. The application of a high-intensity laser field
causes the single-mode field to reach a steady state with finite
amplitude α (|α| � 1) and allows us to consider only the
quantum fluctuations around this stationary state. This also
affects the mechanical oscillator by shifting the minimum
of the harmonic potential. The dynamics of the fluctuations
around the steady state is well described by linearizing the
quantum Langevin equations (3)–(6). This can mathemati-
cally be described by the application of two displacement
operators,

D̂1(α) = eαâ†−α∗â and D̂2(β0) = eβ0 b̂†−β∗
0 b̂,

with

b̂ =
√

mωm

2h̄

(
q̂ + i

mωm
p̂

)
, (12)

b̂† =
√

mωm

2h̄

(
q̂ − i

mωm
p̂

)
, (13)

on the quantum Langevin equations (3)–(6). The above equa-
tions also define relations between (β0, β

∗
0 ) and (q0, p0).

A transformation back to the operators p̂ and q̂, with the
quantities introduced above satisfying the nonlinear equation

iε = −�0α + gαq0 − i
κ

2
α, (14)

yields a driving free Hamiltonian,

h̄�â†â + p̂2

2m
+ 1

2
mω2

mq̂2 − h̄gα(â + â†)q̂, (15)

where

� = �0 − h̄
g2|α|2
mω2

m

, (16)

q0 = h̄
g|α|2
mω2

m

. (17)

Equation (14), together with the above equations, yields
a third degree equation for |α|. Depending on the value of
the power P, we may encounter a bistability of the system
that will give two different solutions for the shift in the
rest position of the mirror (17). One should note that the
steady-state amplitude depends on the value of g, making α a
function of g, i.e., α = α(g). The same is valid for the detuning
� = �(g). Therefore, for a fixed value of P, the bistability

also depends explicitly on g, which is as yet unknown. A good
strategy here is to define an interval, depending on our prior
knowledge, for the possible values of g and adjust the power
of laser P such that the bistability is completely avoided. For
detailed calculations and regions of stability and bistability,
see Appendix A.

The shifted operators (also denoted fluctuation operators)
δâ = â − α and δq̂ = q̂ − q0 are subject to the same loss
process as the original ones. Note that the momentum operator
δ p̂ = p̂ is not changed because β0 is real, which implies that
p0 = 0. It is more convenient to define the two quadratures of
the single-mode field δX̂ = (δâ† + δâ)/

√
2 and δŶ = i(δâ† −

δâ)/
√

2. We analogously define the quadratures X̂in, Ŷin, X̂loss,
and Ŷloss. Under the assumption that |α| is large, we can
truncate the equations of motion to first order in the fluctuation
operators. Finally, the differential equations of the shifted
operators can be written in the concise form

u̇(t ) = Au(t ) + η(t ), (18)

where we have defined the vector of operators u(t ) =
[δq̂(t ), δ p̂(t ), δX̂ (t ), δŶ (t )]

T
and

η(t ) = [0, ξ̂ (t ),
√

κinX̂in(t ) + √
κlossX̂loss(t ),

√
κinŶin(t )

+√
κlossŶloss(t )]T ,

and the superscript T denotes the transposition. Furthermore,
we have

A =

⎛
⎜⎜⎜⎝

0 1
m 0 0

−mω2
m −γ

√
2h̄gα(g) 0

0 0 − κ
2 �(g)√

2gα(g) 0 −�(g) − κ
2

⎞
⎟⎟⎟⎠, (19)

where we have introduced the explicit dependence of α(g) and
�(g) on g. The solution to (18) reads

u(t ) = exp(At )u(0) +
∫ t

0
dt ′ exp[A(t − t ′)]η(t ′). (20)

The autocorrelation matrix is given by

R(t, s) = 〈u(t )u(s)T 〉.
Making use of the relation

〈u(0)η(t )T 〉 = 〈η(t )u(0)T 〉 = 0, t � 0,

one finds

R(t, s) = exp(At )
〈
u(0)u(0)T

〉
exp(AT s)

+
∫ t

0

∫ s

0
dt ′dt ′′ exp[A(t − t ′)]M(t ′ − t ′′)

× exp[AT (s − t ′′)],

where

M(t ′ − t ′′)

= 〈
η(t ′)η(t ′′)T

〉

=

⎛
⎜⎜⎝

0 0 0 0

0 〈ξ̂ (t ′)ξ̂ (t ′′)〉 0 0
0 0 κ

2 δ(t ′ − t ′′) i κ
2 δ(t ′ − t ′′)

0 0 −i κ
2 δ(t ′ − t ′′) κ

2 δ(t ′ − t ′′)

⎞
⎟⎟⎠.
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Let us consider the symmetric autocorrelation matrix,

σ (t, s) = R(t, s) + RT (t, s)

2
.

Taking t = s, we obtain

d

dt
σ (t ) = Aσ (t ) + σ (t )AT + D(t ),

where σ (t ) ≡ σ (t, t ), and with

D(t ) =
∫ t

0
dt ′ M(t − t ′) + MT (t − t ′)

2
exp[AT (t − t ′)]

+
∫ t

0
dt ′ exp[A(t − t ′)]

M(t ′ − t ) + MT (t ′ − t )

2
.

This can be further simplified via

M1(t − t ′)

= M(t − t ′) + MT (t − t ′)
2

=

⎛
⎜⎝

0 0 0 0
0 h̄DR(t − t ′) 0 0
0 0 κ

2 δ(t − t ′) 0
0 0 0 κ

2 δ(t − t ′)

⎞
⎟⎠,

because DR(−t ) = DR(t ) and DI (−t ) = −DI (t ), which also
implies

M1(t − t ′) = M1(t ′ − t ).

Finally, we can write

D(t ) =
∫ t

0
dτ [M1(τ ) exp(AT τ ) + exp(Aτ )M1(τ )].

The stability of the system, limt→∞ exp(At ) = 0, can be
derived by applying the Routh-Hurwitz criterion [29]. This
has been thoroughly investigated in the last decade and the
two nontrivial conditions on the parameters of A show that
if the system is stable, then the bistability of the dynamics is
avoided [30]. From now on, we consider these conditions to be
satisfied. Therefore, u(t ) for t → ∞ approaches zero, which
implies that the autocorrelation matrix σ (t ) coincides with the
matrix in the stationary solution. The stationary correlation
matrix is defined as σ = limt→∞ σ (t, t ) and is the solution to
the following Lyapunov equation:

Aσ + σAT = −D, (21)

where

D =
∫ ∞

0
dτ [M1(τ ) exp(AT τ ) + exp(Aτ )M1(τ )].

We need to keep in mind that any experimental appa-
ratus does not have direct access to the cavity field, but
only to the output field, which escapes the cavity. We can
calculate the fluctuations of this field around its stationary
state with the use of the input-output relations,

âout = √
κinδâ − âin. (22)

In practice, one selects different modes by opening a filter in
a certain interval of time or in different frequency intervals.
Hence, we can define N-independent output modes following
the approach of Ref. [30],

âk,out(t ) =
∫ t

−∞
dsgk (t − s)âout(s), k = 1, . . . , N, (23)

where gk (s) is the filter function defining the kth mode. Here
we will make use of the filter function,

gk (t ) = θ (t ) − θ (t − τ )√
τ

e−i�kt , (24)

with � j − �l = 2π
τ

n, n ∈ N. The kth mode is centered at the
frequency �k and has a bandwidth 1/τ . Making use of the
input-output relations (22), we obtain the correlation matrix
σk,out of the output field quadratures X̂k,out and Ŷk,out related to
a filter centered at frequency �k as (see Appendix B)

〈X̂k,outX̂k,out〉(τ ) = 1

2
κτ sinc2

(
�kτ

2

)
[(σxx − σyy) cos(�kτ )

+ σxx +2σxy sin(�kτ )+σyy]+sinc(2�kτ ),

(25)

〈X̂k,outŶk,out〉(τ ) = 1

2
κτ sinc

(
�kτ

2

)2

[(σyy − σxx ) sin(�kτ )

+ 2σxy cos(�kτ )], (26)

〈Ŷk,outŶk,out〉(τ ) = 1

2
κτ sinc2

(
�kτ

2

)
[(σyy − σxx ) cos(�kτ )

+ σxx − 2σxy sin(�kτ )+σyy]+sinc(2�kτ ),

(27)

where σAB = 〈δÂδB̂〉 (A, B ∈ {X,Y }) are the entries of matrix
σ , which are obtained in Eq. (21), and sinc(x) is the unnormal-
ized sinc function sinc(x) = sin(x)/x. The shifted operators
are fully characterized in the stationary state by the correlation
matrix, since all noises involved obey this property and the
equations of motion are linear. One can thus deduce that their
properties can also be described by a zero-mean Gaussian
state. Similarly, the output field fluctuations are given by the
Gaussian Wigner function

W (ξ ) = 1√
2π det(σk,out)

e− 1
2 ξT σ−1

k,outξ , (28)

where ξ = (Xk,out,Yk,out )T and σk,out is the correlation matrix.
The above Wigner function depends on the optomechanical
coupling strength g through σk,out, and is a function of the
correlation matrix of the cavity optomechanical system. In our
subsequent discussion, we analyze Eq. (28) in the context of
a quantum estimation strategy based on the quantum Fisher
information. Our task will be to seek optimal balanced homo-
dyne photodetection measurement strategies.

III. QUANTUM AND CLASSICAL FISHER INFORMATION

In this section, we derive the quantum Fisher information
(QFI) Hg of the optomechanical coupling strength for a gen-
eral Gaussian state, employing the phase-space description
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provided by the Wigner quasiprobability distribution (28).
The QFI defines a lower bound for the mean-squared error
(MSE) of an estimation setup, which is ensured by the quan-
tum Cramér-Rao theorem [16],

MSE(g) � |x′(g)|2
Hg

, (29)

where x′(g) is the derivative of the average estimator. When
the estimator is unbiased, x′(g) = 1. The QFI is given as

Hg = Tr
[
ρ̂L̂2

g

]
, (30)

where L̂g is the symmetric logarithmic derivative (SLD) de-
fined by the equation

∂gρ̂ = 1
2 {ρ̂, L̂g}. (31)

We are going to use this general formalism to the Gaussian
state obtained in Eq. (28). A Gaussian state is completely
determined by its first and second moments; however, here
we have that the first moment is zero, following the argument
in Sec. II. Since the density operator ρ̂ of a Gaussian state can
be expressed in an exponential form [31], we can write the
operator L̂g as a function of the covariance matrix σk,out. We
neglect all subscripts in the subsequent discussion because,
from now on, we focus on one mode of the electromagnetic
field that is detected.

In order to find the SLD, we use the Weyl transform on the
operator, obtaining

L(x, p) = ξT �ξ − ν, (32)

where the explicit forms of � and ν are

� = − 1
2∂g(σ−1), (33)

ν = − 1
2∂g ln(det σ ) = Tr[�σ ]. (34)

It is worth noticing that the quadratic nature of L(x, p) is
ensured by the Gaussian form of W (x, p).

We use the SLD to calculate the QFI Hg related to the
parameter g following Eq. (30). However, the calculation of
the Weyl transform of L̂2

g is not straightforward. In order
to calculate it, we first need to Weyl transform the function
L(x, p) back to the operator L̂g, yielding

L̂ = �11x̂2 + �12(x̂ p̂ + p̂x̂) + �22 p̂2 − ν1. (35)

Now, one is able to calculate L̂2
g and, after performing the

symmetric ordering and the Weyl transform on it, we find
L(2)(x, p) as

L2(x, p) = �2
11x4 + 4�11�12 px3 + 4�2

12 p2x2

+ 2�11�22 p2x2 + 4�12�22 p3x + �2
22 p4

− 2νL(x, p) − ν2 − 1
2 det(�). (36)

The QFI obtained as the mean value of L̂2 on the state ρ̂ can
be calculated by the phase-space formalism,

H (g) =
∫

dxd p L(2)(x, p)W (x, p)

= 3Tr[(�σ )2] − 2νTr[�σ ] + 2 det(σ ) det(�)

− 1

2
det(�) + ν2. (37)

We will make use of Eq. (37) to determine the QFI of the
output field. Combining together (37) and (33), we obtain the
QFI for a two-dimensional Gaussian state with zero mean,

H (g) = 1
2 Tr{[∂g(σ−1)σ ]2} − 1

8 det[∂g(σ−1)]. (38)

The quantum Cramér-Rao bound (29) for an unbiased
estimator is saturated only if we implement the best strategy
(POVM) that minimizes the MSE of the parameter estima-
tion. This strategy is usually very difficult to find and may
be impossible to implement [7]. However, we can find, for
each practical measurement strategy, the maximum amount of
Fisher information it can provide. Measurements on quantum
systems provide a probability density function which depends
on the parameter to be estimated. The amount of information
on the unknown parameter carried by this probability density
function can be measured by the so-called classical Fisher
information (CFI),

Fg =
∫

dxP(x|g)[∂g ln P(x|g)]2, (39)

where P(x|g) is the conditional probability of obtaining the
output of the measure x when the true value of the parameter
is g. In quantum mechanics, the conditional probability is
given by the relation P(x|g) = Tr[ρ̂g�x]. Here, we consider
that the measurements are performed by balanced homodyne
photodetection (BHD) [23]. This makes use of two photode-
tectors, each with quantum efficiency η. In BHD, the data
recorded are proportional to the difference of the measured
photon numbers n1,2 of the two photodetectors, yielding

Pθ (n|g) =
∞∑

m=0

〈
: e−η(n̂1+n̂2 ) (ηn̂1)n+m

(n + m)!

(ηn̂2)m

m!
:

〉
ρ̂g⊗ρ̂LO

,

where ρ̂LO is the state of the local oscillator, considered to
be a coherent state ρ̂LO = |αLO〉〈αLO|. The symmetric order
denoted by : : helps us to find the Weyl transform of the
element �

η

k (x, p) of the BHD POVM,

�
η

k (x, p) = exp

⎡
⎣−

2η
(
k − x cos θ+p sin θ√

2

)2

1 − η

⎤
⎦, (40)

obtained in the limit of |αLO| � 1. The parameter θ is the an-
gle of the coherent state |αLO〉, i.e., θ = arg(αLO), and defines
the quadrature that is measured. The conditional probability is

Pη

θ (k) =
√

2η

π (1 − η)

∫
dxd pW (x, p)�η

k (x, p). (41)

Using the condition (28) for the Wigner function leads to

Pη

θ (k) = 1

π

√
2η

1 − η + 2ηRT
θ σRθ

e
− 2ηk2

1−η+2ηRT
θ

σRθ ,
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where we have defined Rθ = (cos θ, sin θ )T . Now, we can
calculate the CFI with the help of Eq. (39), yielding

F η
g = 2

(
ηRT

θ ∂gσRθ

1 − η + 2ηRT
θ σRθ

)2

. (42)

Equation (42) is a compact form for the classical Fisher infor-
mation of the BHD. Notice that in the case of perfect detectors
(η → 1), Eq. (40) reduces to a Dirac delta, �1

k (x, p) → δ(k −
RT ξ ). In this case, the CFI assumes the form

F 1
g =

(
RT

θ ∂gσRθ

RT
θ σRθ

)2

. (43)

IV. RESULTS

In Sec. II, we have calculated the covariance matrix (25) of
the output field escaping the cavity and characterized by the
filter function (24). In Sec. III, we have calculated the general
form of the quantum Fisher information (QFI) of Gaussian
states with zero mean, like the output field, and the classical
Fisher information (CFI) of balanced homodyne photodetec-
tion (BHD) measurements. In this section, we numerically
investigate and compare QFI and CFI for an experimentally
feasible situation. We consider the cavity to possess equal
internal and external decay rates, κin = κloss = κ , and our
detector to stay on for a temporal window of length τ = 1/κ .
For our numerical analysis, we take the experimental values
from [32], which are κ/2π = 18.5 MHz, γ /2π = 130 Hz,
ωm/2π = 1.14 MHz, T = 11 K, m = 16 ng, and the power
of the laser, P = 1 μW. Although the subject is to estimate
the optomechanical coupling strength, we still need to set a
central value around which we conduct our investigations. The
coupling strength g in Eq. (2) has the dimensions of [Hz m−1],
whereas in the experimental community, it is common to give
the dimensions of g in Hertz [10]. We solve this by carrying
out the transformation g → g

√
2mωm

h̄ . Now, this transformed
value according to Ref. [32] is g/2π = 129 Hz. In order to
work in the high-temperature limit kBT � h̄� � h̄ωm, we set
the cutoff frequency � in Eq. (10) to 5ωm. In our subsequent
numerical investigations, the detuning �0 is always chosen
in such a way that bistability of the mechanical oscillator is
avoided [33]. As a next step, we need to understand which
central frequency of the filter function �k gives us the best ac-
curacy on the estimation of the coupling strength g. Therefore,
we have calculated QFI as a function of �k , which has a peak
at �k = 0, as shown in Fig. 1. Since we are in the rotating
frame, this means that our detector filter function peaks at the
laser frequency ωL.

Our goal is to find conditions for which the BHD results
in the best achievable estimation strategy. This would corre-
spond to the saturation of the quantum Cramér-Rao bound.
The outcome of the BHD depends on the quantum efficiency
of the detectors η and on the quadrature phase θ that we
choose to measure. Figure 2 shows the CFI as a function of
these parameters. We notice that in the case of ideal detectors,
i.e., η = 1, the optimal choice for the phase θ = θmax leads
the CFI to saturate the upper limit given by the QFI. This is
a remarkable result that allows us to consider BHD as the
optimal measurement that gives us the best estimate of g.
In fact, Fig. 2(b) shows that the detector’s efficiency η is a

FIG. 1. Quantum Fisher information (QFI) as a function of the
filter function’s center frequency �k . In the rotating frame, the peak
of QFI is at �k = 0, which corresponds to the maximum accuracy
reached in the estimation scenario. This also means that in the labora-
tory frame, measurements should be performed around the frequency
of the driving laser ωL. The parameters are κ/2π = 18.5 MHz,
γ /2π = 130 Hz, g/2π = 129 Hz, ωm/2π = 1.14 MHz, m = 16 ng,
T = 11 K, �0 = −2κ , and the cutoff frequency � = 5ωm.

very important parameter that affects the quality of the mea-
surement, although it is no surprise that ideal photodetection
results in an optimal measurement scenario.

In general, an analytical solution for θmax is very cum-
bersome because the global maximum of either Eq. (42) or
Eq. (43) depends on the entries of σ in Eq. (28), which are
very complicated functions of the parameters of the system.
However, the angle θmax can be understood in the following
way. Let us consider (43), which is the square of a generalized

(b)

(a)

FIG. 2. (a) Classical Fisher information (CFI) as a function of the
local oscillator phase θ in the homodyne measurement for different
values of η. (b) CFI as a function of η for two different choices of θ .
�k = 0 and the rest of the parameters are the same as Fig. 1.
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(a)

(b)

FIG. 3. (a) The quadrature phase θmax as a function of the filter
function’s center frequency �k and for different values of the detun-
ing �0. (b) θmax as a function of the detuning �0 for �k = 0. All
other parameters are the same as Fig. 1.

Rayleigh quotient for the self-adjoint matrix pairs (∂gσ, σ )
(see, for example, Ref. [34]). Assuming that σ is positive
definite, i.e., does not describe a pure state, we would like to
maximize

f (θ ) = RT
θ ∂gσRθ

RT
θ σRθ

. (44)

The maximum value that f (θ ) can reach is the maximum
eigenvalue λmax of σ−1/2∂gσσ−1/2 when Rθ is equal to the
corresponding eigenvector vmax, which automatically defines
θmax. In the case of (42), we have a squared sum of generalized
Rayleigh quotients [35], and now, θmax can mostly be found by
computational efforts.

Our numerical investigations show that the value of θmax

is most sensitive to changes in the value of detuning �0 as
well of the central frequency of the filter function �k . In order
to gain some insight, we show in Fig. 3(a) the dependence of
θmax with respect to �k . We can see that θmax as a function
of �k follows an inverted ramp function. The ramp starts at
κ2/�0 and has a period of 3κ . In the limit �0 → −∞, θmax

tends to π . This is demonstrated in Fig. 3(b), which shows the
value of θmax as a function of the ratio −�0/κ .

In the case of ideal detectors, i.e., η = 1, and choosing
θ = θmax, the curve of CFI as a function of �k perfectly
overlaps with the curve of QFI in Fig. 1. Thus, we can
definitely set �k = 0 for the rest of our numerical analysis
because this choice guarantees the maximum accuracy in
the estimation scenario. Now, we show the CFI, calculated

numerically as we vary selected parameters that appear in
the dynamical matrix A of Eq. (19). The ranges of the plots
are given by the stability conditions imposed on the system.
Figures 4(a) and 4(b) show the CFI as a function of the
optical and mechanical decay rate, respectively. These curves
illustrate that increasing the decay rates lowers the accuracy
of the estimation of the optomechanical coupling strength g.
The opposite behavior is obtained increasing the power of the
driving laser P; see Fig. 4(c). In this case, a higher P leads
to a higher value for the stationary field amplitude |α|, which
leads to a more significant contribution to the dynamics from
the optomechanical interaction as it appears in the interaction
Hamiltonian (2). Figure 4(d) shows the CFI for different val-
ues of the optomechanical coupling strength. We remind the
reader that the true value of g is yet unknown. The CFI has its
minimum for g = 0, meaning that the accuracy is lower when
the system experiences weaker optomechanical interactions.
Conversely, the CFI increases monotonically with the value
of g and it reaches its maximum when the system is on the
threshold of the instability.

Figure 5 shows the QFI as a function of the temperature of
the mechanical bath. For high temperature, the state tends to
the maximally mixed state, regardless of the value of g, and the
QFI decreases. For this reason, making measurements at low
temperatures increases the estimation accuracy. QFI shows a
sudden drop for a temperature around 1 K. This value depends
on the particular choice of the spectral density (10) of the
Brownian noise and on the other parameters of the system.
As expected, increasing the value of γ leads to lower values
of QFI, and the accuracy of the estimation becomes worse.

V. CONCLUSIONS

In this paper, we have investigated the estimation of the op-
tomechanical coupling strength from the perspective of clas-
sical and quantum Fisher information. We have considered a
cavity quantum electrodynamical setup with a single mode of
the electromagnetic field coupled to a single vibrational mode
of a mechanical oscillator. Our model considers the quantum
Brownian motion of the mirror and photon losses of the cavity
field. We make use of the input-output formalism, motivated
by the fact that experimental detection can be performed only
on the output field of the cavity. The cavity is driven by a laser,
which allows us to derive a set of linear quantum Langevin
equations. Under these circumstances, we have been able to
obtain the output field as a Gaussian state with zero mean as a
stationary solution to the evolution of the whole system.

This Gaussian state as a function of the unknown optome-
chanical coupling strength determines the quantum Fisher
information. Here, in contrast to the typical phase-space
description (see Ref. [36]), our analysis makes an explicit
use of the Weyl transform. To compare with experimentally
relevant scenarios, we have considered a balanced homodyne
photodetection strategy as a realistic implementation for the
estimation procedure. We have derived compact formulas for
the quantum as well as the classical Fisher information.

Finally, we have used the developed tools to investigate
situations where the classical Fisher information is capable
to saturate its upper limit, given by the quantum Fisher
information. In order to make our findings more relevant, we
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(a) (b)

(c) (d)

FIG. 4. Classical Fisher information (CFI) as the function of the parameters κ , γ , P, and g. We set �0 = −2κ and �k = 0. In the different
figures, we keep constant the parameter values of Fig. 1 and vary (a) the optical decay rate κ , (b) the mechanical decay rate γ , (c) the power of
the driving laser P, and (d) the value of the coupling constant g.

have taken the experimental values of the system parameters
from a recent study [32]. Our results show that the phase of
the local oscillator in the balanced homodyne photodetection
plays a crucial role because there are certain quadratures for
which the classical Fisher information can reach the value
of the quantum Fisher information. Under such conditions,
the accuracy of the estimation, characterized by the mean-
squared error, for certain quadrature measurements has the
smallest lower bound. Moreover, our investigation allows us
to pinpoint the roles of the loss mechanism including less than

FIG. 5. Semilogarithmic plot of the quantum Fisher Information
(QFI) as a function of the mechanical bath temperature T for
different values of the mechanical decay rate γ . Increasing γ leads to
lower values of QFI. γ0/2π = 130 Hz, and the rest of the parameters
are the same as Fig. 1.

ideal efficiency of the photodetectors. We have shown that
the classical Fisher information is affected most strongly by
nonideal detection efficiency. However, it is worth noticing
that current state-of-the-art photodetectors have a close-to-
ideal quantum efficiency [37].

In conclusion, our analysis suggests that balanced homo-
dyne photodetection plays a fundamentally important role
in the estimation of the optomechanical coupling strength.
However, it must be mentioned that our work is valid only
for unbiased estimators. Furthermore, finding the smallest
lower bound for the mean-squared error might reinforce our
prior expectation of the value of the optomechanical cou-
pling strength, as discussed in our earlier work [9]. It is
also important to mention that the use of N independent
and identical repetitions of the measurement scenario reduces
the lower bound of the mean-squared error by a factor of
N−1 [4]. Finally, our work bridges cavity optomechanics and
inference techniques with the help of experimentally plausible
models and parameter values and could serve as a guide for
the optimal experimental characterization of optomechanical
systems, which play important roles in gravitational wave
detection [38], but also in proposals for testing the conceptual
bases of quantum mechanics [39–42].

ACKNOWLEDGMENT

This work is supported by the European Union’s Horizon
2020 research and innovation programme under Grant Agree-
ment No. 732894 (FET Proactive HOT).

013508-8



FISHER-INFORMATION-BASED ESTIMATION OF … PHYSICAL REVIEW A 102, 013508 (2020)

APPENDIX A: DEPENDENCE OF THE STATIONARY FIELD UPON THE LASER POWER

The condition imposed by Eq. (14) yields a third degree equation in the mean-field amplitude |α|. The parameter ε takes

account of the number of photons inside the cavity and is related to the power P of the laser as ε =
√

2κP
h̄ωL

. Equation (14) can be

written as a function of P as

P = |α|6g4h̄3ωL

2κm2ω4
m

+ |α|4�0g2h̄2ωL

κmω2
m

+
(

κωLh̄

8
+ �2

0 h̄ωL

2κ

)
|α|2. (A1)

As is typical for nonlinear systems, these equations exhibit bistability. This can be seen by putting together Eqs. (A1) and (17),
expressing the shift of the mirror as a function of the laser power P, resulting in

q(i)
0 = h̄g

mω2
m

Ai, i = 1, 2, 3,

with Ai = |α|2i being the solution of (A1). The three curves intersect when P = P±,

P± =
mωLω2

m

[ − 2�0(4�0 + 9κ2) ±
√(

4�2
0 − 3κ2

)3]
216g2κ

.

In the regions P < P− and P > P+, the system is stable, but for values in between, the system admits multiple solutions for q0. In
this work, we considered a stable solution with a power P < P− and expressed the mean value as a function of the Hamiltonian
parameters, α = α(g, P,�0, κ ).

APPENDIX B: COVARIANCE MATRIX OF THE OUTPUT FIELD

In this Appendix, we derive the explicit form of the covariance matrix σk,out of the filtered output field’s quadrature
X̂k,out, Ŷk,out. We start from the filter function,

gk (t ) = θ (t + τ ) − θ (t )√
τ

ei�kt ,

where θ (t ) is the Heaviside step function and τ is the temporal window when we detect the field. We consider the detector filter
function to be peaked at frequency �k , with the condition that � j − �l = 2π

τ
n, n ∈ N. The filter function is applied to the output

field âout in order to discretize the uncountably infinite number of modes forming the electromagnetic field outside the cavity
into countably many modes. However, here we focus on a single mode detected by the measurement apparatus. This mode of
the output field reads

âk,out(t ) =
∫ t

−∞
gk (t − t ′)âout(t

′)dt ′.

Using the input-output relation âout = √
κ â − âin, we can write

âk,out(t ) = √
κ

∫ t

−∞
dt ′gk (t − t ′)â(t ′) −

∫ t

−∞
dt ′gk (t − t ′)âin(t ′).

Hence, the quadratures X̂k,out, Ŷk,out read

X̂k,out(t ) =
∫ t

−∞
ds

θ (t − s) − θ (t − s − τ )√
τ

{cos[�k (t − s)]X̂out(s) + sin[�k (t − s)]Ŷout(s)},

and, similarly,

Ŷk,out(t ) =
∫ t

−∞
ds

θ (t − s) − θ (t − s − τ )√
τ

{cos[�k (t − s)]Ŷout(s) − sin[�k (t − s)]X̂out(s)}.

We can write the covariance matrix as

σk,out(t, s) = κ

∫ t

−∞

∫ s

−∞
dt ′ds′ θ (t ′ + τ ) − θ (t ′)√

τ
Gk (t − t ′)〈û(t ′)û(s′)T 〉θ (s′ + τ ) − θ (s′)√

τ
Gk (s − s′)T

+
∫ t

−∞

∫ s

−∞
dt ′ds′ θ (t ′ + τ ) − θ (t ′)√

τ
Gk (t − t ′)〈ûin(t ′)ûin(s′)T 〉θ (s′ + τ ) − θ (s′)√

τ
Gk (s − s′)T , (B1)

where û(t ) and ûin(t ) have been defined in the main text and we have introduced the matrix

G(t ) =
(

cos �kt sin �kt
− sin �kt cos �kt

)
.
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Since we want to calculate the equal-time covariance matrix of the steady state, we can set t = s, take the limit t → ∞, and
substitute the Heaviside functions, yielding

σk,out = κ

τ

∫ τ

0

∫ τ

0
dt ′ds′Gk (t ′)〈û(t ′)û(s′)T 〉Gk (s′)T + 1

τ

∫ τ

0

∫ τ

0
dt ′ds′Gk (t ′)〈ûin(t ′)ûin(s′)T 〉Gk (s′)T .

We suppose the detector is switched on when the system has already reached the steady state. Furthermore, we consider the
detection period τ to be small compared to the characteristic time of the steady state. This latter assumption has been tested with
numerical simulations considering an integration time of the order of τ = 1

κ
. In this scenario, we get

σk,out = κ

τ

∫ τ

0

∫ τ

0
dt ′ds′Gk (t ′)σGk (s′)T + 1

τ

∫ τ

0
dt ′Gk (t ′)Gk (t ′)T . (B2)

After performing the integrals in Eq. (B2), we obtain the expressions (25) to (27) of the main text.
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96, 032319 (2017).
[7] J. Z. Bernád, C. Sanavio, and A. Xuereb, Phys. Rev A 97,

063821 (2018).
[8] J. Rubio and J. Dunningham, New J. Phys. 21, 043037 (2019).
[9] J. Z. Bernád, C. Sanavio, and A. Xuereb, Phys. Rev. A 99,

062106 (2019).
[10] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.

Phys. 86, 1391 (2014).
[11] G. A. Brawley, M. R. Vanner, P. E. Larsen, S. Schmid, A.

Boisen, and W. P. Bowen, Nat. Commun. 7, 10988 (2016).
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