
PHYSICAL REVIEW A 102, 013505 (2020)

Optically levitated rotor at its thermal limit of frequency stability

Fons van der Laan,* René Reimann , Andrei Militaru, Felix Tebbenjohanns, Dominik Windey,
Martin Frimmer, and Lukas Novotny

Photonics Laboratory, ETH Zürich, 8093 Zurich, Switzerland

(Received 24 March 2020; accepted 30 April 2020; published 6 July 2020)

Optically levitated rotors are prime candidates for torque sensors whose precision is limited by the fluctuations
of the rotation frequency. In this work we investigate an optically levitated rotor at its fundamental thermal limit
of frequency stability, where rotation-frequency fluctuations arise solely due to coupling to the thermal bath.
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I. INTRODUCTION

Optically trapped particles have emerged as a versatile plat-
form to study mechanical degrees of freedom driven by fluctu-
ating forces arising from the coupling to a thermal bath [1–6].
Thus far, the levitodynamics community has mostly focused
on the center-of-mass (COM) degrees of freedom [7–17].
More recently, the rotational [18–29] degrees of freedom also
have moved to the center of attention.

In a linearly polarized light field, an anisotropic scatterer
aligns to the polarization direction [20]. The optical torque
thus corresponds to a restoring force which, to first order, is
linear in orientation angle, making this libration degree of
freedom a harmonic oscillator [28]. In stark contrast, in a
circularly polarized field, an anistropic scatterer experiences
an orientation-independent torque, which sets the particle into
continuous rotation. The dynamics of such a free rotor is
distinctly different from the harmonic-oscillator physics of the
COM or libration degree of freedom. Besides their promise
to allow for the investigation of fundamental effects [30–32],
freely rotating nanoparticles in optical traps have recently
attracted considerable attention as the fastest rotating man-
made objects [24,25,29] and have been identified as potential
candidates for pressure [23,33], acceleration, and various
torque-sensing schemes [29,34–37]. On the one hand, phase-
locked driven rotors have been considered for torque sens-
ing [23,33], but the sensitivity of this scheme remains largely
unexplored. On the other hand, the current state-of-the-art
levitated torque-sensing technique detects changes in rotation
frequency, such that its sensitivity depends on the stability of
that frequency [29]. At the current stage (where thermal forces
dominate over measurement backaction), thermal fluctuations
generated by the bath are expected to limit torque-sensing
schemes based on optical levitation. Surprisingly, a study of
the thermal fluctuations of an optically driven rotor has not
been performed to date.

In this work, we experimentally investigate the fluctuations
of the rotation frequency of an optically levitated nanorotor
and provide an avenue for operating at the thermal limit
of frequency stability. We find that reaching this limit at
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high rotation frequencies requires COM cooling. We establish
that our system operates at the thermal limit of frequency
stability by confirming that the frequency fluctuations scale
in accordance with the fluctuation-dissipation theorem.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1(a). We trap a
single nanorotor in a strongly focused laser beam in vacuum.
The polarization of the laser can be tuned from linear to
circular by a quarter-wave plate. The forward scattered light
is collected and sent to a detector which records the COM
motion of the particle in the focal plane (along the x and
y axes), and along the optical axis (z). The power spectral
densities Sii (i ∈ {x, y, z}) of the COM motion display a
Lorentzian shape, as shown in Fig. 1(c), which is a signature
of a harmonic trapping potential [38]. The rotors in our trap
are dumbbells composed of two nominally identical spherical
silica nanoparticles loaded into the trap from a dispersion
using a nebulizer [39]. The concentration of the dispersion
is chosen to maximize the probability of two particles per
aerosol droplet. We verify that the trapped rotor is a dumbbell
by comparing the measured damping rates of the COM motion
along the x and y directions, while the dumbbell’s long axis is
aligned to the x axis [25]. Particles with equal damping rates
along the x and y directions are removed from the trap and are
not used in this work. We use the acquired COM position sig-
nals to parametrically feedback cool (FB) the COM motion of
all three axes by modulating the laser power with an electro-
optical modulator (EOM) [12]. We detect the rotor’s angular
orientation by sending the light exiting the vacuum chamber
through a polarizing beamsplitter (PBS) and onto a balanced
photodetector (bandwidth 1.6 GHz) [24]. Using a half-wave
plate, we balance the photodetector signal and send it to an
electronic spectrum analyzer (ESA, bandwidth 26.5 GHz).
The pressure pgas in the vacuum chamber is monitored using
a Pirani gauge. The chamber temperature T can be controlled
with heating pads and is monitored by a sensor inside the vac-
uum chamber. Unless stated otherwise, all measurements are
performed at room temperature using dumbbells with nominal
diameter d = 136 nm, a focal power of P = 0.27(2) W, at a
pressure of pgas = 5.0(5) × 10−2 mbar, and with a circularly
polarized trapping beam.
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FIG. 1. (a) Simplified schematic of the experimental setup. In-
side a vacuum chamber, an optical trap is formed by focusing a
laser beam with an aspheric lens (NA = 0.77). The intensity of the
laser beam [wavelength λ = 1565.0(1) nm] can be modulated with
an electro-optical modulator (EOM). The polarization of the laser
beam is set with a quarter-wave plate. The light is collected and
split into two paths with a nonpolarizing beamsplitter (BS). One
half of the optical power is sent to a center-of-mass (COM) motion
detector. The other half is used to measure the rotation in a balanced
detection scheme. (b) In the focus, we trap a dumbbell formed
by two spherical nanoparticles with diameter d . For a circularly
polarized trapping beam and at low enough pressure, the particle
rotates due to the optical torque exerted by the laser beam [22].
(c) Power spectral densities of the COM motion of a rotor at a
pressure pgas = 7.0(7) mbar. The trapping laser is close to linearly
polarized (x axis), which orients the particle along the x axis. The
ratio between the damping rates along the x and y axes is 1.20(5),
identifying the trapped object as a dumbbell [25].

III. RESULTS

A. Role of COM cooling

We start by investigating the effect of COM cooling on the
rotation frequency of a levitated dumbbell. For a rotation fre-
quency f , the spectrum analyzer (ESA) shows a power spec-
tral density with a narrow peak at 2 f [24,25]. In Fig. 2(a) we
show a measurement of f , extracted from the ESA spectrum,
as a function of time at pressure pgas = 5.0(5) × 10−3 mbar
in the absence of COM feedback cooling. Figure 2(b) shows
a histogram of the frequency values of the time trace in
Fig. 2(a). We observe that the distribution is skewed towards
smaller frequency values. This feature can be explained by the
influence of the thermally driven COM motion. The dumbbell
explores regions where the light intensity (and therefore the
optical torque) is reduced as compared to the trap center.
Accordingly, f depends on the COM energy of the rotor. To
corroborate our conjecture, we show a measurement of the
rotation frequency under COM feedback cooling in Figs. 2(c)
and 2(d). Indeed, the fluctuations of f are strongly reduced
by COM cooling and the distribution becomes symmetric.
We conclude that the rotation frequency of an optically
levitated dumbbell at room temperature can exhibit fluctua-
tions arising from the thermal COM motion in the trapping
potential.

FIG. 2. Effect of COM cooling on rotation frequency f . (a) Time
trace of f for a rotor at pressure pgas = 5.0(5) × 10−3 mbar without
COM cooling. (b) Histogram of time trace shown in (a). (c) Time
trace at the same pressure as in (a) but under COM cooling. (d) His-
togram of time trace shown in (c). The motion along x and y is cooled
below 20 K, while the motion along z is cooled to 90 K.

B. Model

In order to understand the rotation dynamics, we model the
rotation frequency f with the equation of motion

2π I
d

dt
f (t ) + 2π Iγ f (t ) = τopt + τth(t ), (1)

where t is the time, I is the moment of inertia of the rotor,
and γ the rotational damping rate due to gas friction [29].
A circularly polarized light field generates a constant optical
torque τopt, which drives the rotation. Besides the optical
torque, we include a fluctuating thermal torque τth exerted
by the surrounding gas. This stochastic thermal torque τth has
zero mean, is Gaussian distributed in magnitude, and is linked
to γ via the fluctuation-dissipation theorem

〈τth(t )τth(t + t ′)〉t = 2Iγ kBT δ(t ′), (2)

where kB is the Boltzmann constant, T is the temperature of
the surrounding gas, and δ is the Dirac delta function [40]. In
steady state, the optical torque is balanced by the damping γ ,
resulting in a mean rotation frequency

〈 f 〉 = 1

2π

τopt

I γ
. (3)

The thermal torque τth causes f to fluctuate with standard
deviation

σth = 1

2π

√
kBT

I
. (4)

Therefore, the thermal rotation-frequency fluctuations solely
depend on the ratio of the temperature of the surrounding
gas and the moment of inertia of the rotor. These fluctu-
ations fundamentally limit the sensitivity of torque sensors
using optically levitated rotors. In addition to thermal fluc-
tuations, technically induced fluctuations σtech contribute to
the measured rotation-frequency fluctuations according to
σ f =

√
σ 2

th + σ 2
tech . Importantly, σ f is only thermally limited if

σtech can be neglected, i.e., σtech � σth. According to Eq. (3),
technical fluctuations can arise from variations in the damping
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FIG. 3. (a) Dependence of rotational fluctuations σ f on gas temperature T . Measurement of σ f as a function of T at pgas =
9(1) × 10−2 mbar. The dashed line shows a fit to Eq. (4). (b) Dependence of σ f on rotor size d . The dashed line shows the theoretical
prediction according to Eq. (4) with a scaling factor extracted from (a) and using T = 300 K.

rate �γ and in the optical torque �τopt, which yields

σtech =
√(

�γ

γ
〈 f 〉

)2

+
(

�τopt

τopt
〈 f 〉

)2

. (5)

Importantly, technical noise contributions scale with the mean
rotation frequency, such that it becomes increasingly difficult
to operate at the fundamental thermal limit as the rotation fre-
quency grows. This fact poses a severe challenge for measure-
ment schemes requiring large rotation speeds, such as those
aiming to detect vacuum friction [36]. Mitigation strategies
include careful pressure stabilization (to minimize �γ ), as
well as active feedback cooling of the COM motion, in order
to minimize �τopt. In the following, we show that we have
suppressed technical contributions to frequency fluctuations
and reached the thermal limit of frequency stability.

C. Temperature dependence

We start by measuring the standard deviation of the fre-
quency fluctuations σ f as we change the temperature T of
the vacuum chamber [see Fig. 3(a)]. We use a focal power
of P = 0.57(2) W and keep f below 3 MHz to limit techni-
cal contributions to the observed frequency fluctuations. A
detailed description of how we extract σ f throughout this
work can be found in the Appendix. The standard deviation
σ f increases for increasing temperature. We fit Eq. (4) to the
data (dashed line) and extract the rotor’s moment of inertia
Iexp = 1.31(1) × 10−32 kg m2. For comparison, we calculate
the moment of inertia of a nanodumbbell Itheo = (7/60)πρd5,
where ρ is the density of the particle material [41]. Using
the density of fused silica ρ = 2200 kg m−3 and the nom-
inal nanosphere diameter d = 136 nm, we calculate Itheo =
3.75 × 10−32 kg m2. Our theoretical result overestimates the
moment of inertia. We can currently only speculate about
the origin of this discrepancy. Possible explanations include
dumbbells that (1) consist of spheres of different sizes, (2)
have a finite contact area instead of a single contact point, or
(3) experience a structural transition while being trapped [42].

D. Size dependence

To further test our understanding, we measure how the
rotor’s moment of inertia I influences σ f . To this end, we
vary I by using particles of different nominal diameters d . To
ensure operation at the thermal limit for all rotors, we cool the
COM motion. Figure 3(b) shows σ f for dumbbells consisting

of spheres with nominal diameter d . As predicted by theory,
σ f decreases with increasing particle diameter d . Each data
point in Fig. 3(b) corresponds to an individual dumbbell. We
attribute the spread of σ f for one nominal diameter d to parti-
cle size variations. In Fig. 3(b) we also include the prediction
of Eq. (4) (dashed line) with the moment of inertia corrected
by the factor Iexp/Itheo found in Fig. 3(a). Our experimental
data match the theory well. We stress that the dashed line
does not rely on any free parameter. Remarkably, we observe
that the correction factor Iexp/Itheo, extracted for a rotor with
d = 136 nm, applies to rotors of all measured sizes.

E. Further checks

Having confirmed the scaling σ f ∝ √
T/I , we turn our

attention to the influence of the damping rate γ . According
to Eq. (3), σ f does not depend on the damping rate γ ∝
pgas when σ f is thermally limited, and therefore neither on
pressure pgas. Figure 4(a) shows the mean rotation frequency
f (green diamonds) and its standard deviation σ f (blue circles)
as a function of pgas. We use COM feedback cooling to
mitigate fluctuations due to variations in τopt. As we decrease
pgas from 2.0(2) × 10−1 mbar to 1.5(2) × 10−3 mbar, the
mean rotation frequency increases by two orders of magnitude
and follows a 1/pgas dependence (fit shown as black dashed
line) [24,25]. In stark contrast, and as predicted by Eq. (4),
σ f does not depend on pgas. The mean of σ f observed at the
different pressures is shown as a blue horizontal line with its
uncertainty depicted by the shaded area. For values of pgas

below 2 × 10−2 mbar, slow variations in pressure cause a
slow drift in the rotation frequency f . A careful analysis of
the power spectral density of the rotation frequency allows us
to correct for these slow drifts, as detailed in the Appendix.

As a final check of operating at the thermal limit, we
investigate the influence of the optical torque τopt on σ f . We
set τopt by tuning the polarization of the trapping laser via
the angle φ of the quarter-wave plate before the optical trap.
For φ = 15◦, the trap polarization is circular. In Fig. 4(b)
we show 〈 f 〉 (green diamonds) and σ f (blue circles) as a
function of φ. For φ < −3◦, the alignment torque (due to the
linear polarization of the trapping beam) prevents full rotation
such that the particle librates [22]. As predicted by Eq. (4),
σ f remains constant for increasing values of φ, whereas, in
accordance with Eq. (3), 〈 f 〉 increases.
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FIG. 4. (a) Plot of the mean rotation frequency 〈 f 〉 (green dia-
monds) and its standard deviation σ f (blue circles) as a function of
gas pressure pgas. While σ f remains constant over a pressure range
spanning more than two orders of magnitude, 〈 f 〉 is proportional to
1/pgas (shown as dashed line). (b) Influence of optical torque τopt .
We measure 〈 f 〉 (green diamonds) and σ f (blue circles) as a function
of quarter-wave plate angle φ, setting the polarization state of the
trapping field, and thus τopt [cf. Fig. 1(a)].

IV. CONCLUSION

We have experimentally investigated the fluctuations of
the rotation frequency of a nanorotor optically levitated in a
circularly polarized laser field. Our results demonstrate that
in the absence of center-of-mass cooling, the variation in the
optical intensity experienced by the rotor due to its thermal
oscillation amplitude gives rise to significant fluctuations in
the rotation frequency. For high rotation frequencies, these
technical fluctuations largely exceed the thermal fluctuations.
This insight is of high relevance for torque-sensing schemes
that rely on optically levitated rotors. Our work demonstrates
that the thermal limit of torque sensing (as given by the
fluctuation-dissipation theorem for the rotational degree of
freedom) requires cooling of the center-of-mass motion in cur-
rently used optical levitation systems. Furthermore, we have
investigated thermal fluctuations of the rotation frequency as
a function of different system parameters. The standard de-
viation of these fluctuations shows a square-root scaling with
temperature and moment of inertia. Finally, we have shown
that the standard deviation of the thermal rotation-frequency
fluctuations depends neither on pressure nor on optical torque
(and thus not on the mean rotation frequency). In conclusion,
we have demonstrated to operate our system at the thermal
limit of rotation-frequency stability.
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FIG. 5. Method 1: Extraction of standard deviation σ f ,i from a
histogram of a time trace of the rotation frequency f . (a) Time
trace of the rotation frequency f of a dumbbell at pressure pgas =
5.0(5) × 10−2 mbar. (b) Histogram of time trace shown in (a). From
a Gaussian fit (red dashed curve) we extract the standard deviation
σ f ,i of the time trace.
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APPENDIX: EXTRACTION OF THE
STANDARD DEVIATION

In this Appendix, we describe how we extract the standard
deviation of the rotation frequency from our measurements.
We determine the standard deviation σ f of the rotation fre-
quency f with two distinct methods. For both methods, we
extract σ f from a time trace of the rotation frequency (mea-
sured with a sampling frequency of about 33 Hz) by splitting
the trace into 10 segments of equal duration. We denote the
standard deviation of segment i with σ f ,i. The mean of all
σ f ,i yields σ f . The error of σ f is estimated by the standard
deviation of the 10 values σ f ,i, divided by

√
10.

1. Method 1

Method 1 extracts σ f ,i from a histogram of the frequency
values in time trace segment i. As an example, we show a time
trace of the rotation frequency f in Fig. 5(a) together with
the corresponding histogram of measured frequency values in
Fig. 5(b). We fit this histogram with the Gaussian function

h( f ) = Ae
− ( f −〈 f 〉)2

2σ f ,i
2 (A1)

and extract the amplitude A, the mean frequency 〈 f 〉, and the
standard deviation σ f ,i as free fit parameters. Method 1 can
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FIG. 6. Method 2: Extraction of standard deviation σ f from
Sf f (ν ). (a) Time trace of the rotation frequency f of a dumbbell
at pressure pgas = 8.0(8) × 10−3 mbar. (b) Histogram of time trace
shown in (a). Because of slow pressure drifts, the histogram does not
have a Gaussian shape. (c) Power spectral density Sf f (ν ) of the time
trace shown in (a). The standard deviation is extracted from the area
under the Lorentzian fit (red dashed curve).

be applied to data measured in the regime where the rotation-
frequency fluctuations are thermally limited, i.e., σth 
 σtech.
In this regime the histogram of the rotation frequency f

assumes a Gaussian shape. At lower pressures the technical
fluctuations σtech become significant. As shown in Fig. 6(a),
the mean rotation frequency 〈 f 〉 drifts more than σth due to
slow pressure drifts. This drift broadens the corresponding
histogram, depicted in Fig 6(b), to a non-Gaussian distribu-
tion. From the discussion in the main text, we understand
that σtech depends linearly on mean rotation frequency 〈 f 〉 and
thus inversely on pressure. Consequently, σtech becomes much
larger than σth at low pressure, even though the relative drift
of the damping rate �γ/γ is approximately constant for all
pressures. Therefore method 1 fails in extracting σ f ,i at low
pressures.

2. Method 2

In this low-pressure regime, which for our system parame-
ters starts at pressures smaller than 2.0(2) × 10−2 mbar, we
apply method 2. Method 2 is illustrated in Fig. 6(c) and
utilizes the power spectral density S f f (ν) of the time trace
segment i to determine σ f ,i. From Eq. (1), we find that S f f (ν)
has a Lorentzian shape for constant γ and optical torque τopt.
We therefore fit the Lorentzian function (red dashed line in
Fig. 6)

h(ν) = B
γ

ν2 + γ 2
(A2)

to S f f (ν), where amplitude B and damping rate γ are free fit
parameters. Since the integral over the power spectral density
of a signal is equal to the square of the standard deviation
of this signal, we can integrate over the fitted Lorentzian
to extract σ f ,i. By integrating over the fit (which ignores
data in the low Fourier frequency regime, i.e., low ν) we
extract only thermal fluctuations and exclude effects from
slow pressure drifts. Since the fit only deviates from the
data in the low-ν regime, we conclude that σ f is thermally
limited at Fourier frequencies ν > 0.1 Hz. Method 2 suffers
from two restrictions. First, the rotation frequency needs to
be experimentally sampled at a rate larger than twice the
damping rate γ of the rotor in order to be able to resolve
the Lorentzian shape. To understand this limitation, consider
Fig. 6(c). With increasing pressure, the cutoff (which is at γ )
moves to higher frequency ν and will eventually fall out of the
sampling window. Therefore, at high pressures, γ becomes
too large to be resolved and method 2 fails. Second, at very
low pressures, γ [and therefore the cutoff in S f f (ν)] moves to
the low-ν regime, where S f f (ν) is dominated by the effect of
slow pressure drifts. Therefore, method 2 cannot be applied at
too low pressures.
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