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Generation of high-order harmonics with tunable photon energy and
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This work theoretically investigates high-order harmonic generation in rare-gas atoms driven by two tem-
porally delayed ultrashort laser pulses. Apart from their temporal delay, the two pulses are identical. Using a
single-atom model of the laser-matter interaction it is shown that the photon energy of the generated harmonics
is controllable within the range of one eV—a bandwidth comparable to the photon energy of the fundamental
field—by varying the time delay between the generating laser pulses. It is also demonstrated that high-order
harmonics generated by double pulses have advantageous characteristics, which mimick certain properties of
an extreme ultraviolet monochromator. With the proposed method, a simpler setup at a much lower cost and
comparatively higher spectral yield can be implemented in contrast to other approaches.
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I. INTRODUCTION

High harmonic generation (HHG) in gaseous medium is
one of the most widely employed methods to generate coher-
ent radiation in the extreme ultraviolet (XUV) and soft-x-ray
regions [1–4]. The process occurring in the interaction of a
short laser pulse and a single atom can be described by the
semiclassical three-step model [5]. First, an electron becomes
free by tunneling through the Coulomb potential barrier of
the atomic core, which is distorted by the driving laser field.
Secondly, the electron wave packet gains energy from the
strong laser field during its motion in the continuum. Finally,
it recombines with its parent ion and gets rid of the excess
energy by releasing an energetic XUV photon. This process
can take place in every half cycle of the laser field, if the
electric field is strong enough to free the electron. Nowadays,
HHG is usually driven by state-of-the-art laser systems [6]
in order to reach a higher flux of the emitted photons [7],
a broader photon energy range of the generated harmonics
[8], or to obtain an unprecedented time resolution of a few
tens of attoseconds [9]; achievements which have already
enabled numerous applications [10,11]. These characteristics
are strongly influenced by the driving electric field, because
strong-field electron dynamics is intricately linked with the
time evolution of the driving laser.

Several theoretical and experimental studies have been
carried out using temporally modulated laser fields as seeding
sources of HHG to analyze the effect of the temporal evolution
of the laser electric field on the HHG process [12–14]. One
possible advantage of using a modulated driving field is to
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extend the cutoff on the single-atom level [14]. Furthermore,
by varying the spectral chirp of the laser pulses, the photon
energy of the generated high-order harmonics is finely con-
trollable in a specific spectral range [15–17]. There were also
successful attempts to generate harmonics by using laser field
in combination with a static field, which results in the breaking
of the inversion symmetry [18–20]. Application of such a
combined field leads to a multiplateau harmonic structure
[19,20]. The main goal of the above-mentioned techniques is
to shape the harmonic spectrum by controlling the electron
quantum paths during the HHG process via the manipulation
of the driving electric field [21]. Although special pulse shapes
(trapezoidal, squarelike, etc.) could provide ways to shape or
tune the generated harmonics [12], nevertheless these pulse
shapes are difficult to produce experimentally.

In addition to the methods that vary the time evolution of
the driving field, another experimentally feasible technique
to produce laser pulses with unconventional time evolution
involves the use of broadband pulses and time delay between
the short- and long-wavelength region of their spectrum [22].
In this way, double pulses can be generated with slightly
different central wavelengths. Furthermore, a double-pulse
structure can be achieved by interfering two ultrashort laser
pulses of the same color. The HHG cutoff can be significantly
extended if a carrier envelope phase (CEP) difference of π is
introduced between the constituting pulses and one of them
is shifted by a half cycle [23]. Moreover, if the time delay is
changed between the pulses, a variety of time evolutions can
be introduced when the composing pulses of the produced
structure have the same CEP. Although experimental imple-
mentation of double-pulse structures is relatively easier, their
characterization has inherent issues with most of the well-
known pulse characterization techniques, such as spectral
phase interferometry for direct electric-field reconstruction
(SPIDER) [24] or frequency-resolved optical gating (FROG)
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[25]. However, procedures have already been developed to
measure the temporal shape of double pulses, like the very
advanced method for phase and intensity retrieval of e-fields
(VAMPIRE) method [26] or the recently demonstrated im-
proved self-referenced spectral interferometry (SRSI) algo-
rithm [27].

This work presents theoretical investigations of high har-
monic generation in gaseous medium driven by a double-pulse
structure. The composing pulses have the same spectrum,
spectral phase, and absolute CEP, while the control over
the temporal evolution of the electric field is reached by
changing the delay between them. Holzner et al. [28] proposed
and realized a protocol to employ double pulses for HHG
attosecond control. In our work we focus on exploring how
the double-pulse structure can be successfully employed to
tune the harmonics central frequency.

The manuscript is structured as follows. Section II de-
scribes the theoretical model and the calculation methods used
in this work. The results obtained are summarized in Sec. III,
where the impact of the modulated electric field of double
pulses on HHG is discussed. Section IV presents the main
conclusions.

II. THEORETICAL BACKGROUND

A. Theoretical model

The interaction of a hydrogenlike atom and a strong elec-
tric field can be described by the time-dependent Schrödinger
equation (TDSE) [29–32]. With the introduction of the atomic
units and the use of the length gauge, the TDSE has the
following form:

i
∂ψ (r, t )

∂t
=

[
− 1

2
∇2 + V (r) + rE(t )

]
ψ (r, t ), (1)

where E (t ) and V (r) represent the time-dependent linearly
polarized electric field and the atomic potential, respectively.
ψ (r, t ) denotes the electron wave function, where r is the
position vector. To determine the solutions of Eq. (1) the
following assumptions can be made: (i) the contribution of all
excited states can be neglected, (ii) the population depletion
of the ground state is negligible, and (iii) the electron in the
continuum can move like a free particle. By applying these
approximations [collectively called strong field approxima-
tion (SFA) [31]], the time-dependent dipole moment can be
calculated as

x(t ) = i
∫ t

−∞
dt ′

∫
d3p d∗[ p̄ + A(t )]e−iS(p,t,t ′ )

× E (t ′)d[p + A(t ′)] + c.c., (2)

where p represents the canonical momentum. The notation
c.c. indicates the complex conjugate of the preceding expres-
sion. The expression d(p) is the atomic dipole matrix element,
which can be expressed as

d(p) = i

(
1

πα

)(3/4) p
α

e(−p2/2α), (3)

with α = Ip, where Ip is the ionization potential of the target
atom. A(t ) denotes the vector potential of the driving laser
pulse. S(p, t, t ′) is the quasiclassical action, which has the

following form:

S(p, t, t ′) =
∫ t

t ′
dt ′′

(
[p + A(t ′′)]2

2
+ Ip

)
. (4)

The dipole spectrum x(ωh) can be calculated by the Fourier
transform of Eq. (2), giving

x(ωh) =
∫ ∞

−∞
dt

∫ t

−∞
dt ′

∫
d3p d∗[p + A(t )]

×e[iωht−iS(p,t,t ′ )]E (t ′)d[p + A(t ′)] + c.c. (5)

The expression above is called Lewenstein integral [29],
which can be used to obtain the spectrum of the generated
harmonic field. This is a standard for calculating the nonlinear
response of single atoms. The solution of TDSE includes
internal transitions and electronic structure contribution [33]
that are not included in SFA and usually contribute to lower-
order harmonics, below the ionization threshold. SFA has
been proven to be an accurate tool for the description of
complex field interacting with matter [34]. In the scope of our
results SFA can accurately demonstrate our findings.

B. Investigation of the double-pulse structure

The total electric field, whose influence on the HHG pro-
cess is investigated, is expressed as

E (t ) = E0e−2 ln2 t2

τ2 ei[ω0t+ϕcep]

+ R · E0e−2 ln2
(t−τd )2

τ2 ei[ω0(t−τd )+ϕcep] + c.c., (6)

where E0 is the amplitude and τ and ω0 are the transform
limited full width at half maximum (FWHM) duration and the
central angular frequency of the laser pulses, respectively. R
and τd represent the amplitude ratio and the time separation
of the composing pulses. ϕcep is the absolute carrier envelope
phase for each pulse. Time separation τd appears as a linear
spectral phase term in the frequency domain, which arises
from the Fourier shift theorem. In the spectral domain it
appears as a phase term of the form e−iτd (ω−ω0 ), which causes
the interference effect in the spectral domain.

Figure 1(a) depicts the spectra and Figs. 1(b)–1(e) show the
temporal profiles of the double-pulse structure for different
time delay (τd ) values. The FWHM duration of both pulses is
12 fs and their central frequency is 2.36 PHz (800 nm central
wavelength). The amplitude ratio between them is 1. The
different curves in Fig. 1(a) show how the spectrum changes
when the time delay between the two pulses is varied. It
reveals that at larger delays spectral valleys appear as a result
of the spectral interference. The distance between the spectral
minima (ωd ) is directly related to the temporal separation
by ωd = 2π/τd . If the temporal amplitude ratio R is 1, the
spectral minima reach zero. As the ratio becomes smaller,
the spectral amplitude will not reach zero and the contrast of
the interference drops [35].

In fact, the position of the spectral peaks under the enve-
lope in the frequency domain is strongly influenced by the
relative ϕcep difference between the composing pulses. If the
delay between the pulses is changed, it also affects the relative
ϕcep between them because they have the same absolute ϕcep.
The spectrum and the time evolution of the electric field with
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FIG. 1. (a) Spectra and (b)–(e) the corresponding temporal am-
plitude of the double pulses for different time delays: (b) 0 fs (solid
blue), (c) 13.3 fs (dashed orange), (d) 14.7 fs (yellow open circles),
and (e) 16 fs (green crosses) between the pulses. Their amplitude
ratio is chosen to be 1. At delays of 0 fs, 13.3 fs, and 16 fs the
two pulses interfere constructively, while at a delay of 14.7 fs they
interfere destructively.

different relative CEPs and a fixed time delay between the
pulses can be seen in Fig. 2. A similar spectral intensity
change is observed as in the case of delay variation [Fig. 1(a)].
This is a purely linear optical effect caused by the interference
of the double pulses. While it is important to consider the
effect of ϕcep in the experimental implementations of double-
pulse generation, its influence on harmonic generation is not
studied here, because it is analogous to the effect of delay (cf.
Fig. 1 and Fig. 2).

In the case of gas HHG (GHHG), on the single atom level,
the spectrum of the driving laser is imprinted in the high-order
harmonics [36,37]; thus by modulating the spectrum of the
seeding source of the GHHG process, the generated high
harmonics are also altered. To simplify and emphasize the
main observations and still be experimentally relevant, the
propagation effects (such as plasma generation, self-focusing,
absorption, and dispersion effects) are not included in the
simulations. One way to produce similar conditions experi-
mentally is to choose a very thin target, such as a supersonic
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FIG. 2. (a) Spectral intensity and (b)–(e) the corresponding tem-
poral evolution at a fixed delay, but (b) at 0, (c) π/2, (d) π , and
(e) 3π/2 rad relative ϕcep between the composing pulses of the
double-pulse structure. The chosen delay is τd = 16 fs, where the
two pulses constructively interfere in the case of 0 rad ϕcep. The other
parameters are the same as those in Fig. 1.

gas jet [38,39], and to set up a loose focusing condition, so
the gas cell thickness is negligible compared to the Rayleigh
length of the laser beam.

III. RESULTS

In the simulations, temporal double pulses have been
applied as a driving field of the GHHG. The variation
of the spectral bandwidth of the driving field with the
time separation of the double pulses [	ω2 = ∫ ∞

−∞(ω −
ω0)2|E (ω)|2dω/

∫ ∞
−∞ |E (ω)|2dω] is presented in Fig. 3(a).

The variance of the central angular frequency [ω0 =∫ ∞
−∞ ω|E (ω)|2dω/

∫ ∞
−∞ |E (ω)|2dω] as the delay changes is

represented in Fig. 3(b). The dotted white curves in Fig. 3(c)
show where each generated harmonic should appear with the
central frequency of the generation field at that certain delay
(q · ω0, where q is the harmonic order). The impact of the
time separation of the double-pulse structure on the generated
high harmonic spectrum is presented in the colored map in
Fig. 3(c). The delay is varied from 9.5 to 17 fs. Both pulses
have a Gaussian envelope, while the central wavelength and
the FWHM duration are 800 nm and 12 fs, respectively. Both
pulses have the same 0 rad absolute ϕcep. The target gas is
argon, which has an ionization potential (Ip) of 15.76 eV. As
the delay between the pulses is varied, the harmonics at certain
delays disappear, while at other delays they show a maximum,
which results in distinct bunches in the harmonic structure.
This can be explained by the interference of the composing
pulses, which interfere constructively at certain delays, and
destructively at other delays [cf. the spectral intensity varia-
tion in Figs. 1(a) and 2(a)]. The appearance of the bunches
is determined by the peak-to-peak distance of the driving
laser electric field (T0 = 2π/ω0), which in these simulations
equals 2.67 fs. The pulses have the same 2.3 × 1014 W

cm2

peak intensity. This means that when the pulses significantly
overlap (around 0 fs, 2.67 fs, 5.34 fs, and 8 fs delay times),
the peak intensity is well above the saturation intensity and
it is not shown in Fig. 3. The plot starts from the fourth de-
structive interference region (∼9.5 fs delay). At higher delay
values a shift of the individual harmonics can be observed,
which results from the variation of the central frequency [cf.
Fig. 3(b)]. This allows us to tune the photon energy of the
generated harmonics by simply changing the delay between
the pulses. The features presented in Fig. 3(c) have been
confirmed by one-dimensional soft-core TDSE calculations.
It must be mentioned that in the present simulation the applied
amplitude ratio was 1, but the method is robust for dissimilar
amplitude ratios too, because the spectral interference contrast
is not very sensitive to the amplitude ratio (the contrast change
is only 6% in the case of R = 0.7 compared to R = 1). The
dominant effect is just a slight blurring of the harmonics, so
the method is robust against imperfections in the amplitude
ratio.

The harmonic bunch around 13 fs time separation can
be a more interesting position because the tilting phe-
nomenon is clearly visible. It is important to mention that
Fig. 3(c) presents the plateau harmonics only; the cutoff
harmonics are not shown. The entire HHG spectra are de-
picted in Fig. 4 for a shorter delay range. The white curve
shows the position of the cutoff (Ec), which is calculated
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FIG. 3. (a) Variation of the spectral bandwidth and (b) the central angular frequency, of the driving double pulses changing the time delay
between the constituting pulses. The colored map (c) shows the dependence of the high-order harmonic spectrum on the time separation of the
two pulses, applying 50 as time resolution. The composing pulses have 12 fs FWHM duration and 800 nm central wavelength. Their amplitude
ratio is 1. The target gas is argon. Harmonic order is defined as the higher orders of the central frequency of a single pulse. The harmonic yield
(color bar) is in linear scale.

by the Ec = Ip + 3.17Up formula. In the expression, Up =
9.4 × 10−14I[W/cm2](λ[μm])2 is the ponderomotive poten-
tial, where I and λ are the peak intensity and the central
wavelength of the driving field [30], respectively.

To demonstrate the energy tunability range of the individ-
ual harmonics, the delay dependence of the spectral position
of the 15th, 25th, and 39th harmonic peaks are presented in
Fig. 5. These harmonics are marked with correspondingly
colored rectangles in Fig. 4. It is clearly indicated that, as
the harmonic order increases, the tilt of the harmonics also
increases, so the energy of the higher harmonics can be varied
on a wider range. This is a direct consequence of the central
frequency change of the generating field [see Fig. 3(b)]. In
Fig. 5, the open circles represent the position of the harmonics
obtained from the peak positions in Fig. 4. The solid lines
are linear fits to the harmonic peak positions as a function
of delay. For better comparison, the harmonics are shifted by
their nominal energy value.

Another profitable physical phenomenon that can be ob-
served in Figs. 3(a) and 3(c) is the alteration of the width
of the generated high-order harmonics. As is known, the
harmonics inherit the shape of the original laser spectrum
[36,37]; thus the spectrum of the double-pulse structure ap-
pears in the shape of high harmonics. As can be seen in
Fig. 3(a), the spectral width of the driving field slightly de-
creases as the time separation between the constituting pulses
of the double-pulse structure increases. For this reason, mod-
erately thinner harmonics can be generated if double pulses
with higher time delays are applied to drive the HHG process.
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FIG. 4. Harmonic spectra generated by double pulses. The time
separation varies around the 6th constructive interference region
(∼13.3 fs). The other simulation conditions are the same as in Fig. 3.
The white curve represents the calculated cutoff positions Ec. The
harmonic yield (color bar) is in logarithmic scale.

Figure 6 displays the spectral bandwidth variation of the 21st
harmonic as a function of the time separation of double pulses.
The spectral region between the red and green dots was used
to calculate the bandwidth by the same formula that was used
to obtain the bandwidth of the double pulse structure, that is,
	ω2 = ∫ ∞

−∞(ω − ω0)2|E (ω)|2dω/
∫ ∞
−∞ |E (ω)|2dω, with ω0

being the central frequency of the harmonic peak. As a com-
parison, the bandwidth of the 21st harmonic that is generated
by a single Gaussian pulse—applying the same parameters as
used for the composing pulses of the double-pulse structure—
is 9.4 THz, approximately two times the values achievable at
the delays presented in Fig. 6. It must be also mentioned that
the harmonics in the plateau region have the presented spectral
evolution, but as they move towards the position of the cutoff
the harmonics become more and more blurred, as can be seen
in Fig. 4, due to the fewer generated trajectories.

Moreover, the harmonics close to the cutoff region are
clearly distinguishable (see Fig. 4). This is closely related
to the fact that at bigger time separations (comparable to
the pulse duration) the envelope of the driving field begins
to resemble a super-Gaussian temporal evolution. For this
reason, the total electric field has more half cycles, which have
the same temporal amplitude, as can be seen in Figs. 2(b), 2(c)
and 2(e). This results in the emission of attosecond pulses with
comparable strength and spectral bandwidth. For this reason,
both in the plateau and around the cutoff region the harmonics
are sharper compared to the harmonics that are produced by a
single Gaussian pulse.
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FIG. 5. Photon energy variation of the 15th, 25th, and 39th har-
monics as the time separation of the double pulses changes. In Fig. 4,
these harmonics are marked with appropriately colored rectangles.
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IV. CONCLUSIONS

This paper demonstrates the generation of high-order har-
monics with tunable photon energy and spectral width driven
by a temporal double-pulse structure. The constituting pulses
have a Gaussian temporal profile, having the same spectrum,
spectral phase, and absolute CEP. Varying the time separation
between the composing pulses, the photon energy of the gen-
erated harmonics can be varied in an energy range within one
eV, which is a bandwidth comparable to the photon energy of
the fundamental field. Furthermore, the harmonics are slightly
thinner compared to the harmonics that can be produced by
a single Gaussian shape electric field. Moreover, when the
delayed pulses create a super-Gaussian-like temporal profile,
there are multiple, almost identical half cycles contributing
to the emission; thus the cutoff harmonics are as narrow as
those in the plateau. For the investigation, SFA is applied to
calculate the dipole spectrum. The obtained results are also
verified by the numerical solution of the one-dimensional soft-
core TDSE. This showed the same effects, which highlights
the accuracy of the application of SFA for the present cases.

Harmonics having the presented characteristics can be
beneficial for experiments that require a spectrally tuned
single harmonic. Such experiments include angle-resolved

photoemission spectroscopy [40,41] or lifetime measurements
of atomic or molecular excited states [42,43], which require
a narrow wavelength range excitation. Furthermore, pho-
ton energy-tunable XUV radiation with a narrow spectral
bandwidth is extremely important in many fields such as
nanolithograpy [44], XUV holography [45], or spectroscopy
[46]. Moreover, by combining an XUV multilayer mirror
and the photon-energy tunable harmonic generation technique
presented here, one can achieve a similar tunability as with
a single-stage XUV monochromator. The advantages of the
technique described here over an XUV monochromator in-
clude the much lower instrumentation costs, simpler arrange-
ment, and consequently easier alignment.

In comparison to the methods that use chirped pulses
and are detailed in Refs. [15–17], our procedure gives the
possibility to tune the central wavelength of the driving source
itself. In contrast to the method presented here, the application
of chirped pulses for HHG merely varies the position of
the generated harmonics compared to the position of the
harmonics produced by transform limited pulses. As another
alternative, spectral tuning of the laser field is also possible
with wavelength-tunable lasers. Nevertheless, such lasers are
relatively rare, and with our method the tuning of the central
wavelength can be achieved with any laser source, however,
only in a narrower range. Moreover, the production of a
temporal double-pulse structure can be easily implemented
experimentally, for example, with a commercially available
acousto-optic pulse modulator. Furthermore, our technique
can produce a super-Gaussian-like temporal evolution. This
quasi-top-hat temporal envelope can provide more control
over quantum trajectories by controlling other pulse param-
eters (such as the peak intensity or duration of the pulse);
therefore, it offers more control over the HHG process in
general.
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