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in spin-orbit-coupled degenerate Fermi gases

Chenggong Liang,1,2 Yuexin Huang,2 Feihong Liu,2 Yunbo Zhang,1,* Guangcan Guo,2,3,4 and Ming Gong2,3,4,†

1Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006, China
2CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China

3Synergetic Innovation Center of Quantum Information and Quantum Physics,
University of Science and Technology of China, Hefei 230026, China

4CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China,
Hefei 230026, China

(Received 10 September 2018; accepted 7 July 2020; published 30 July 2020)

The spin-orbit coupling (SOC) in degenerate Fermi gases can fundamentally change the fate of s-wave
superfluids. Here we report the anomalous isothermal compressibility κT in the degenerate Fermi gases with
both SOC and Zeeman field. Starting from the Gibbs-Duhem equation, we show that κT comes from both
the explicit contribution of chemical potential and the implicit contribution of the order parameter. In the
Bardeen-Cooper-Schrieffer (BCS) limit, κT is determined by the explicit compressibility, which is proportional
to the density of states at the Fermi surface; while in the Bose-Einstein condensate (BEC) regime it is determined
by the implicit compressibility, which is uniquely given by the scattering length. Between these two limits, we
find a pronouncedly enhanced compressibility in the gapless Weyl phase regime, which is attributed to a remanent
effect of the instability of degenerate Fermi gases towards phase separation. This enhanced compressibility also
leads to an anomaly in the exponent of pressure. A connection between this exponent and the polytropic index
is established. These predictions can be measured from the anomaly in sound velocity, density fluctuation, and
collective vibration frequencies.

DOI: 10.1103/PhysRevA.102.013327

Spin-orbit coupling (SOC) can modify the single-particle
band structures [1] and thus influences the fate of degen-
erate gases. In bosonic gases, the ground state may carry
a finite momentum [2–4] in either the plane-wave phase
or the stripe phase, depending on the two-body scattering
lengths [5–10]. The transition between these two phases is
described by a Dicke model [11–13]. Recently, this system
has been used to search for supersolid phases [14–16]. It
can also be used to study the scaling law of defects by the
Kibble-Zurek mechanism during quench dynamics [17,18].
In Fermi gases, the physics is different. This interaction can
make the spin polarization momentum dependent, thus when
an energy gap is opened by a perpendicular Zeeman field,
effective p-wave pairing is allowed in the same band with
only s-wave interaction. This mechanism has stimulated great
effort in experiments for topological superconducting phases
and Majorana zero modes [19–26]. Furthermore, this inter-
action can lead to various topological superfluids [27–35].
In the case of inversion-symmetry breaking, this system can
support superfluids with finite-momentum pairing [36–42].
While these superfluids have been widely explored in the
literature, their thermodynamic properties are not yet well
understood.
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In this work, we focus on the effect of SOC and the Zeeman
field on the isothermal compressibility (IC), which measures
the change of volume as a response to pressure [43,44],

κT = − 1

V

(
∂V

∂P

)
T,N

. (1)

Here the thermodynamic variables P, V , T , and N correspond
to pressure, volume, temperature, and total number of parti-
cles, respectively. For an ideal gas described by the Clapeyron
equation, κT = 1/P; while in solid materials, κT = 1/B, with
B being the Young’s modulus [45]. In the ideal gas, this
quantity is related to sound velocity via the Newton-Laplace
formula cs = √

γV/NκT , where γ is the heat capacity ratio
[46]. From this definition, we see that the more compressible
the system is, the larger this value will be. For this reason,
it can be used to identify the boundaries between superflu-
ids and insulators [47–51] and between normal phase and
Bose-Einstein condensate (BEC). In a BEC, κT will diverge
since the zero-momentum condensate does not contribute to
pressure [43,44,52]. In experiments, κT has been measured
with both fermions [51,53,54] and bosons [55–57].

In this work, we show that κT comes from the explicit con-
tribution of the chemical potential and the implicit contribu-
tion of the order parameter. In the Bardeen-Cooper-Schrieffer
(BCS) limit with vanished pairing strength, κT is determined
by the density of states at the Fermi surface from the explicit
compressibility, while in the BEC limit, it is determined by the
scattering length from the implicit compressibility. Between
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these two limits, we find a pronouncedly enhanced IC in the
Weyl superfluid with two Weyl points, which is attributed
to a remanent effect of the instability of degenerate Fermi
gases from phase separation (PS). This anomaly also leads
to anomalous behavior in the exponent of pressure. These
predictions can be measured from sound velocity, density
fluctuation, and collective vibration frequencies.

We start from the Gibbs-Duhem equation [43,44] −SdT +
V dP = ∑

σ Nσ dμσ , where μ↑ = μ + hz, μ↓ = μ − hz, μ is
the chemical potential, hz is the effective Zeeman field, S
is the total entropy, σ =↑,↓, and N = ∑

σ Nσ is the total
number of particles. For fixed T , it establishes a direct relation
between pressure and particle densities via P = P(T, n↑, n↓),
with nσ = Nσ /V . Then,

1

κT
= −

[
V

(
∂P

∂n↑

)
T,n↓

(
∂n↑
∂V

)
T,n↓

+ (↑↔↓)

]
. (2)

Using ∂nσ

∂V = −Nσ /V and the Maxwell relation ∂P
∂Nσ

= − ∂μσ

∂V ,
we have

1

κT
= −

∑
σ

Nσ

(
∂μσ

∂V

)
T

=
∑

σσ ′∈↑,↓

1

κσσ ′
, (3)

where κ−1
σσ ′ = nσ nσ ′ ∂μσ

∂n′
σ

. This result is true for a system with
arbitrary number of components. In the limiting case that nσ is
independent of μσ ′ for σ �= σ ′, one finds κ−1

σσ ′ = 0. Otherwise,
κ−1

σσ ′ �= 0, thus Eq. (3) is always well defined. Moreover, in the
limit with μσ = μ, it is reduced to κT = 1

n2 ( ∂n
∂μ

)T , which was
used in the literature [47–51]. By definition, κT �= 0 even at
zero temperature.

We employ this framework to study the IC in degener-
ate Fermi gases with SOC and Zeeman field. The single-
particle Hamiltonian reads H0 = ∑

kσσ ′ c†
kσ

[ξk + α(kyσx −
kxσy) + hzσz]σσ ′ckσ ′ , where ξk = k2

2m − μ, k = (kx, ky, kz ), α

is the SOC coefficient and σx,y,z are Pauli matrices, assuming
h̄ = 1. In the presence of s-wave interactions, one can define
a uniform pairing order � = g

V

∑
k〈c−k↑ck↓〉, where g is

the interaction strength. Let us define the thermodynamic
potential 	 through Z = e−β	 = Tr(e−βH ), with β = 1/kBT
and PV = −	, then

	 =
∑

k

ξk − 1

β

∑
kλ

ln
[
2 cosh

(
βEλ

k /2
)] − V |�|2

g
, (4)

where Eλ
k = (|γk|2 + ξ 2

k + h2
z + |�|2 + 2λE0)1/2, E0 =

[h2
z (ξ 2

k + |�|2) + |γk|2ξ 2
k ]1/2, |γk|2 = α2(k2

x + k2
y ) and

λ = ±1. The values of μ and � are determined by
nσ = − 1

V
∂	
∂μσ

and ∂	
∂�

= 0, in which the divergence of 	

is regularized by 1
g = m

4πas
− 1

V

∑
k

1
k2/m , with as being the

scattering length [27].
Notice that � is also an implicit function of μ, thus to

compute κT , we may take the derivative of the density with
respect to μ explicitly (e) and implicitly (i) through � as [58]

(
∂nσ

∂μσ ′

)
T

=
(

∂nσ

∂μσ ′

)
T,i

+
(

∂nσ

∂μσ ′

)
T,e

, (5)

where ( ∂nσ

∂μσ ′ )T,i = −( ∂2	
∂μ2 )T,�. The implicit term can be writ-

ten as ( ∂nσ

∂μσ ′ )T,i = ( ∂nσ

∂�
)T,μ( ∂�

∂μσ ′ )T,i. With the aid of ∂	
∂�

= 0,

we find ( ∂�
∂μ

)T,i = −( ∂2	
∂μ∂�

/ ∂2	
∂2�

), thus ( ∂n
∂μ

)T,i = ( ∂2	
∂�∂μ

)2/ ∂2	
∂�2 .

Collecting these results yield

κT = κT,e + κT,i, (6)

where their expressions are presented below:

κT,e =
∑

k,λ

(
Y λ

k − X λ
k

)( ξkQλ
k

Eλ
k

)2 + X λ
k

(
Qλ

k − λ
ξ 2

k P2
k

E3
0

)
2n2

, (7)

and

κT,i =
{∑

k,λξk
[(

X λ
k − Y λ

k

)Qλ
kSλ

k

Eλ
k

2 + λX λ
k

h2
z Pk

E3
0

]}2

2n2
∑

k,λ

[(
X λ

k − Y λ
k

)( Sλ
k

Eλ
k

)2 − λX λ
k

h4
z

E3
0

] . (8)

Here X λ
k = tanh( βEλ

k
2 )/Eλ

k , Y λ
k = β[1 − tanh2( βEλ

k
2 )]/2, Pk =

h2
z + |γk|2, Qλ

k = 1 + λPk/E0, and Sλ
k = 1 + λh2

z /E0.
Equations (7) and (8) are two major expressions derived

in this work. To illustrate their physical significance, let us
discuss their exact results from several solvable limits:

(I) Without many-body interactions, κT,i = 0, since � =
0. The density is determined as n = 1

V

∑
kλ nkλ, and the to-

tal compressibility κT = β

4n2V

∑
kλ[1 − tanh2(βEkλ/2)]. Ob-

viously when T = 0, κT = 1
2n2V ρ(μ), where ρ(μ) ∝ √

μ is
the density of states at the Fermi surface. As a consequence,
we see that, in the metallic phases with ρ(μ) �= 0, κT �= 0;
while in the insulator phases with ρ(μ) = 0, κT = 0, for
which reason this quantity can be used to identify the bound-
aries of the Mott insulator and supersolid phases [47–51].

(II) Without SOC and the Zeeman field, these com-
pressibilities can be solved analytically. In this case, Eλ

k =
Ek, then κT,i = 1

n2V (
∑

k ξk/E3
k )2/(

∑
k 1/E3

k ), and κT,e =
1

n2V

∑
k(1/Ek − ξ 2

k/E3
k ), where Ek = (ξ 2

k + |�|2)1/2. Let us
define the two integrals

I1 = 1

V

∑
k

ξk

E3
k

= m3/2K (x)√
2π2ε

1/2
g

, x = 1

2

(
1 + μ

εg

)
, (9)

I2 = 1

V

∑
k

1

E3
k

= m3/2 2εgE (x) + (μ − εg)K (x)√
2π2�2ε

1/2
g

, (10)

where εg = (μ2 + �2)1/2, E (x) is the complete elliptic inte-
gral, and K (x) is the complete elliptic integral of the first
kind. The two compressibilities can be written as κT,i =
I2
1 /(I2n2) and κT,e = �2I2/n2. In the BCS limit, � → 0 and
μ approaches the Fermi energy. In the BEC limit [59],

� = 2
√

nπ√
asm

, μ = εb

2
+ asnπ

m
, (11)

where the molecular binding energy εb = −(ma2
s )−1.

We see that, in the BCS limit, κT,i → 0 and κT,e →√
2m3/2√μ/(π2n2), while in the BEC limit, κT,e → 0 and

κT,i → √
2m3/2(−μ)1/2/(πn2). In the latter limit, μ plays the

role of binding energy, which is almost independent of particle
density n, thus it does not make a significant contribution to
IC. In this regime we have κT ∝ 1/kFas. It is also interesting
to find that the ratio of these two compressibilities in the
whole parameter regime can be written in a universal form

κT,i

κT,e
=

(
K (x)�

2εgE (x) + (
μ − εg

)
K (x)

)2

, (12)
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FIG. 1. (a), (b) IC with only Zeeman field (left column) and SOC
(right column). (c), (d) The two compressibilities κT,e and κT,i for
these two cases. (e), (f) Contour plot of IC as a function of Zeeman
field (SOC) and scattering length. In a NG, � = 0.

which depends only on the ratio of � and μ, following
Eqs. (9) and (10).

These two compressibilities [Eqs. (7) and (8)] can be
reduced to the results with only SOC in Ref. [60] by letting
hz = 0. The interesting point is that, in the presence of both
SOC and the Zeeman field, the excitation spectra may become
gapless in the Weyl superfluids, in which the compressibilities
may no longer be always larger than zero, giving rise to
instability towards the PS phase. In the following discussion,
we utilize this feature.

Next, we determine the value of μ and � self-consistently
at zero temperature [61,62]. The Fermi momentum kF =
(3π2n)1/3 and Fermi energy εF = k2

F/(2m) serve as basic
scales for momentum and energy, respectively. The pressure
will be presented in units of nεF, so κ is expressed in units
of κ0 = 1/(nεF) [63]. We first discuss the role of SOC and
the Zeeman field in Fig. 1. In the BCS limit, the pairing
is destroyed when |hz| > |�|, giving rise to the normal gas
(NG) phase. In the BCS limit with only the Zeeman field,
we find that, when hz = 0, κT = 1.5, while in the fully spin-
polarized phase (hz � 0.8), κT = 0.945. The ratio between
them coincides with the theoretical value of 22/3. These re-
sults demonstrate the opposite roles played by SOC and the
Zeeman field; that is, ρ(μ) is reduced by the Zeeman field
but enhanced by SOC. In the BEC limit, κT ∝ 1/kFas. These
limits are fully consistent with the results in (I) and (II).

The physics is completely changed in the presence of both
terms; see Fig. 2. We find a significantly enhanced IC, by
about one order of magnitude, in some proper parameter
regimes. This enhanced compressibility is more likely to be
found in the regime with a relatively large Zeeman field and
weak SOC. Especially, we find that the peak position depends
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FIG. 2. (a), (b) IC with both Zeeman field and SOC. (c), (d) Cor-
responding explicit and implicit compressibilities. The other param-
eter in panels (a) and (c) is αkF = 0.6; while in panels (b) and (d) it
is hz = 1.0.

more strongly on the Zeeman field. In Figs. 2(c) and 2(d),
we find that this peak arises from the implicit compressibility,
while the explicit one is always a smooth function of 1/kFas.
To further determine the reason for this anomaly, we plot the
numerator and denominator of κT,i in Fig. 3. It should be
noticed that � is determined by the global minima of 	, thus
the denominator given by ∂2	/∂�2 is related to the stability
of this global minima, which is unstable when ∂2	/∂�2 <

0. The local minima in the denominator accounts for the
anomalous compressibility, which is more likely to be found
in the gapless phase [31,64,65]. We illustrate this physics in
Figs. 4(a) and 4(b) by plotting the excitation spectra for the
peaks in Figs. 2(a) and 2(b) for the superfluid with two Weyl
points. By increasing of the scattering length, the Weyl points
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FIG. 3. The numerator and denominator of the implicit com-
pressibility κT,i as a function of scattering length with different
Zeeman fields and SOC strengths. When � = 0, κT,i = 0 accounts
for the plateau in the BCS limit.
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FIG. 4. (a), (b) Excitation spectra of Ek− for the three IC peaks
in Figs. 2(a) and 2(b), respectively, with kx = ky = 0. The gapless
points can only happen on the kz axis, in which the solutions of
Ek− = 0 mark the Weyl points [27]. In panel (a) we have used
αkF = 0.6 and in panel (b) hz = 1.0. (c), (d) Phase diagram and
contour plot of the IC. The white regime in panel (d) corresponds to
the unstable PS phase identified by κT < 0. In each figure, W2/4 SF
denotes topological Weyl superfluids with two and four Weyl points,
respectively.

are destroyed and the superfluid enters the trivial gapped
phase, in which the compressibility becomes extremely large
due to the condensate of molecules at zero momentum.

We plot the phase diagram and the contour plot of IC in
Figs. 4(c) and 4(d). The phase diagram is classified according
to the number of Weyl points in momentum space [27].
There is a small regime for PS determined by κT < 0 from
∂2	/∂�2 < 0, in which the thermodynamic potential 	 ex-
hibits two local minima in space by μ and � [31,64,65]. This
instability is suppressed by SOC due to the effective p-wave
pairing. We find that the enhanced IC in Fig. 4(c) happens
near the boundary between the two Weyl superfluids, with
the corresponding peak position depending strongly on the
Zeeman field. We attribute this anomaly as a remanent effect
of the instability of the gapless superfluids. We emphasize
that, across the boundary of topological phase transition, the
compressibility is not necessarily anomalous since it is not
directly related to gap closing and reopening [66].

Finally, we address the fundamental consequence of this
anomalous compressibility in its measurement. We come
back to the original definition in Eq. (1) by assuming an
infinitesimal change of system size via L′ = eηL = (1 + η)L,
then dV = DηV , where D is the dimension of the system.
The corresponding pressure can be written as P′ = e−ηDνP =
(1 − ηDν)P, where ν defines the exponent of pressure. Then
we have

ν = 1/(κT P). (13)

When the relation between P and V (or μ and n) can be written
in the form of polytropic equation PV γ̃ = C (or equivalently
μ ∝ nγ̃ [67,68]), then ν = γ̃ . For the ideal Fermi gases in
the BCS limit, ν = 5/3; while in the BEC limit with free

-4.0 -2.0 0.0 2.0 4.0
0.0

1.0

2.0

-4.0 -2.0 0.0 2.0 4.0
0.0

0.4

0.8

FIG. 5. Exponent of pressure ν in degenerate Fermi gases with
SOC and Zeeman field. The two limits with ν = 5/3 (BCS limit)
and ν = 2 (BEC limit) have been determined exactly in the main
text. Inset shows the corresponding evolution of pressure P, which in
the BEC limit can be obtained exactly as P = kFas/(3π ) in units of
1/κ0 = nεF.

Bose gases, P = kFas/3π in units of 1/κ0 [from Eq. (11)],
we have ν = 2. The numerical result for this exponent is
shown in Fig. 5, which exhibits a strong minimum near the
BEC-BCS crossover regime arising mainly from the anomaly
of compressibility κT . The position of this minima and its
amplitude depend strongly on the Zeeman field and SOC
strengths. We emphasize that, without SOC and the Zeeman
field, ν agrees with the polytropic index in the BEC, BCS and
unitary limits with γ̃ = 2, 5/3, and 5/3, respectively [69]. In
experiments, this exponent can be directly measured from the
vibration frequencies in a slowly rotating trap [67–72]. It may
also be revealed from the particle density fluctuation since
〈δn2〉 ∼ κT kBT [43,44].

To conclude, we report some anomalous behavior in de-
generate Fermi gases with SOC and the Zeeman field. The
IC is shown to have a simple interpretation in the BCS and
BEC limits. In the BCS limit it is proportional to density
of states at the Fermi surface, while in the BEC limit it is
proportional to 1/as. Between these two limits, anomaly in
IC can be observed as a remanent effect of instability towards
PS, which also leads to anomaly in the exponent of pressure.
These results pave the way for exploring other thermodynamic
properties in the degenerate Fermi gases, including the su-
perfluids with finite-momentum pairing [73]. In experiments,
these predictions can be measured from the sound velocity, the
density fluctuation, and the collective vibration frequencies.
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