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Rotation sensing with improved stability using point-source atom interferometry
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Point-source atom interferometry is a promising approach for implementing robust, high-sensitivity, rotation
sensors using cold atoms. However, its scale factor, i.e., the ratio between the interferometer signal and the actual
rotation rate, depends on the initial conditions of the atomic cloud, which may drift in time and result in bias
instability, particularly in compact devices with short interrogation times. We present two methods to stabilize
the scale factor. One relies on a model-based correction which exploits correlations between multiple features
of the interferometer output and works on a single-shot basis. The other is a self-calibrating method where a
known bias rotation is applied to every other measurement, requiring no prior knowledge of the underlying
model but reducing the sensor bandwidth by a factor of two. We demonstrate both schemes experimentally
with complete suppression of scale-factor drifts, maintaining the original rotation sensitivity and allowing for
bias-free operation over several hours.
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I. INTRODUCTION

In recent years, cold-atom interferometers [1] have
achieved record sensitivities in acceleration and rotation
sensing. As acceleration-sensing instruments, their appli-
cations range from precision measurements for fundamen-
tal research [2–10] to geophysical measurements with mo-
bile atomic gravimeters [11–18], demonstrating both high-
sensitivity and high-stability operation. Atom interferometry
gyroscopes [19–24] are useful for field applications such as
gyrocompassing [25,26] and inertial navigation on mobile
platforms [27–29]. Similarly to atomic and optical clocks,
atomic gyroscopes hold the promise of enhanced stability
compared to their classical counterparts due to their scale fac-
tor being defined in terms of fundamental physical constants.
Previous demonstrations of atom interferometry gyroscopes
[23,30] have reached sensitivity and stability which compare
favorably with state-of-the-art optical gyroscopes [31,32].

Point-source interferometry (PSI) is an atom interferom-
etry technique for rotation sensing based on detecting the
spatial frequency of the interference pattern across an atomic
cloud. Originally developed in a 10 meter atomic fountain
[22], the technique has also been applied in a sensor with a
cm-scale physics package [33]. Compared to other atom in-
terferometry rotation sensing techniques, PSI has the benefits
of experimental simplicity and inherent suppression of accel-
erations and vibrations. As such, it is an especially promising
technique for field and mobile applications. However, unlike
ideal atomic sensors, the scale factor of PSI, defined as the
ratio between the measured spatial frequency of the fringe
pattern and the applied rotation rate, is sensitive to the initial
and final size of the atomic cloud [34]. This dependency is
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amplified when the expansion ratio of the cloud is small, as in
compact sensors with short expansion times. As a result, PSI
is susceptible to bias instability due to drifts in its technical
attributes [24], preventing it from realizing its full potential
as an atomic sensor and limiting its usefulness in applications
requiring high stability over long timescales.

In this work, we introduce two approaches to stabilizing
scale-factor drifts in PSI sensors. The first approach uti-
lizes additional information extracted from each PSI image,
namely, the interference fringe contrast and atomic cloud final
size, in addition to the fringe spatial frequency. We experimen-
tally verify the physical model which describes the correlation
between these parameters and then employ it to correct the
scale factor independently for every PSI image. The second
approach relies on alternately applying a known bias rotation
rate to the sensor, in addition to the unknown measured
rotation. Analyzing pairs of measurements with and without
the bias rotation enables self-calibration of the scale-factor
correction and determination of the unknown rotation. We im-
plement both schemes experimentally and demonstrate their
ability to recover uncorrelated τ−1/2 averaging performance
of the rotation sensor. We achieve suppression of scale-factor
drifts up to a factor of ten without any loss in sensitivity and
on timescales of up to 104 s, far surpassing previous results.

II. POINT-SOURCE ATOM INTERFEROMETRY

PSI gyroscopes employs a Mach-Zehnder atom interfer-
ometer configuration [35]. Three laser pulses, equally sep-
arated in time, interact with a freely falling atomic cloud
and act, in analogy to optical interferometry, as coherent
beam splitters and mirrors. These operations are realized
through counterpropagating laser beams which drive two-
photon, Doppler-sensitive Raman transitions between differ-
ent internal ground-state levels and different momentum states
of the atom [36]. Beam-splitter operations correspond to
π/2 pulses which place the atom in a coherent superposition

2469-9926/2020/102(1)/013326(8) 013326-1 ©2020 American Physical Society

https://orcid.org/0000-0001-9759-4164
https://orcid.org/0000-0001-8905-9954
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.013326&domain=pdf&date_stamp=2020-07-29
https://doi.org/10.1103/PhysRevA.102.013326


CHEN AVINADAV et al. PHYSICAL REVIEW A 102, 013326 (2020)

FIG. 1. Schematic diagram of point-source atom interferometry.
The atomic cloud is launched upwards at t = 0, interacts with a
sequence of π/2-π -π/2 two-photon Raman pulses comprising the
interferometer, and finally imaged at t = tex. The effective wave
vector keff of the counterpropagating Raman beams is determined
by a retroreflecting mirror which can be tilted by a piezo stage
to simulate rotations. Ballistic expansion of the cloud generates
correlation between the position and velocity of the atoms, giving
rise to a spatial interference pattern from which the rotation rate is
calculated.

of two momentum states separated by h̄keff, where keff =
k1 − k2 is the two-photon wave vector of the Raman inter-
action. Likewise, mirror operations correspond to π pulses
which change the momentum of each interferometer arm by
±h̄keff. During the interferometer sequence, these pulses are
utilized to coherently split, redirect, and recombine the atomic
wave packets in space (Fig. 1). The interferometer phase φ

results from the different spatial trajectories of the two arms,
and determines the relative population in the two internal
states at the interferometer output. Through state-dependent
detection of the atoms, this relative population, and thus the
phase, can be measured.

In the Mach-Zehnder configuration considered here, the
leading phase contributions are given by φa = (keffT 2) · a and
φ� = (2v × keffT 2) · �, where T is the time between each
pair of pulses, a and � are, respectively, the acceleration and
rotation rate of the atoms relative to the interrogating Raman
beams, and v is the mean velocity of each atom during the
interferometer sequence. The acceleration phase φa can be
seen as resulting from the space-time area enclosed by the
two interferometer arms, whereas the rotation phase φ� results
from the enclosed spatial area, in a Sagnac-like effect.

While φa is uniform across the expanding atomic cloud,
φ� depends on the initial transverse velocity of each atom
due to the cloud’s finite temperature. In the point-source limit,
where the final cloud is much larger than its initial size,
ballistic expansion of the cloud results in one-to-one corre-
spondence between the atomic position and velocity. Thus, the
velocity-dependent rotation phase is projected onto a spatial
fringe pattern which may be directly imaged to facilitate a
measurement of � [22].

In our setup, the Raman beams are aligned vertically such
that keff = keffẑ, and the cloud is imaged in the x̂-ẑ plane,

FIG. 2. Spatial fringe pattern measured with PSI. (a) Raw fluo-
rescence image from a single experiment. (b) Fit of the image to a
two-dimensional Gaussian distribution with sinusoidal modulation.
(c) Normalized, vertically integrated cross sections of the measured
and fitted images (red dotted and solid lines, respectively). The
Gaussian density distribution (dash-dotted line) of full width 2σf is
modulated by a fringe pattern (blue) with spatial frequency κ and
contrast c. In this experiment, the initial cloud width was 2σi =
0.98 mm (measured separately) with magnification of σf/σi ∼ 7.5.

providing sensitivity to gravitational acceleration −gẑ and to
rotations around the ŷ axis. From here on, we will focus on the
latter term only. For simplicity, we denote � = �y and write
the rotation phase as φ� = 2keff�vxT 2. In the point-source
limit, we have x = vxtex, where tex is the total expansion
time of the cloud, and the rotation phase becomes φ� =
(2keff�T 2/tex)x. The resulting atomic density has a profile of
a modulated Gaussian distribution, as shown in Fig. 2, whose
spatial frequency is given by κ = (2keffT 2/tex)�. More gener-
ally, we may write the spatial fringe frequency as κ (�) = F�,
where F is the scale factor, given in the point-source limit by
Fps = 2keffT 2/tex [33].

In general, realization of a rotation-sensing atom interfer-
ometry requires separating the phase contributions of rotation
and acceleration. In PSI, this is achieved by exploiting the
velocity dependence of the rotation-sensitive phase φ� to
map it onto a spatially varying interference pattern, separating
rotation and acceleration into the spatial fringe frequency and
phase, respectively [24]. A different approach utilizes two
atomic sources with opposite velocities, using either thermal
[20] or cold atoms [28], and performing identical Mach-
Zehnder sequences on both. Here too, the velocity dependence
of φ� results in the output phases of the two interferometers
to be φa ± φ�, allowing simple separation of the two contri-
butions. However, unlike PSI in these schemes φ� is uniform
for each of the two interferometers. Alternatively, a four-pulse
“butterfly” interferometry sequence [23] may be used, which
inherently rejects the contribution of constant acceleration
but remains sensitive to time-varying acceleration, such as
vibration noise. In comparison to these two schemes, PSI
offers a much simpler experimental configuration using only a
single atomic source and a single interrogation optical beam,
with suppression of both constant acceleration and vibrations.

III. EXPERIMENTAL APPARATUS

In our apparatus [37,38], we load an ensemble of 87Rb
atoms from thermal background vapor in a magneto-optical
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trap (MOT) and cool them to 4 μK. Through moving optical
molasses, the atoms are launched vertically with velocities of
up to 1.2 m/s while occupying all Zeeman states mF = 0,±1
of the lower hyperfine level F = 1. The interferometer pulses
are realized by counterpropagating Raman beams with σ+ −
σ+ polarizations that drive two-photon transitions between
the mF = 0 states of F = 1 and F = 2, with a bias magnetic
field of about 300 mG to separate the magnetic Zeeman
states.

Raman beams are realized by phase modulation at
∼6.834 GHz with an electro-optic modulator, with the carrier
detuned 700 MHz red of the F = 2 → F ′ = 1 transition, fol-
lowed by a two-stage amplification to a total power of about
1 W in all sidebands. The Raman beam is collimated to 70 mm
diameter using a Silicon Lightwave LB80 output collimator
with λ/10 wavefront error. The resulting two-photon Rabi
frequency is 35 kHz.

The retroreflecting mirror of the Raman beams is mounted
on an accurate nanopositioning tip-tilt piezo stage (nPoint
RXY3-410), which allows us to rotate the optical wave vector
during the interferometer sequence and thereby mimic actual
rotations. The stage has total dynamic range of ±1.5 mrad in a
closed-loop operation, with 0.2 μrad position noise and a few
milliseconds settling time.

Following the interferometer sequence, we use fluores-
cence excitation on the optical F = 2 → F ′ = 3 cycling tran-
sition, employing all six MOT beams for minimal distortions,
to capture an image of the atoms occupying the F = 2 level.
From launch to detection, the experimental sequence lasts, in
total, up to 300 ms. The shot-to-shot cycle time is 3 s due to
technical limitations in the communication bandwidth of the
computer control system.

Images are taken on a PCO Pixelfly CCD camera, using a
Fujinon-TV H6X12.5R zoom lens. We fit the image from each
experiment to a Gaussian envelope function with sinusoidal
modulation and extract κ , from which � is inferred (Fig. 2).
We calibrate the imaging system by using velocity-selective
Raman pulses and their well-known timing and momentum
transfer, to select and image two narrow atomic ensembles at
controllable distances.

IV. FINITE-SIZE EFFECTS

A. Theoretical model

For clouds of finite initial size, the resulting atomic den-
sity profile is a convolution of the initial density distribu-
tion with the ideal point-source fringe pattern, which is a
spatial fringe superimposed on the unperturbed final den-
sity distribution. Mathematically, such convolution modifies
both the wavelength and contrast of the fringe compared
to the ideal point-source case. Hoth et al. derived analyt-
ically these effects assuming spherically symmetric Gaus-
sian initial and final density distributions [34]. In this case,
both the spatial fringe frequency κ and its contrast c are
reduced with respect to their values in the point-source
limit. Defining the initial and final cloud widths as σi and
σf, respectively, the modified fringe properties were found

to be

κ = Fps�
(
1 − σ 2

i /σ 2
f

)
, (1)

c = c0 exp

[
−1

2

κ2σ 2
i

1 − σ 2
i /σ 2

f

]
, (2)

where c0 is the interferometer contrast for � = 0.
In physical terms, imperfect correlation between the

atoms’ position and velocity due to the finite-size of the
initial cloud results in averaging over atoms with different
velocities at each measured position. For a Gaussian velocity
distribution, the average velocity of atoms at each position is
smaller than the expected value in the point-source limit, re-
sulting in a reduction of the spatial fringe frequency. Similarly,
the average over different velocities smears the interference
fringes and reduces their contrast.

As a consequence of Eq. (1), the scale factor of the inter-
ferometer becomes F = Fps(1 − σ 2

i /σ 2
f ). The dependency on

σi/σf leads to bias instability of the sensor when either σi or
σf drift. Importantly, for a given relative drift in σi, the drift in
the scale factor increases with the inverse magnification ratio
σi/σf, emphasizing the susceptibility of compact sensors with
small magnification to such drifts.

A larger magnification ratio can be achieved by decreasing
σi using, e.g., tight dipole traps, which adds experimental
complexity and may impact the atom number; or by increasing
σf through longer expansion times or higher cloud tempera-
tures, in either case requiring larger atom optics and detection
beams. However, even when operating at a large magnification
ratio such as σf/σi = 50, the scale factor is modified by
400 ppm and small drifts in the initial cloud size on the order
of a few percent would result in changes of tens parts per
million to the scale factor. In comparison, optical gyroscopes
achieve scale-factor stability of the order of 1 ppm [39].

B. Experimental verification

We verify the model predictions by performing measure-
ments with different values of σi, obtained through different
repump intensities at the final optical molasses stage, and
with different values σf, obtained through different launch
velocities and thus different expansion times. σi was measured
in independent experiments by imaging the cloud immediately
after launch. For standard operation of the optical molasses,
the value of σi is about 0.5 mm, and we can increase it up to
about 0.8 mm before suffering significant loss of atoms. As
Fig. 3 shows, we find good agreement with the functionals
in Eqs. (1) and (2) for a range of magnification ratios σf/σi

between 3.5 and 9, corresponding to changes of 5% in scale
factor. The fact that the scale factor F at σi/σf → 0 differs
from Fps by 3.5% can be attributed to imaging distortions and
to residual calibration errors of the imaging system and of the
piezo stage driving the mirror rotations. The fitted slope for
the scale-factor dependence on σ 2

i /σ 2
f , as well as the scaling

of the exponential decrease of the contrast, slightly differ from
the theoretical model either due to estimation errors in σi and
σf or due to non-Gaussian density distributions.
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FIG. 3. Effect of initial cloud size σi and final cloud size σf on the
PSI scale factor and contrast. (a) Measured spatial fringe frequency
κ as a function of � for different values of σi and σf. Solid lines
are linear fits, with slopes representing the scale factors. Different
values of σf correspond to launch velocities 0.6–1.2 m/s, with tex

between 133 and 252 ms. In all cases, T = 52 ms. (b) Measured
scale factor for different values of σi and σf. The solid line is a
linear fit with slope −0.79(4), deviating from the predicted value
−1. (c) Measured fringe contrast for different values of σi and σf. The
solid line is an exponential fit to c = c0 exp [−ακ2σ 2

i /(1 − σ 2
i /σ 2

f )]
with α = 0.65(3), deviating from the model prediction α = 0.5.

V. CONTRAST-BASED STABILIZATION

A. Model description

The first method we present for correcting scale-factor
instability exploits the correlation between � and (κ, c, σf ),
which are extracted from each PSI image. We obtain the
relation �(κ, c, σf ) by eliminating σi from Eqs. (1) and (2). To
capture the aforementioned deviations from the model, we add
a single parameter β and replace σf → σf/β. The resulting
expression for � is then

� = κ

Fps

[
1 − 2

(
β

κσf

)2

ln
c

c0

]
. (3)

As demonstrated below, we verify that this formulation, based
on one physical parameter c0 and one correction parameter
β, provides an excellent description of the measured data.
Importantly, it allows us to calculate � using only the pa-
rameters κ , c, and σf measured in every single PSI image,
enabling analysis on a single-shot basis without any reduction
in temporal bandwidth.

B. Parameter calibration

To calibrate c0 and β in Eq. (3), we perform measurements
at a constant rotation rate and periodically vary σi by changing
the repump beam intensity during the moving optical mo-
lasses. This results in changes to c, σf, and κ , as shown in
Fig. 4(a). Inverting Eq. (3) and setting � = �calib, we obtain

FIG. 4. Calibration of contrast-based scale-factor stabilization.
(a) Top to bottom: measured contrast, final cloud size, and spatial
fringe frequency for an applied rotation rate of 2 mrad/s, as σi is
varied periodically in the range 0.5–0.8 mm. Each data point rep-
resents a single PSI image. In these and the following experiments,
T = 80 ms and tex = 185 ms. (b) Parametric plot of κ (c, σf ). Dots
are data points; the surface is a fit to Eq. (4) with c0 = 0.43(8) and
β = 0.80(1). The fit describes the data points well, with residuals of
κ from the fit surface showing no correlation to c or σf and character-
ized by standard deviation (2π )2.49 × 10−3 mm−1, consistent with
a moving standard deviation (2π )2.55 × 10−3 mm−1 of the raw κ

measurements. (c) Rotation rate calculated with the uncorrected scale
factor Fps (red), compared to the corrected rotation rate (blue), which
employs Eq. (3) with the calibrated parameters, showing excellent
rejection of scale-factor drifts. The solid lines in (a) and (c) are
30-sample moving averages.

an expression for κ in this calibration measurement,

κ = 1

2
Fps�calib

[
1 +

√
1 + 8 ln (c/c0)(

Fps�calibσf/β
)2

]
. (4)

The measured data points are fitted to this surface equation,
as shown in Fig. 4(b), where c0, β, and �calib are the fit
parameters, the latter being an auxiliary parameter not used
in any subsequent analysis.

With calibrated c0 and β at hand, we now use Eq. (3)
to correct the inferred rotation rate in this calibration run.
This exercise is shown in Fig. 4(c), and indeed we find that
the drifts are removed and a stable rotation measurement
is obtained. We emphasize that the analysis does not use
any assumption or prior knowledge on σi or on its temporal
variations, and in fact the only prerequisite is that the range
of σi scanned during the calibration process is large enough to
adequately calibrate the model parameters.

While this correction is aimed to improve the measurement
stability under variations of σi, the measurement accuracy is
enhanced as well. As Eq. (3) also captures the systematic
bias due to the finite magnification ratio, as described by
Eq. (1), applying this correction suppresses the systematic
bias. Indeed, we find the postcorrection estimated rotation
rate [Fig. 4(c)] to be 1.936(6) mrad/s, in agreement with the
expected value 1.9387 mrad/s which consists of the applied
mirror rotation rate of 2 mrad/s and the projection of the
Earth’s rotation on the measurement axis, which was due
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FIG. 5. Demonstration of contrast-based scale-factor stabiliza-
tion. (a) Time series of the input rotation rate �0, oscillating around
2.1 mrad/s. (b) Measured fringe contrast shows variations due to
applied periodic changes to σi. (c) Residuals of the estimated rotation
rate � − �0, with (blue) and without (red) scale-factor correction
using Eq. (3). The solid lines are 30-sample moving averages. The
full data spans 3 × 104 s. (d) Allan deviation of the residuals, with
(filled markers) and without (empty markers) scale-factor correction.
The dashed line is a fit to τ−1/2. The dotted line indicates the Earth’s
rotation rate at our laboratory location. (e)–(h) Same as (a)–(d), with
�0 oscillating around 1.5 mrad/s and random-walk variations in σi

in the range 0.5–0.8 mm. The observed sensitivities are 28 μrad/s
and 32 μrad/s per shot in (d) and (h), respectively, differing slightly
due to changing experimental conditions, such as total atom number.

north, at our latitude of 32.7940◦ N. In contrast, the mean
estimated rotation rate using the point-source scale factor is
1.857 mrad/s, differing significantly from the true value.

Nevertheless, it is possible that some residual bias still
exists after applying Eq. (3). However, it would be inseparable
from other possible sources of systematic bias in the PSI
measurement due to, e.g., the effect of wavefront aberrations
[25,40,41] or imaging distortions. Calibration error of the
piezo stage and inaccurate estimation of the measurement axis
north alignment will contribute to an apparent bias as well.
For this reason �calib is treated as a fit parameter when using
Eq. (4), rather than being simply taken as the input rotation
rate. The overall bias may be corrected by calibrating the PSI
sensor, for example, using a precision rotary stage.

C. Demonstration of correction performance

We demonstrate the implementation of this stabilization
method in two separate measurement runs, as presented in
Fig. 5, representing realistic operating scenarios where the
rotation rate varies in time. We artificially generate scale-
factor drifts by varying the optical molasses parameters which

affect the initial and final cloud distributions, both in peri-
odic fashion and in random-walk-like behavior. While the
rotation rate and initial conditions change smoothly in time,
this information is not used in the analysis as all corrections
are on a single-shot basis. The interferometer parameters are
T = 80 ms and tex = 185 ms, as in the calibration run.

Using Eq. (3) and the previously calibrated values for c0

and β, we obtain suppression of sensor drifts by a factor
of ten in both examples [Figs. 5(d) and 5(h)], limited only
by the magnitude of the drifts we introduced. The scheme
allows complete recovery of τ−1/2 averaging performance at
timescales up to 104 seconds, affirming that it does not intro-
duce new bias instabilities of its own. The second example,
where � varies around a mean value smaller than �calib,
and the model measurements shown in Fig. 3 with larger
values of �, demonstrate that the technique is robust and
does not require multiple calibration runs with different values
of �calib. Our measurements reach a stability of 0.5 μrad/s,
providing a upper bound for the scale-factor stability of 2.5 ×
10−4. Under the applied variation of ±18% in σi, reaching
such stability without any correction scheme would require
operating the PSI sensor at a magnification ratio of at least 40.

Finally, we note that it is possible, in principle, to apply a
correction similar to that described in this section by utilizing
Eq. (1) and directly measuring σi. This may be done either
in separate experimental shots, at the expense of reduced
bandwidth and sensitivity per

√
Hz and under the constraint

that σi changes little between shots, or through nondestructive
imaging of the cloud during the final moving molasses stage.
The latter is challenging as it requires short exposure time to
avoid motion blur of the small, moving cloud. In addition to
these constraints, as Fig. 3(b) demonstrates, Eq. (1) requires
an additional scaling parameter to fit the measured data, likely
due to the non-Gaussian shape of the initial cloud. Thus, this
approach of directly measuring σi does not eliminate the need
for calibration parameters.

VI. SELF-CALIBRATING STABILIZATION

A. Principles and demonstration

Our second method for scale-factor stabilization utilizes
the piezo rotation stage to apply a known rotation �bias at
alternating measurements, in addition to the unknown rotation
� which we wish to measure. Denoting the scale factor in
these measurements as F , the spatial fringe frequencies of
two consecutive measurements are given by κ1 = F� and
κ2 = F (� + �bias). These equations may be inverted to yield

� = �bias
κ1

κ2 − κ1
, (5)

F = 1

�bias
(κ2 − κ1), (6)

allowing us to extract both � and F from each pair of
measurements κ1 and κ2. This self-calibrating method requires
no prior knowledge or assumption of a model describing
the relationship between F and other system parameters.
The signs of κ1, κ2 are not directly available from the PSI
images, but rather assumed to be known, for example, from
an auxiliary rotation sensor, as in all existing schemes of PSI.
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FIG. 6. Demonstration of scale-factor stabilization by self-
calibration. (a) Time series of the input rotation rate �0. (b) Measured
κ2 and κ1, each dot corresponding to a pair of experiments with and
without �bias = −2.6 mrad/s. Also shown are contour lines of the
estimated rotation rate (blue) and scale-factor correction relative to
Fps (purple) based on Eqs. (5) and (6). (c) Estimated scale-factor
correction from each pair of measurements, showing random-walk
variations due to applied changes to σi in the range 0.5–0.8 mm.
(d) Residuals of the estimated rotation rate � − �0, using the
nominal scale factor F = Fps (red) and the corrected scale factor
(blue). The solid lines in (c) and (d) are 30-sample moving averages.
(e) Allan deviation of the residuals, with and without scale-factor
correction. The dashed line is a fit to τ−1/2 with sensitivity 32 μrad/s
per shot.

An experimental demonstration of the self-calibration
method is shown in Fig. 6, with both the measured rotation
� and the scale factor changing in time. Again we find
perfect suppression of scale-factor drifts and recovery of
τ−1/2 noise behavior. Compared to the previously described
contrast-based stabilization, this method reduces the effective
bandwidth by a factor of two due to the pairwise analysis,
but has the advantages of being model independent and not
requiring any initial calibration measurements. We note that
despite the reduction in bandwidth, information is not lost
when analyzing pairs of measurements and thus the rotation
sensitivity per

√
Hz is maintained, as evident in Fig. 6(e).

This correction scheme relies on an accurate piezo stage for
adding a known bias rotation, as errors in �bias enter directly
into the estimation of � itself. Therefore, the stage is required
to have similar resolution as the PSI measurement so as not to
degrade its sensitivity, and long-term stability to enable scale-
factor corrections at long times. As our results show, these
conditions are fulfilled in our apparatus. Indeed, such a stage
with adequate performance is likely to be necessary anyway in
an operational rotation sensor, for purposes such as calibration
and dynamic range compensation.

B. Generalization to time-varying scenarios

The analysis above assumed that � and F are constant in
both measurements. We now turn to the more general case

where these quantities may change between shots. We de-
fine �1 = � + δ�, �2 = � − δ� + �bias, and F1,2 = F0 +
δFcomm ± δFdiff, such that the measured spatial fringe frequen-
cies are κ1,2 = F1,2�1,2. Here, δ� represents shot-to-shot vari-
ation in �, F0 is the nominal scale factor, and δFcomm and δFdiff

are scale-factor errors common and different, respectively, in
both measurements. �bias, as before, is the known rotation
which is added in the second measurement. Using Eq. (5) and
to leading order in δ�/� and δF/F , we find that the estimated
rotation rate is

�est

�
≈ 1 +

(
2 + 2�

�bias

)
δFdiff

F0
+

(
1 + 2�

�bias

)
δ�

�
. (7)

To eliminate the δ�-related term in Eq. (7), we set �bias =
−2(κ1/F0), where κ1/F0 corresponds to an estimate of �1

based on the first measurement and assuming the nominal
scale factor. With this choice of �bias, we have, to leading or-
der, �est ≈ �(1 + δFdiff/F0), such that the estimated rotation
rate corresponds to the average � of the two measurements.

Regardless of the exact choice of �bias, we find that even in
this case of varying-rotation rate and scale factor, the result is
insensitive to errors in the scale factor which are common to
both measurements and remains sensitive only to noncommon
scale-factor errors δFdiff. In contrast, the “naive” measurement
approach, with �bias = 0 and estimating � as the average
1
2 (κ1 + κ2)/F0, leads to �naive ≈ �(1 + δFcomm/F0). It is then
the noncommon scale-factor error which cancels to leading
order, and the common error remains.

In most scenarios, δFcomm � δFdiff, i.e., the scale factor
is expected to change slowly with respect to the timescale
of two measurements, and thus our self-calibrating method
cancels the more dominant source of error. Additionally,
more advanced estimation protocols such as a Kalman filter
[42,43] could be used to track rapidly varying rotation signals
while estimating the slowly varying scale factor from multiple
measurement pairs.

VII. CONCLUSION

We have presented two complementary approaches for
improving the stability of rotation measurements using point-
source atom interferometry, suppressing scale-factor drifts
which arise due to changes in the atomic cloud parameters.
We demonstrated the two schemes experimentally with com-
plete suppression of scale-factor drifts. We showed that they
maintain the sensor sensitivity and do not introduce any drifts
on their own. We achieved scale-factor stability on timescales
up to 104 s, representing orders-of-magnitude improvement in
stability time compared to previous works. We reach rotation
rate stability of 0.5 μrad/s.

The first approach utilizes the inherent correlations be-
tween different parameters in PSI images, namely, the con-
trast, spatial frequency, and final size of the fringe pattern, for
estimating the scale factor from a single image and correct
for drifts. The underlying model which describes these cor-
relations is based on the physics of the sensor, rather than
on an empirical correlation, as we verify by independent
measurements. This method is based on information which is
already available in standard PSI measurements and maintains
the original bandwidth of the sensor; however, preliminary
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calibration of two model parameters is necessary. The pos-
sibility of using a continuous estimation protocol, such as
Kalman [42,43] or particle filtering [44], to replace the initial
calibration as well as to allow temporal variations of these
parameters may also be explored.

The second approach relies on sequential measurements
with an added bias rotation to directly estimate the scale
factor from each pair of measurements. This approach is self-
calibrating and completely model independent, but it depends
on the stability of the piezo mirror stage generating the bias
rotation and reduces the sensor bandwidth.

While the experiments described here focus on side-
imaging PSI which allows single-axis rotation sensing, the
two schemes that we developed are fully compatible under the
same conditions with dual-axis sensors using top or bottom
imaging of the cloud.

The stabilization techniques that we developed are particu-
larly important in compact PSI sensors, which are an attractive

alternative for constructing simple, mobile devices with high
sensitivity to rotations. Our schemes address a significant
challenge of such PSI sensors, namely, high susceptibility to
scale-factor drifts due to the low magnification ratio of the
atomic cloud. The results may pave the way for realizing
high-performance, compact PSI devices for demanding appli-
cations that require long-time stability, such as gyrocompasses
for north-finding applications, gyroscopes for line-of-sight
stabilization, or inertial measurement units for navigation
systems.
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