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Dimensional crossovers and Casimir forces for the Bose gas in anisotropic optical lattices
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We consider the Bose gas on a d-dimensional anisotropic lattice employing the imperfect (mean-field) gas as
a prototype example. We study the dimensional crossover arising as a result of varying the dispersion relation at
finite temperature T . We analyze in particular situations where one of the relevant effective dimensionalities is
located at or below the lower critical dimension, so that the Bose-Einstein condensate becomes expelled from the
system by anisotropically modifying the lattice parameters controlling the kinetic term in the Hamiltonian. We
clarify the mechanism governing this phenomenon. Subsequently we study the thermodynamic Casimir effect
occurring in this system. We compute the exact profile of the scaling function for the Casimir energy. As an
effect of strongly anisotropic scale invariance, the Casimir force below or at the critical temperature Tc may be
repulsive even for periodic boundary conditions. The corresponding Casimir amplitude is universal only in a
restricted sense, and the power law governing the decay of the Casimir interaction becomes modified. We also
demonstrate that, under certain circumstances, the scaling function is constant for sufficiently large values of the
scaling variable, and in consequence is not an analytical function. At T > Tc the Casimir-like interactions reflect
the structure of the correlation function, and, for certain orientations of the confining walls, show exponentially
damped oscillatory behavior so that the corresponding force is attractive or repulsive depending on the distance.
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I. INTRODUCTION

Ultracold atomic gases in optical lattices have remained a
topic of great interest over the last years from both theoret-
ical and experimental points of view [1–5]. The progressing
experimental developments allowed for exploiting physical
situations inaccessible in traditional condensed-matter setups
(and also in continuum cold gases) and stimulated enormous
theoretical developments worldwide.

In this paper we investigate the physics emergent in
optical-lattice Bose systems as a result of introducing strong
spatial anisotropies giving rise to the presence of (at least)
two distinct lengths scales ξ‖ and ξ⊥ controlling the decay of
the correlation function in different directions. Both ξ‖ and ξ⊥
diverge at the transition to the condensed phase and are related
by the anisotropy exponent θA, such that ξ⊥ ∼ ξ

θA
‖ .

First we analyze the possibility of controlling the Bose-
Einstein condensation by anisotropically varying the hopping
parameters (or, equivalently, the dispersion relation). This
constitutes an interesting route for inducing the transition be-
tween the Bose-Einstein condensed and normal phases, which
should be possible in experimentally realized optical lattice
systems. By suitably tuning the lattice parameters one induces
crossovers to physical situations characterized by fractional
effective dimensionalities [6]. This may lead in particular to
configurations where some of the effective dimensionalities
relevant for the system are at or below the lower critical
dimension dl , while others are above. This yields certain fea-
tures of the phase diagram (in particular the crossover scales)
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not obvious and presumably sometimes hard to access within
numerical approaches. Unlike the case where the transition is
tuned by temperature or density, the proposed setup allows for
realizing a rich spectrum of universality classes.

Due to the mean-field character of the studied system, the
present analysis may be carried out exactly. Nonetheless, we
argue that many of the studied features are not necessarily
restricted to mean-field models and could also be found in
systems characterized by realistic interactions. We believe the
analyzed setup might be conceivable in future experiments in
optical lattices, to which our results might apply both on the
qualitative and the quantitative level.

The second, separate issue of the present paper concerns
the thermodynamic Casimir effect [7–11] in anisotropic Bose
systems, where the anisotropy is inherited from the lattice. As
was indicated in a relatively recent work on the O(N ) models
in the vicinity of the Lifshitz point [12], strong anisotropy,
manifested by nontrivial scaling of two correlation lengths,
leads to the remarkable effect of modifying the power law
governing the decay of the Casimir force. In a standard
situation the Casimir decay exponent ζ0 is fully determined
by the system dimensionality d and the magnitude of the
Casimir interaction is controlled by a universal scaling func-
tion, which, strictly at the transition, takes the value of the
critical Casimir amplitude. However, according to the predic-
tion of Ref. [12], in strongly anisotropic systems, the decay
exponent is not completely determined by d and depends
inter alia on the anisotropy exponent θA. This is interesting,
because, by dimensional analysis, the scaling function must
then contain a dimensionful factor, which may originate only
from microscopic parameters, thus restricting the universal
nature of the scaling function. As it turns out, the asymptotic
expression for the Casimir energy (at or below the critical
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temperature Tc for condensation) indeed contains at least
one length scale in addition to the system extension D and
the scaling function is universal only after the appropriate
dimensionful (nonuniversal) coefficient is correctly identified
and factored out.

An equally remarkable result of Ref. [12] states that for
certain orientations of the system relative to the confining
walls the Casimir force is repulsive even for the periodic
boundary conditions. We confirm this picture within the
present exact study of the imperfect Bose gas. There exist
exact statements [13,14], usually formulated in the context of
the electrodynamic Casimir effect, concerning the attractive
nature of the Casimir force with (inter alia) periodic bound-
ary conditions. The corresponding proofs, however, use the
specific form of the inverse propagator (which is quadratic in
momentum) and do not carry over to the situations analyzed
here.

If the temperature is fixed above Tc, the Casimir force is ex-
ponentially suppressed at distances larger than the correlation
length. We find, however, that its typically attractive character
may be significantly modified by varying the orientation of the
confining walls. The Casimir force then shows damped oscil-
latory behavior and its actual sign depends on the distance D
between the confining walls. The obtained behavior should
be of relevance for the entire universality class of anisotropic
O(N )-symmetric models in the limit N → ∞.

The outline of the paper is as follows. In Sec. II we give a
summary of our results, distilling the conclusions, which (by
virtue of universality) should be independent of the specific
microscopic realization. In the following part of the paper
(Secs. III–V) we present a study of the problem employing
a concrete microscopic model. In Sec. III we introduce the
imperfect Bose gas on an anisotropic lattice. Its bulk proper-
ties in the relevant regime of low temperatures are reviewed
with particular focus on the effects caused by anisotropies. In
Sec. IV we present our results on the dimensional crossovers
with emphasis on the possibility of tuning the system contin-
uously to a state characterized by the effective dimensionality
at or below the lower critical dimension dl (Sec. IV B). We
give arguments suggesting that the results of this section
are not necessarily restricted to mean-field models and may
apply to a broad class of systems characterized by realistic
microscopic interactions. Section V is independent of Sec. IV.
Here we present our derivation of the expression for the
Casimir energy and extract its asymptotic behavior for large
separations between the confining walls. We compute and
discuss the scaling function for the Casimir energy. The entire
paper is carried out by means of an exact analysis. Section VI
contains a summary and outlook.

II. STATEMENT OF THE PROBLEM AND KEY RESULTS

A canonical equilibrium many-body problem involves a
microscopic Hamiltonian Ĥ comprising a kinetic term and
interaction

Ĥ = Ĥkin + V̂ , (1)

where, typically, Ĥkin is a one-body operator characterized by
a dispersion relation εk, which is quadratic in momentum k for
|k| small. In the vicinity of a continuous phase transition cer-

tain aspects of the system are universal (i.e., sensitive only to
crude characteristics of Ĥ ). They, however, do depend on the
asymptotic behavior of εk at vanishing |k|, hereafter denoted
as ε̃k. In a lattice system it is possible to engineer the hopping
amplitudes so that the dispersion decays more quickly (for
example, as |k|4) if k is chosen along a particular direction.
In general, the asymptotic expression for the dispersion (at |k|
small) may be written as

ε̃k =
d∑

i=1

ti|ki|αi , ti, αi > 0. (2)

For the specific case of the hypercubic lattice, the exponents
αi > 0 are natural even numbers. The critical properties then
depend on the set {αi}|di=1, which determines an effective
dimensionality deff of the system. The upper and lower critical
dimension of the anisotropic system as well as the critical
indices at Bose-Einstein condensation are then the same as
those corresponding to the isotropic model in dimensionality
deff. We believe that this equivalence (demonstrated for a
specific microscopic model) holds true for the O(N → ∞)
universality class, but not beyond. The situation is different for
the universal asymptotic shape of the critical line in the phase
diagram in the limit of low temperatures (i.e., approaching
the quantum critical point) described by the shift exponent
ψ . Concerning this aspect we argue that the above-mentioned
correspondence may possibly be extended to the entire family
of universality classes described by the O(N ) models in d
dimensions.

By extending the dispersion of Eq. (2) accounting for
the subleading terms and manipulating the hopping param-
eters, one may drive the system across physical situations
characterized by different effective dimensionalities. We have
performed a detailed analysis of this phenomenon in Sec. IV.
Even though the calculation is carried within an exactly sol-
uble mean-field model, we argue that the key aspects related
to the Tc phase boundary would be the same for systems with
realistic short-ranged interactions.

A separate problem addressed in Sec. V concerns the
impact of anisotropies inherited from the lattice on the ther-
modynamic Casimir effect. Our calculation is again carried
out within the framework of the imperfect Bose gas model;
however, by virtue of universality, the results should be of
relevance to the entire O(N → ∞) universality class in d
dimensions with periodic boundary conditions. Here we focus
on a hypercubic lattice (with lattice constant A) characterized
by the dispersion with asymptotics given by

ε̃k =
d−m∑
i=1

t0(kiA)2 +
d∑

i=d−m+1

t (kiA)4, (3)

i.e., with a quartic dependence on momentum along m (1 �
m � d) directions (hereafter referred to as “special direc-
tions”), and a quadratic form in the remaining d − m direc-
tions (hereafter referred to as “normal directions”). Some of
our results may be compared to the study of Ref. [12], which
rested upon the framework of the classical field-theoretic
approach built with the vicinity of the Lifshitz point in mind.
An important prediction of that study concerns the decay
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exponent for the Casimir energy and yields

ζm = d − m

θA
+ m − 1, (4)

for the case where the planar confining walls are perpendicular
to one of the special directions, and

ζ ′
m = d − m(1 − θA) − 1 (5)

for the case of confining walls perpendicular to one of the
normal directions. The exponent ζm (or ζ ′

m) replaces the stan-
dard value ζ0 = d − 1 of the Casimir energy decay exponent.
Reference [12] also makes a statement concerning the sign of
the Casimir interaction predicting the possibility of obtaining
a repulsive force. Our results, obtained from an exact calcula-
tion departing from a microscopic model, are fully in line with
Eqs. (4) and (5). In the low-temperature phase, the obtained
force is repulsive if the walls are perpendicular to one of the
special directions, and attractive otherwise. We extracted the
corresponding scaling functions for the Casimir energy, which
are universal only after factoring out a dimensionful (model-
specific) quantity. These scaling functions should characterize
the entire O(N → ∞) universality class with periodic bound-
ary conditions.

In the high-temperature phase the correlation lengths are
finite and the Casimir energy is exponentially suppressed at
large distances D. The character of its decay as function of
D turns out to depend on the orientation of the walls. For a
configuration with walls perpendicular to one of the special
directions, the interaction is characterized by (damped) oscil-
lations, so that its sign depends on the distance. In contrast,
if the walls are perpendicular to one of the normal directions,
the decay is monotonous and the force is always attractive.
This feature is a reflection of the properties of the pair-
correlation function in the high-temperature phase and should
not be influenced by the type of symmetry breaking [whether
O(N → ∞) or O(2)].

The above section summarizes the scope of the paper and
outlines the key conclusions. The following part (Secs. III–V)
constitutes an analysis carried our within the framework of a
lattice variant of the imperfect (mean-field) Bose gas.

III. MODEL AND ITS BULK SOLUTION

We consider bosons on a lattice at a fixed temperature T ,
with chemical potential μ, and contained within the volume
V = Ld . The system is governed by the Hamiltonian

Ĥ =
∑

k

εkn̂k + a

2V
N̂2. (6)

The particles are assumed spinless for simplicity, and we
impose periodic boundary conditions. The dispersion relation
εk is controlled by the optical lattice parameters and we
will specify to a hypercubic lattice later in the calculation.
The wave vectors k are contained in the first Brillouin zone.
The physical content of the repulsive mean-field interaction
term V̂MF = a

2V N̂2 (a > 0) is best understood by noting that it
arises from the long-range repulsive part v(r) of a two-particle
interaction potential upon performing the Kac scaling limit
limγ→0 γ dv(γ r), i.e., for vanishing interaction strength and
diverging range. The presence of the 1/V factor in V̂MF assures

extensivity of the system. The continuum version of the model
in the bulk was studied in Refs. [15–18]. The finite-size
effects were addressed in Refs. [19–22]. The setup involving a
harmonic trap was considered in Ref. [23]. Before proceeding,
we invoke results of high relevance to the present paper: as
was established in Ref. [20], the Bose-Einstein condensation
in the (isotropic) imperfect Bose gas is controlled by the
same critical exponents as the spherical model, which in
turn belongs to the bulk universality class of the O(N → ∞)
model. However, the scaling function for the excess surface
free energy obtained in Ref. [20] turned out to differ from its
counterpart in the spherical model [24] by a global factor of 2.
This issue was further analyzed in Ref. [21], which established
an equivalence between the isotropic imperfect Bose gas
and the O(2N ) model for N → ∞ providing a resolution
of the puzzle. The key features of the phase diagram and
correlation functions of the imperfect Bose gas in presence
of anisotropies were addressed in Ref. [6]. The following part
of the present section is a brief summary of some aspects of
that study and Sec. IV constitutes its extension accounting
for the interplay between the different terms of εk giving rise
to the dimensional crossovers. We begin with the expression
for the grand canonical partition function [6,19]:

	(μ,V, T ) = −i exp

(
βV

2a
μ2

)√
V

2πβa

×
∫ βα+i∞

βα−i∞
ds exp[−V ϕ(s)], (7)

where α < 0 is arbitrary, β−1 = kBT , and

ϕ(s) = 1

βa

(
− s2

2
+ sβμ

)
− 1

V
ln	0

(
s

β
, T

)
. (8)

The quantity 	0( s
β
, T ) is the grand canonical partition func-

tion of the noninteracting Bose gas [25] evaluated at chemical
potential μ = s

β
and temperature T . The presence of the

volume factor in the term exp[−V ϕ(s)] in Eq. (7) implies
that the saddle-point treatment of Eq. (7) becomes exact in the
thermodynamic limit. The saddle-point equation ϕ′(s = s0) =
0 yields

−s0
1

aβ
+ μ

a
= 1

V

∞∑
n=1

ens0
∑
k �=0

e−nβεk + 1

V

es0

1 − es0
. (9)

It is crucial for exploiting the thermodynamics of the system
and the whole analysis to follow (see Ref. [19] for detailed ex-
planations in the isotropic case). As demonstrated in Ref. [6],
the thermodynamic properties of the system in the vicinity
of the critical temperature (and for T low enough) are fully
determined by the asymptotic form of the dispersion relation
εk at |k| small. The system displays a line of second-order
phase transitions Tc(μ) down to Tc(μ → 0) → 0.

Considering the hypercubic lattice as a specific example,
we take

εk =
∑

R

2 tR [1 − cos(k · R)], (10)

where R runs through the Bravais lattice. In a typical situation,
expansion around k = 0 leads to the following asymptotic
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form:

εk → ε̃k =
d∑

i=1

ci(kiA)2, (11)

where ci are numerical coefficients, and A denotes the lattice
constant. From the point of view of universal properties, the
behavior of the system characterized by the dispersion of
Eq. (11) is identical to that of the continuum imperfect Bose
gas. By tuning the hopping parameters it is, however, possible
to cancel one or more of the coefficients ci, in which case the
corresponding leading-order term in the ith direction becomes
quartic (or even higher order). Specific examples of such a
tuning procedure are given in Ref. [6]. In a general situation,
the asymptotic form of the dispersion may be written in the
form given by Eq. (2).

The thermodynamics and correlations of the system char-
acterized by the dispersion of Eq. (2) were thoroughly studied
in Ref. [6], which pointed at the affinity to the isotropic system
in an effective dimensionality

deff = 2

ψ
, (12)

where
1

ψ
= 1

α1
+ · · · + 1

αd
. (13)

In particular, the system is above its lower critical dimen-
sion (and therefore hosts a Bose-Einstein condensed phase
in its phase diagram at T > 0) if 1

ψ
> 1. The upper critical

dimension is, on the other hand, determined by the condition
1
ψ

= 2. We also remark [6] that the asymptotic shape of the
critical line in the phase diagram is given by the universal
exponent 1

ψ
so that μc(T ) ∼ T

1
ψ [for the continuum case one

has μc(T ) ∼ T d/2]. We point out that overall the role played
in the continuum case by the spatial dimensionality d is for the
optical lattice taken over by the parameter 2

ψ
. This may in turn

be experimentally tuned, leading to crossovers between differ-
ent effective dimensionalities involving also fractional values.
The analysis of such crossover effects requires, however,
going beyond the asymptotic form of εk given by Eq. (2) and
accounting for the next-to-leading contributions. We present
such an extension below.

IV. DIMENSIONAL CROSSOVER

In the most standard setup, the dimensional crossover is
realized by confining the system in one or more directions
and manipulating the thermodynamic parameters so that the
characteristic length scale becomes larger (or smaller) than
the confining parameter (see, e.g., Refs. [26–30]). Here we an-
alyze a natural alternative avenue, already outlined in Sec. III,
where the dimensional crossover between distinct effective
dimensionalities is tuned by manipulating the hopping pa-
rameters. To this aim we now extend the expansion of the
dispersion given by Eq. (2) and consider

ε̃k = t0(k1A)2 + t (k2A)2m + τ (k3A)2 + τ ′(k3A)4, (14)

where t0, t, τ, τ ′ > 0. This allows us to analyze different
physical situations depending, in particular, on the value of

m. On the other hand, the fixed signs of the kinetic couplings
restrict to uniform ordered phases, ruling out the modulated
states related to the Lifshitz points [31]. For the time being we
specified to d = 3. We will restore the generality of d in the
discussion of the Casimir effect (Sec. V).

With ε̃k given above, the saddle-point equation may be
written as

−s0
1

aβ
+ μ

a
= 1

A3

�
(
1 + 1

2m

)
23/2 π5/2

1

β1+ 1
2m

√
t0 τ t1/m

×
∞∑

n=1

ens0

n1+ 1
2m

f (nθ ) + 1

V

es0

1 − es0
, (15)

where

f (x) = √
xexK1/4(x), θ = βτ 2

8τ ′ , (16)

and Kα (x) is the Bessel function. As we show below, the
dimensionless parameter θ serves as the scaling variable
controlling the dimensional crossover. Note that it may
be varied between zero and infinity by manipulating either
the hopping parameters or temperature. The function f (x) is
monotonously increasing and bounded. Its asymptotic behav-
ior is given by

f (x)
x→0+−−−→ �(1/4)x1/4

23/4
, f (x)

x→∞−−−→
√

π

2
. (17)

The expression for the critical line is obtained [19] by drop-
ping the last term in Eq. (15) and putting s0 = 0. It reads

μc(T ) = a

A3

�
(
1 + 1

2m

)
23/2 π5/2

1

β1+ 1
2m

√
t0 τ t1/m

∞∑
n=1

1

n1+ 1
2m

f (nθ ).

(18)

The phase hosting the condensate is stable for μ > μc(T ). We
now analyze the properties of μc(T ) focusing on two very
different cases. In the first considered example the crossover
occurs between two effective dimensionalities both located
above the lower critical dimension dl . In the second case, the
system is tuned to the effective dimensionality exactly at dl ,
and the condensate is marginally depleted from the system.
We subsequently discuss the general situation.

A. Case ε̃k = t0(k1A)2 + t0(k2A)2 + τ(k3A)2 + τ ′(k3A)4

Here we consider m = 1 and analyze the crossover in the
effective dimensionality realized by changing θ . For example,
we may vary the parameter τ > 0 towards zero, gradually
giving way to the subdominant term proportional to k4

3 in
the dispersion along the third direction. The relevant values
of 1/ψ are 1/ψ = 3/2 (for τ > 0) and 1/ψ = 5/4 (for τ =
0). The series in Eq. (18) is convergent for any θ > 0. At
fixed τ and τ ′ the variable θ may be tuned between the
asymptotic regimes θ 
 1 and θ � 1 by varying temperature
T . Alternatively, at given T (and τ ′), one may use τ as the
control parameter. In the asymptotic regime θ 
 1 we may
replace f (nθ ) by its limiting form for large arguments. This
leads to

μ∞
c (T ) ≈ 1

8π3/2
ζ

(
3

2

)
a

A3

1

t0
√

τ
(kBT )3/2, (19)
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FIG. 1. The critical line as computed from Eq. (18) with m = 1.
The plot parameters are t0 = t = 1, τ = 0.2, τ ′ = 2.43. The plotted
quantities are scaled by η = a

A3 . One finds the crossover between the
scaling behavior with ψ = 2/3 (low T ) and ψ = 4/5 (high T ). The
crossover temperature precisely agrees with Eq. (21) (red cross).
The inset presents the critical line in linear scale for τ = 0 (and
therefore θ = 0) and τ = 1, where the scaling with only one value
of ψ (4/5 or 2/3) occurs in the entire temperature range.

where ζ (z) = ∑∞
n=1

1
nz (with z > 1) is the Riemann zeta func-

tion. The expression of Eq. (19) coincides with the formula
for Tc derived in Ref. [6].

In the opposite limit θ � 1 the series is dominated by
terms with nθ � 1 and one may use the asymptotic form
of the function f for small arguments. This leads to the
expression

μ0
c (T ) ≈ �(1/4)

16π2
ζ

(
5

4

)
a

A3

1

t0
4
√

τ ′ (kBT )5/4, (20)

which also agrees with the predictions of Ref. [6]. Estimating
the crossover temperature Tcross by the condition μ∞

c (Tcross) =
μ0

c (Tcross), we find

kBTcross = τ 2

τ ′

(
�(1/4)

2
√

π

ζ
(

5
4

)
ζ
(

3
2

))4

. (21)

The emergent picture is illustrated in Fig. 1. While the
asymptotic scaling behavior is clear from the earlier studies
of Ref. [6], the identification of the scaling variable θ and,
in consequence, also the crossover scale is possible only by
considering the extended dispersion of Eq. (14). The entire
picture becomes less obvious also from the point of view
of the asymptotic scaling of Tc when one of the effective
dimensionalities is at the lower critical dimension dl for
condensation. We analyze this situation below in Sec. IV B.

B. Case ε̃k = t0(k1A)2 + t (k2A)4 + τ(k3A)2 + τ ′(k3A)4

The present case of m = 2 in Eq. (18) is special in that the
value of 1/ψ obtained for τ → 0 corresponds to the effective
lower critical dimension deff = dl = 2. The condensate is
therefore marginally unstable for τ → 0 at finite tempera-
tures. We consider the setup where τ is gradually switched
off and follow the way the condensate becomes expelled

from the phase diagram. The kinetic term is therefore used
as the control parameter tuning the system across the phase
transition.

The series in Eq. (18) is again convergent for any θ > 0.
For θ 
 1 we recover the expression given by Eq. (20) along
the line analogous to Sec. IV A. However, in contrast to the
case considered in Sec. IV A if the function f (x) is replaced
by its asymptotic form for small arguments, one obtains a
divergent expression (which is a reflection of the absence of
condensation for τ = 0).

We now describe a procedure to extract the asymptotic
behavior of the critical line at θ � 1. For this purpose we use
Eq. (17) and split the series in Eq. (18) as follows:

∞∑
n=1

1

n5/4
f (nθ ) ≈

N (θ )∑
n=1

1

n

�(1/4)θ1/4

23/4
+

∞∑
N (θ )+1

1

n5/4
f (nθ ).

(22)

The auxiliary parameter N (θ ) ≈ α̃/θ (with a numerical con-
stant α̃) should correspond to a value such that (at θ > 0 fixed)
the first term in Eq. (22) constitutes a valid approximation to
the entire series. The last term of Eq. (22) is bounded from
above by

∞∑
N (θ )+1

1

n5/4
f (nθ ) <

√
π

2

4
4
√

N (θ )
. (23)

The upper bound obviously vanishes for N (θ ) → ∞. The
first term on the right-hand side (RHS) of Eq. (22) may be
estimated using the Euler formula

N (θ )∑
n=1

1

n
≈ lnN (θ ) + γ + 1

2N (θ )
+ O

(
1

N (θ )2

)
(24)

with γ denoting the Euler-Mascheroni constant. Truncating
this expansion at the leading term and using Eq. (22), the
asymptotic form of Eq. (18) becomes

μ0
c (T ) ≈ �(1/4)2

32π5/2

a

A3

1√
t0 t1/4 4

√
τ ′ ln

(
1

θ

)
(kBT ). (25)

Note that the unspecified constant α̃ [relating θ and N (θ )]
as well as the constant γ influence only the subdominant
contribution to μ0

c (T ), which is also linear in T , but does
not involve the log-divergent coefficient ≈ ln( 1

θ
). The above

calculation reveals a somewhat subtle behavior of the critical
line Tc(μ). As we have shown, at fixed θ the dependence Tc(μ)
is linear for μ large and, at μ smaller, it crosses over to the
power-law behavior with the exponent ψ = 4/5. When the
parameter τ is then tuned towards zero (implying vanishing
θ ), the coefficient governing the high-μ (high-Tc) linear be-
havior vanishes logarithmically, thus suppressing the critical
temperature towards zero. This is accompanied by shifting
the scale corresponding to the onset of the power-law regime
towards zero chemical potentials. This picture clarifies the
mechanism leading to continuously depleting the condensate
from the system for τ → 0. The corresponding illustration is
presented in Fig. 2.

Concerning the situation with a value of m, where the
effective dimensionality deff is below dl for τ = 0, one may
show that the picture is similar to the one extracted above
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FIG. 2. The critical line as computed from Eq. (18) with m = 2
(left panel) and m = 3 (right panel). The plot parameters are t0 =
t = τ ′ = 1 and the plotted quantities are scaled by η = a

A3 . In the
former case one finds the crossover between the scaling behavior
with ψ = 4/5 (low T ) and the essentially linear behavior (high T ).
Upon tuning τ towards zero, the coefficient governing the high-T
behavior vanishes logarithmically and the scale of μ corresponding
to the onset of the behavior with ψ = 4/5 shifts towards zero. In
the latter case (m = 3) the linear coefficient of the Tc line vanishes
algebraically (see the main text).

for m = 2. The critical line is linear in the high-T regime
[Tc(μ) ≈ Ãμ] and crosses over to a power law with an expo-
nent ψ < 1 at T smaller. The role of m reveals itself in the way
the coefficient Ã governing this linear behavior vanishes for
τ → 0. Instead of the behavior Ã ∼ −1/ln(τ ) obtained above
for m = 2, one finds a power-law dependence Ã ∼ τ κ (m). For
m = 3 we obtain κ (3) = 1/6.

We finally point out an observation concerning the relation
to a general situation with short-ranged interaction potentials
and suggesting that the obtained picture may be valid also
for non-mean-field models. As we already remarked, the bulk
critical exponents controlling Bose-Einstein condensation in
the imperfect Bose gas are known to be the same as the
Berlin-Kac (spherical) model [32], which in turn corresponds
to the limit N → ∞ of the O(N )-symmetric models [33].
The renormalization-group studies of the quantum variants
of the O(N ) models (see, e.g., Refs. [34–41]) reveal that
the universal aspects of the Tc line (the shift exponent ψ

in particular) are insensitive to the value of N , but instead
are fully determined by the spatial dimensionality d and the
dynamical exponent z via the simple relation

ψ = z

d + z − 2
. (26)

For interacting bosons one has z = 2 and therefore ψ = 2/d ,
which fully agrees with the expression obtained for the im-
perfect Bose gas as a result of an exact analysis. The equiva-
lence holds also for the upper and lower critical dimensions
(also for cases with modified dispersions). It is natural to
conjecture that as far as the universal properties are concerned
the entire picture derived in this section remains unchanged
if one replaces the Kac-scaled interaction potential with a
(more realistic) short-ranged interaction (or, in other words,
the entire picture retains the independence on the value of N
also for the essential features of the crossover behavior). A

verification of this hypothesis requires further studies from the
renormalization-group point of view, which we leave to future
work.

V. CASIMIR ENERGY

We now move on to discuss the thermodynamic Casimir
effect in the system. We consider a general situation where
the d-dimensional system is enclosed in volume V = Ld−1D,
where L 
 D 
 lmic and lmic denotes all the microscopic
length scales present in the system. The quantity D measures
the system extension in the dth direction (which is a “special”
direction—compare Sec. II). We will separately consider the
situation with the confining walls perpendicular to k1 (“nor-
mal” direction) in Sec. V D. We analyze the case of periodic
boundary conditions. The dispersion displays ∼k4 behavior in
m < d directions, and the usual ∼k2 behavior in the remaining
d − m directions, and its asymptotics is given by Eq. (3).
Importantly, the dispersion parameters (t0 and t) are assumed
to be the same (i.e., independent of i) for each of the two
classes of spatial directions. Relaxing this symmetry may lead
to additional effects [42] not addressed here. We keep only the
dominant contributions in each of the directions, leaving the
crossover effects aside. We also introduce ε̃k1 = t0(k1A)2 and
ε̃kd = t (kd A)4. We are interested in the excess grand-canonical
free-energy density

ωs(D, μ, T ) = lim
L→∞

[
�(L, D, T, μ)

Ld−1
− Dωb(T, μ)

]
(27)

which is related to the Casimir force F (D, μ, T ) by
F (D, μ, T ) = − ∂ωs (D,μ,T )

∂D . The grand-canonical free energy
is given by �(L, D, T, μ) = −β−1 ln 	(T, L, D, μ) and the
bulk free-energy density ωb(T, μ) follows from ωb(T, μ) =
limL→∞ 1

Ld �(L, D = L, T, μ). Using Eq. (7), the excess con-
tribution to the grand potential can be written as

ωs(D, μ, T ) = lim
L→∞

β−1D[ϕ(s̄) − ϕb(s0)], (28)

where

ϕ(s̄) = − s̄2

2aβ
+ μs̄

a

− 1

V

⎡
⎣ ∑

k �=(0,kd )

∞∑
r=1

1

r
er(s̄−βε̃k ) −

∑
kd

ln
(
1 − es̄−βε̃kd

)⎤⎦,

(29)

s̄ represents the solution to the saddle-point equation ϕ′(s̄) =
0, s0 corresponds to s̄ in the bulk case (i.e., when D = L and
L → ∞), and ϕb(s) = limD→L ϕ(s). In essence, our present
goal amounts to solving the saddle-point equation at finite D
and evaluating Eq. (28).

We identify two distinct thermal length scales

λ1 = 2A
√

π
√

β t0 λ2 = A
π

�(5/4)
(β t )1/4, (30)

conveniently absorbing numerical factors. The scales λ1 and
λ2 are analogous to the thermal de Broglie length of the
isotropic continuum gas and correspond to normal and spe-
cial directions, respectively. We assume them to be large as
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compared to the lattice scale A. Note that λ1 and λ2 diverge
for T → 0. We will later assume that D/λ1 
 1, D/λ2 
 1.
This excludes considering the limit T → 0, which is beyond
the scope of the present paper.

A. Bulk limit

The bulk saddle-point equation (where D = L → ∞) can
be written as

−s0
1

aβ
+ μ

a
= 1

λd−m
1 λm

2

g 1
ψ

(es0 ) + 1

V

es0

1 − es0
(31)

with
1

ψ
= d

2
− m

4
(32)

and the Bose function gn(z) = ∑∞
k=1

zk

kn . We read off the
expression for the critical line

μc(T ) = a

λd−m
1 λm

2

ζ
( 1

ψ

)
(33)

recovering the previously studied behavior μc(T ) ∼ T 1/ψ . In-
troducing the dimensionless parameter measuring the distance
from the bulk critical line

ε = μ − μc

μc
(34)

and expanding the Bose function for |s0| � 1 according to

g 1
ψ

(es0 ) − ζ
( 1

ψ

)
≈

⎧⎪⎨
⎪⎩

�
(
1 − 1

ψ

)|s0|
1
ψ

−1
, 1 < 1

ψ
< 2

|s0|ln|s0|, 1
ψ

= 2

−ζ
(

1
ψ

− 1
)|s0|, 1

ψ
> 2

(35)

we may solve Eq. (31) for |ε| � 1 and obtain ϕb(s0). The
analysis of the bulk limit then proceeds along the line of
Refs. [6,20].

B. Saddle-point equation

We now analyze the situation where the system remains
finite in one of the directions so that L → ∞, but D (i.e.,
the system extension in the dth direction) is kept finite. The
saddle-point equation is first cast in the form

ζ
( 1

ψ

)(
− s̄

μcβ
+ ε

)
= −ζ

( 1

ψ

)
+ λ2

D

∞∑
r=1

ers̄

r
1
ψ

− 1
4

∑
kd

e−rβε̃kd

− λd−m
1 λm

2

V

∑
kd

1

1 − eβε̃kd −s̄ . (36)

The sum occurring in the second term on the RHS of the
equation can be transformed using the Poisson formula

∞∑
m=−∞

f (m) =
∞∑

n=−∞
f̂ (n), (37)

where f̂ (n) = ∫ ∞
−∞ dx e−i2πnx f (x). We obtain

∑
kd

e−rβε̃kd = D

2�(5/4)λ2r1/4

∞∑
n=−∞

φ
( πn

�(5/4)

D

λ2

1

r1/4

)
,

(38)

FIG. 3. The functions φ(x) and G(x); see the main text.

where

φ(k) =
∫ ∞

−∞
dx eikx e−x4

. (39)

The properties of the function φ(k) are crucial for the results
to follow. In particular limk→0 φ(k) = 2�(5/4), while the
asymptotic behavior at k large is described by [43]

φ(k) ∼ 27/6

√
π

3

1

k4/3
exp

(
− 3

16
21/3k4/3

)

× cos

(
33/221/3

16
k4/3 − π

6

)
(40)

so that it exhibits exponentially damped oscillations. This
gives rise to substantial differences as compared to the usual
case with quadratic ε̃kd , where the corresponding expression is
a monotonously decreasing Gaussian function. An illustrative
plot of φ(k) is given in Fig. 3 (left panel). We now consider
D 
 λ2 and replace the summation over r in Eq. (36) with
an integral in accord with the Euler-Maclaurin formula. We
introduce the following notation,

σ = π

�(5/4)

D

λ2
|s̄|1/4, Fκ (x) =

∫ ∞

0
d p

e−p

pκ
φ(x/p1/4),

(41)
and transform the saddle-point equation to the following form:

ζ
( 1

ψ

)(
− s̄

μcβ
+ ε

)
= g 1

ψ
(es̄) − ζ

( 1

ψ

)
+ �(5/4)

4
ψ

−5

π
4
ψ

−4

×
(λ2

D

) 4
ψ

−4
σ

4
ψ

−4
∞∑

n=1

F 1
ψ

(nσ )

− λd−m
1 λm

2

V

∑
kd

1

1 − eβε̃kd −s̄ . (42)

The function Fκ (x) is characterized by oscillatory behavior
inherited from φ(k). In the subsequent step we expand the
Bose function for small s̄ according to Eq. (35) and perform
the limit L → ∞. We also introduce the scaling variable x:

x =

⎧⎪⎨
⎪⎩

ε
(

D
λ2

) 4
ψ

−4
, 1 < 1

ψ
< 2

ε
(

D
λ2

)4
, 1

ψ
> 2,

(43)
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which is positive below bulk Tc and negative otherwise.
This allows us to write Eq. (42) as a transparent relation
between the variable x and σ = σ (x). As will turn out,

the dependence of the scaling function for the Casimir
energy on s̄ can be absorbed into σ . For 1 < 1

ψ
< 2 we

obtain

ζ
( 1

ψ

)
x =

(
�(5/4)

π

) 4
ψ

−4

σ
4
ψ

−4
[
�

(
1 − 1

ψ

)
+ 1

�(5/4)

∞∑
n=1

F 1
ψ

(nσ )

]
+ λd−m

1 λm
2

V

(
D

λ2

) 4
ψ

−4 ∑
kd

1

eβε̃kd −s̄ − 1
, (44)

while for 1
ψ

> 2 we find

ζ
( 1

ψ

)
x = −

(
�(5/4)

π

)4

σ 4

[
ζ ( 1

ψ
)

μcβ
+ ζ

( 1

ψ
− 1

)]
+ 1

�(5/4)

(
�(5/4)

π

) 4
ψ

−4(λ2

D

) 4
ψ

−8
σ

4
ψ

−4
∞∑

n=1

F 1
ψ

(nσ )

+ λd−m
1 λm

2

V

(
D

λ2

)4 ∑
kd

1

eβε̃kd −s̄ − 1
. (45)

In each of the cases, the dependence on x occurs only on the
left-hand side (LHS) of the equation, while the dependence on
σ occurs only on the corresponding RHS. Additionally, let us
notice that the last term with kd = 0 resembles the last term
of Eq. (9), which in turn, in the bulk limit, is proportional
to the condensate density [19]. We discuss the saddle-point
solution in the two cases separately. We leave aside the case
1
ψ

= 2, corresponding to the upper critical dimension where
logarithmic corrections arise [see Eq. (35)], but apart from
them the behavior of the scaling function is expected to be
very similar.

1. Case 1 < 1
ψ

< 2

Let us first concentrate on the low-T phase (x � 0). One
may show that the RHS of Eq. (44) as a function of σ is
unbounded from above for 1

ψ
� 5

4 . This follows from the
properties of the function Fκ (x). In such a situation for each
x � 0 one finds a unique σ (x) > 0. In consequence, the
corresponding value of |s̄| is controlled by D (i.e., vanishes for
D → ∞) and the last term of Eq. (44) vanishes for L → ∞.
The situation is more complex for 1

ψ
> 5

4 . In this case the
L-independent term on the RHS of Eq. (44) is bounded from
above by its value at σ → 0+, which in turn may be expressed

as 4
�(5/4) ( �(5/4)

π
)

4
ψ

−4
G( 1

ψ
)ζ ( 4

ψ
− 4), where we introduce

G(κ ) =
∫ ∞

0
dq q4κ−5 φ(q). (46)

The properties of the above function are important for the
analysis to follow. It is plotted in Fig. 3 (right panel) for
illustration. We note in particular that

Fκ (x) ≈ 4

x4κ−4
G(κ ) (47)

for x � 1 and κ > 1. The physical significance of the value
1
ψ

= 5
4 is clear upon noticing that it corresponds to the lower

critical dimension for condensation in a system with finite D
(i.e., after “excluding” the dth direction in which the system is
finite). One then finds a finite solution σ (x) > 0 for x fulfilling

the condition

0 � x � xcr

(
1

ψ

)
= 1

ζ ( 1
ψ

)

4

�(5/4)

(
�(5/4)

π

) 4
ψ

−4

× G
( 1

ψ

)
ζ
( 4

ψ
− 4

)
. (48)

In the opposite situation (for x > xcr) the last term in Eq. (44)
gives a finite contribution in the thermodynamic limit. This
reflects the phase transition taking place (at finite D) for

μ̄c(T ) = μc(T )

[
xcr

( 1

ψ

)(
λ2

D

) 4
ψ

−4

+ 1

]
. (49)

We then obtain σ (x) = 0 for x > xcr. Inspection of the
function G( 1

ψ
) (see Fig. 3) reveals, however, that G( 1

ψ
) has

a zero at 1
ψ

= 7
4 . For 1

ψ
> 7

4 we obtain σ (x) = 0 for all

x � 0 in the limit L → ∞. This behavior persists for 1
ψ

> 2,
as discussed in the next subsection. Note, however, that in
the “uniaxial” case m = 1 the value 1

ψ
= 7

4 corresponds to

the physical dimensionality d = 4, while, for m = 2, 1
ψ

= 7
4

implies an even higher value d = 9
2 . Obviously an experimen-

tally meaningful value of 1
ψ

is 5
4 .

As explained above, for x � 0 the behavior of σ is con-
trolled by either D or the system volume. The situation is
different for x < 0, where it is governed by the distance from
the phase transition. Indeed, fixing x < 0 and passing to the
limit L → ∞, D → ∞, we obtain a finite solution for σ (x),
which for large |x| (where we may replace s̄ with bulk saddle-
point s0 < 0) is given by the relation

ζ

(
1

ψ

)
x =

(
�(5/4)

π

) 4
ψ

−4

σ
4
ψ

−4
�

(
1 − 1

ψ

)
. (50)

2. Case 1
ψ

> 2

For 1
ψ

> 2 the saddle-point equation [Eq. (45)] has a finite
solution

σ (x) = π

�(5/4)

( |x|
1

μcβ
+ ζ

(
1
ψ

− 1
)
/ζ

(
1
ψ

))1/4

(51)
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for x � 0 in the limit L → ∞, D → ∞. For x > 0 inspection
of the signs of the different terms in Eq. (45) leads directly to
the conclusion that this equation is never fulfilled for σ (x) >

0. In consequence, the last term in Eq. (45) must give a finite
contribution, which implies σ (x) = 0 for x > 0 and L → ∞.

C. Excess free energy

We proceed to determine the excess grand canonical free
energy given by Eq. (27). We again analyze the two cases
distinguished by the value of 1

ψ
.

1. Case 1 < 1
ψ

< 2

We treat the expression for ϕ(s̄) given in Eq. (29) with
a line of steps analogous to those applied above for the
saddle-point equation. We employ the Poisson formula to the
sum over kd , replace the r summation with an integral, and
finally perform the expansion of the Bose function around
s̄ = 0. It is here necessary to keep the two leading s̄-dependent
contributions, so that

g 1
ψ

+1(es̄) − ζ
( 1

ψ
+ 1

)
= �

(
− 1

ψ

)
|s̄| 1

ψ − ζ
( 1

ψ

)
|s̄| + . . . .

(52)

As a result, in the limit D 
 λ2 and for x � 0 (denoted by
superscript <), we obtain the following expression for ω<

s :

ω<
s

kBT
= −χd−m �<(x)

D
4
ψ

−1
= −χd−m �<(x)

D2d−m−1
, (53)

where

χ = λ2
2

λ1
= A

π3/2

2�(5/4)2
(t/t0)1/2 (54)

is a temperature-independent microscopic length, while

�<(x) =
(

�(5/4)

π

)4

ζ
( 1

ψ

)
xσ (x)4

+
(

�(5/4)

π

) 4
ψ

σ (x)
4
ψ

[
�

(
− 1

ψ

)

+ 1

�(5/4)

∞∑
n=1

F 1
ψ

+1[nσ (x)]

]
(55)

represents the scaling function. The quantity σ (x) must be
determined from the saddle-point equation (44) as described
in the previous sections. For 1

ψ
> 5

4 and x > xcr the scaling
function is independent of x and reads

�<(x) = 4

�(5/4)

(�(5/4)

π

) 4
ψ

G
( 1

ψ
+ 1

)
ζ
( 4

ψ

)
. (56)

We immediately note that the scaling function is constant for
x > xcr and monotonous for x < xcr. This implies that it is not
an analytical function at x = xcr [we do not exclude, however,
the possibility that it is smooth (i.e., from the C∞ class)]. The
corresponding plot is given in Fig. 4 for the physically most
relevant case 1

ψ
= 5

4 .
A few interesting facts are clear from Eq. (53). The power

law governing the decay of the excess free energy is modified
with respect to the standard case: the exponent ζm = 2d −

FIG. 4. The scaling function �<(x) in the low-temperature phase
(x � 0) and 1

ψ
= 5

4 . The asymptotic values at x = 0 and x →
∞ correspond to Casimir amplitudes at the transition and in the
low-temperature phase, respectively. The negative sign of �<(x)
indicates repulsive character of the Casimir force. The difference
between the values of �<(0) and �<(∞) is tiny. The inset demon-
strates the scaling function �>(x) for |x| sufficiently large so that s̄
may be replaced with its bulk limit. The damped oscillatory behavior
reflects the structure of the density-density correlation function [6]
and indicates that the sign of the exponentially suppressed interaction
depends on the distance D.

m − 1 replaces the usual value ζ0 = d − 1. Such an effect is
accompanied by the appearance of a nonuniversal (dimension-
ful) scale factor χd−m multiplying the universal scaling func-
tion �<(x). The result obtained for the exponent ζm agrees
with the general prediction of Ref. [12], which related ζm to
the anisotropy exponent θA via Eq. (4). The detailed study of
the correlation function of the anisotropic imperfect Bose gas
(see Ref. [6]) shows that θA = 1/2, which after plugging into
Eq. (4) yields ζm = 2d − m − 1 in agreement with Eq. (53).
The profile of the scaling function �<(x) obtained by solving
Eq. (44) for σ (x) and plugging into Eq. (55) is plotted in Fig. 4
for the experimentally meaningful case 1

ψ
= 5

4 and x � 0.
The negative sign of �<(x) indicates repulsive character of
the interaction in the low-temperature phase, in clear contrast
to the usual situation with periodic boundary conditions. The
asymptotic values �<(0) and �<(∞) correspond to Casimir
amplitudes at the transition and in the low-temperature phase,
respectively. The difference between these two values is rather
tiny.

We now discuss the Casimir-like interaction in the high-
temperature phase (x < 0, denoted by superscript >), where
the correlation lengths are finite and therefore the effective
force is expected to decay exponentially for D 
 ξ⊥,‖. In
this case we obtain an analytical expression for the scaling
function in the regime |x| 
 1, where we may replace s̄ with
its bulk value s0. The asymptotic behavior of ω>

s for |x| 
 1
(and x < 0) is obtained as

ω>
s

kBT
= −χd−m �>(x)

D
4
ψ

−1
= −χd−m �>(x)

D2d−m−1
, (57)
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FIG. 5. The dependence of the Casimir amplitudes �<(x = 0)
and �<(x → ∞) on 1

ψ
. The difference between the two quantities is

nonzero up to 1
ψ

= 7
4 (compare Fig. 4), but is not visible in the plot

scale. Negative value of �<(x = 0) indicates a repulsive interaction.

where

�>(x) =
(

�(5/4)

π

) 4
ψ

σ (x)
4
ψ

∞∑
n=1

F 1
ψ

+1[nσ (x)]. (58)

The scaling function �>(x) displays exponentially damped
oscillations deriving from the structure of the function φ(k)

[Eq. (39)]. Its profile for 1
ψ

= 5
4 is exhibited in the inset of

Fig. 4.
As concerns the dependence of the scaling function [�<(x)

first of all] on dimensionality 1
ψ

, it is clear from Eq. (56) that
its sign and magnitude are controlled by the function G, the
sign of which may change depending on the argument. In
fact, �<(x) features a complex and interesting structure as
a function of 1

ψ
resulting in a change of sign of the scaling

function (and in consequence also the Casimir force). This
is demonstrated in Fig. 5, where we plot �<(0) and �<(∞)
as a function of 1

ψ
. Note, however, that for the physically

most meaningful cases (such as 1
ψ

= 5
4 —compare Sec. III)

the force is repulsive.

2. Case 1
ψ

> 2

The analysis of this case proceeds along the same line as
for 1 < 1

ψ
< 2, but significantly simplifies due to vanishing of

σ (x) obtained from the solution of the saddle-point equation.
For fixed 1

ψ
and x � 0 one obtains a constant scaling function

of value given by Eq. (56). The expression for �>(x) given in
Eq. (58) remains valid also for the present case. The Casimir
amplitude is plotted in Fig. 5 together with the results obtained
for 1

ψ
< 2.

3. Casimir force

Finally, the expression for the Casimir force is obtained via
differentiation of the excess free energy. We obtain

F (D, μ, T )

kBT
= −χd−m �̄(x)

D2d−m
(59)

with

�̄(x) =
{

[(2d − m − 1) − (2d − m − 4)x∂x]�(x), 1 < 1
ψ

< 2
[(2d − m − 1) − 4x∂x]�(x), 1

ψ
> 2.

(60)

D. Walls perpendicular to k1

We now analyze the complementary situation where the
confining walls are oriented perpendicular to k1 (i.e., one of
the normal directions) and, as we show below, the scaling
function for the Casimir energy has completely different prop-
erties as compared to the setup discussed above. In essence
the computation proceeds along the same line, the difference
being that the roles of k1 and kd are interchanged and Eq. (38)

becomes replaced by

∑
k1

e−rβε̃k1 = D

λ1
√

r
+ 2

D

λ1
√

r

∞∑
n=1

exp

(
−π

D2n2

λ2
1r

)
, (61)

where we again used the Poisson summation formula. The
saddle-point equation is then written as

ζ
( 1

ψ

)(
− s̄

μcβ
+ ε

)
= g 1

ψ
(es̄) − ζ

( 1

ψ

)
+ 2

∞∑
r=1

ers̄

r
1
ψ

∞∑
n=1

exp
(
−π

D2n2

λ2
1r

)
− λd−m

1 λm
2

V

∑
k1

1

1 − eβε̃k1 −s̄ . (62)

For D 
 λ1 the r summation can now be transformed into an integral by using the Euler-Maclaurin formula. The resulting
integral is expressible via the Bessel function and the saddle-point equation takes the form

ζ
( 1

ψ

)(
− s̄

μcβ
+ ε

)
= g 1

ψ
(es̄) − ζ

( 1

ψ

)
+ 23− 1

ψ

π
1
ψ

−1

(
λ1

D

) 2
ψ

−2 ∞∑
n=1

(σ ′

n

) 1
ψ

−1
K 1

ψ
−1(nσ ′) − λd−m

1 λm
2

V

∑
k1

1

1 − eβε̃k1 −s̄ , (63)

013324-10



DIMENSIONAL CROSSOVERS AND CASIMIR FORCES FOR … PHYSICAL REVIEW A 102, 013324 (2020)

where

σ ′ = 2
√

π
D

λ1
|s̄|1/2. (64)

Expanding the Bose function for |s̄| � 1 we again encounter the different cases depending on the value of 1
ψ

. Introducing

x′ =

⎧⎪⎨
⎪⎩

ε
(

D
λ1

) 2
ψ

−2
, 1 < 1

ψ
< 2

ε
(

D
λ1

)2
, 1

ψ
> 2

(65)

the saddle-point equation is written as

ζ
( 1

ψ

)
x′π

1
ψ

−1 =
�

(
1 − 1

ψ

)
2

2
ψ

−2
σ

′ 2
ψ

−2 + 23− 1
ψ σ

′ 1
ψ

−1
∞∑

n=1

(n−1)
1
ψ

−1K 1
ψ

−1(nσ ′) + π
1
ψ

−1
( D

λ1

) 2
ψ

−2 λd−m
1 λm

2

V

∑
k1

1

eβε̃k1 −s̄ − 1
(66)

for 1 < 1
ψ

< 2 and

ζ
( 1

ψ

)
x′ = − 1

4π
σ ′2

[
ζ
( 1

ψ
− 1

)
+ 1

μcβ

]
+ 23− 1

ψ

π
1
ψ

−1

(λ1

D

) 2
ψ

−4
σ

′ 1
ψ

−1
∞∑

n=1

(n−1)
1
ψ

−1K 1
ψ

−1(nσ ′) +
( D

λ1

)2 λd−m
1 λm

2

V

∑
k1

1

eβε̃k1 −s̄ − 1

(67)

for 1
ψ

> 2, providing a relation between the quantities x′ and σ ′, which is necessary to evaluate the excess free energy via

Eq. (27). For 1
ψ

= 2 again logarithmic corrections appear. Focusing now on the case 1 < 1
ψ

< 2 we note that the last term on the

RHS of Eq. (66) can be neglected as long as σ ′ [which solves Eq. (66)] is finite. For 1
ψ

> 3
2 the RHS is in such a case bounded

from above by

lim
σ ′→0

23− 1
ψ σ

′ 1
ψ

−1
∞∑

n=1

n1− 1
ψ K 1

ψ
−1(nσ ′) = 2�

(
1

ψ
− 1

)
ζ

(
2

ψ
− 2

)
. (68)

This implies that for x′ > x′
cr > 0, where

x′
cr

( 1

ψ

)
= 2

ζ ( 1
ψ

)π
1
ψ

−1
�

(
1

ψ
− 1

)
ζ

(
2

ψ
− 2

)
, (69)

σ ′ vanishes. In consequence, the last term in Eq. (66) cannot be neglected. As a result, one obtains σ ′ = 0 for x′ > x′
cr(

1
ψ

) (and
3
2 < 1

ψ
< 2). The scaling function is then constant (see below). For 1

ψ
> 2 one obtains σ ′ = 0 for any value of x′ > 0, whereas

for x′ � 0 we find

σ ′(x′) =
(

4π |x′|
1

μcβ
+ ζ

(
1
ψ

− 1
)
/ζ

(
1
ψ

))1/2

. (70)

As concerns the excess free energy, for the present case one finds

ϕ(s̄) = − s̄2

2aβ
− |s̄|μ

a
− 1

λd−m
1 λm

2

g 1
ψ

+1(es̄) − 1

λd−m
1 λm

2

22− 1
ψ

π
1
ψ

(λ1

D

) 2
ψ

σ
′ 1
ψ

∞∑
n=1

(n−1)
1
ψ K 1

ψ
(nσ ′) + 1

V

∑
k1

ln
(
1 − es̄−βε̃k1

)
, (71)

and the last term always gives a vanishing contribution for L → ∞. For x′ � 0 Eq. (27) can now be cast in the form

ω<
s

kBT
= − 1

χm/2

�′<(x′)

D
2
ψ

−1
= − 1

χm/2

�′<(x′)
Dd−m/2−1

(72)

where the scaling function is given by

�′<(x′) =
ζ
(

1
ψ

)
4π

σ ′(x′)2 x′ +
�

( − 1
ψ

)
2

2
ψ π

1
ψ

σ ′(x′)
2
ψ + 22− 1

ψ

π
1
ψ

σ ′(x′)
1
ψ

∞∑
n=1

(n−1)
1
ψ K 1

ψ
[nσ ′(x′)] (73)

and the relation σ ′(x′) is determined from the solution of the saddle-point equation. For σ ′ = 0 the scaling function is constant
and takes the value 2ζ ( 2

ψ
)�( 1

ψ
)/π

1
ψ . In the high-temperature phase (x < 0) we obtain the following expression for the scaling
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function for large |x|:

�′>(x′) = 22− 1
ψ

π
1
ψ

σ ′(x′)
1
ψ

∞∑
n=1

(n−1)
1
ψ K 1

ψ
[nσ ′(x′)]. (74)

Finally, the Casimir force is given by

F (D, μ, T )

kbT
= − 1

χm/2

�̄′(x′)
Dd−m/2

(75)

with

�̄′(x′) =
{[(

d − m
2 − 1

) − (
d − m

2 − 2
)
x′∂x′

]
�(x′), 1 < 1

ψ
< 2[(

d − m
2 − 1

) − 2x′∂x′
]
�′(x′), 1

ψ
> 2.

(76)

We conclude that also for the present situation where the
confining walls are oriented perpendicular to k1 the power law
governing the decay of the Casimir interaction is modified,
which is accompanied by the appearance of a nonuniversal
dimensionful scale factor 1

χm/2 . The obtained exponent ζ ′
m =

d − m
2 − 1 again agrees with the form ζ ′

m = d − m(1 − θA) −
1 predicted in Ref. [12] [compare Eq. (5)]. The scaling
function is monotonous and positive in each of the phases
and points at attractive interaction, in contrast to the previous
case of walls oriented perpendicular to kd . The oscillations
in the high-temperature phase are also absent. The profile of
�′<(x′) is identical to that derived in Ref. [20] for the isotropic
continuum case upon identifying 1

ψ
→ d

2 so that the net effect
of the anisotropy is the modification of the decay exponent
ζ ′

m accompanied by the appearance of the scale factor 1
χm/2

[see Eq. (72)]. This holds true also for 1
ψ

> 2 as well as

1 < 1
ψ

< 2 and x′ < 0. We note, however, that the existence

of x′
cr(

1
ψ

) and the fact that the scaling function is constant for

x′ > x′
cr(

1
ψ

) for 3
2 < 1

ψ
< 2 were not discussed in the study of

Ref. [20]. This result implies that the scaling function �′<(x′)
is not analytical at x′

cr(
1
ψ

). This feature is related to the phase
transition occurring at finite D and should be shared by the
entire O(N → ∞) universality class (also for the isotropic
case) in dimensionality 3 < d < 4 [44]. We once again invoke
here the recently established fact [21] that the critical behavior
of the imperfect Bose gas with periodic boundary conditions
maps exactly onto the corresponding classical O(2N ) model
in the limit N → ∞. The scaling functions of these two
models are the same modulo a global factor of 2 [20,21,24].

VI. SUMMARY AND OUTLOOK

In this paper we addressed the Bose gas in optical lattices
focusing on effects induced by spatial anisotropies which may
be controlled by varying the lattice parameters. By suitably
tuning the couplings, the system is driven into a strongly
anisotropic setup, where condensation is characterized by two
divergent length scales (ξ‖ and ξ⊥) related by the anisotropy
exponent θA (so that ξ⊥ ∼ ξ

θA
‖ ) and by fractional effective

spatial dimensions. We addressed two aspects of the system
induced by such anisotropies, the first one being related to
dimensional crossovers in the bulk Bose-Einstein condensa-
tion (Sec. IV), and the other being related to Casimir inter-

actions (Sec. V). We employed the imperfect Bose gas as
the prototypical model. As we argued at the end of Sec. IV,
we believe our major conclusions concerning the dimensional
crossovers in the bulk should not be restricted to mean-field
models. Indeed, the imperfect Bose gas is known to be closely
related to the O(N → ∞) universality class, while realistic
condensation corresponds to N = 2. It is, however, known
that at least some of the features studied here (the universal
asymptotics of the Tc line in particular) are insensitive to
the symmetry breaking involved. Dimensional crossovers and
the idea of tuning the system across the phase transition by
varying dimensionality seem to be problems of current exper-
imental interest [28,30] and we have provided an analytical
understanding of these effects realized by tuning the lattice
hoppings. Particularly interesting situations arise when one of
the involved effective dimensionalities is located at or below
the lower critical dimension (deff = 2) for condensation. The
hoppings may then be tuned to completely expel the con-
densate out of the system. We clarified the mechanism that
governs this behavior.

Our results for the scaling function of the Casimir en-
ergy (Sec. V) indicate a rather unusual behavior presumably
generic for systems characterized by dispersions varying as
∼k4 (which, however, calls for further studies). Starting from
a microscopic level and performing an exact analysis we have
confirmed the picture of Ref. [12] concerning modifications
of the decay exponent for the Casimir interaction. This is
necessarily accompanied by the appearance of a nonuniversal
dimensionful scale factor. We focused on periodic boundary
conditions and addressed two configurations of the confining
walls. In the first case, the walls are perpendicular to a
direction characterized by a ∼k4 dispersion; in the other setup
the dispersion in the perpendicular direction is of the type
∼k2. In the former situation and at physically most relevant
effective dimensionalities, the obtained Casimir interaction
turns out to be repulsive below and at the critical temperature
T � Tc. In this regime we evaluated the entire profile of the
universal scaling function, which turns out to be monotonous
for positive values of the scaling variable x (for T � Tc).
In contrast, for x < 0 the scaling function shows exponen-
tially damped oscillatory behavior and changes sign upon
varying the distance D. In the present setup these effects are
encoded in the rich structure of the function φ(k) (Fourier
transform of the quartic Gaussian). By virtue of universality
we expect similar behavior to apply to the entire O(N → ∞)
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universality class (up to proportionality factors understood
in Ref. [21] for the isotropic case). An extension to finite
N is not an easy enterprise as is clear from Ref. [12]. For
the standard case of isotropic O(N ) models the profile of the
scaling function (but usually not its sign) may be different as
compared to their N → ∞ limiting shapes [24,45].

The possibility of obtaining repulsive Casimir forces was
recently studied in a number of contexts [22,46–55]. In many
situations, such scenarios are realized by varying the boundary
conditions, which to some extent may also be controlled
experimentally by engineering the surface properties (see,
e.g., Refs. [56–58]). This aspect was also addressed by means
of numerical simulations (see, e.g., Refs. [45,59–63]). We
point out, however, that the possibility of obtaining repulsive
Casimir interaction for periodic boundary conditions is quite
uncommon. Further theoretical verification of this possibility
(at finite N in particular) is an interesting direction for future
studies.

As concerns the situation with ∼k2 dispersion in the direc-
tion perpendicular to the confining walls, we have identified a
similar effect of modifying the decay exponent for the Casimir
energy, which is necessarily accompanied by emergence of a
nonuniversal dimensionful scale factor in the expression for
the excess free energy. Once this is factored out, one recov-
ers the universal scaling function identical to that obtained
for the isotropic case, however in lower dimensionality deff <

3. The resulting Casimir interaction is then always attractive
and shows no oscillations of the type observed in the high-
temperature phase in the case where the dispersion in the
direction perpendicular to the walls is of the ∼k4 type. For
T > Tc the Casimir force is always exponentially suppressed
and its form (monotonous or oscillating) reflects the properties
of the correlation function in the direction perpendicular to the
confining walls. A classical case, where two similar situations
should be possible to achieve, is provided by classical super-
critical fluids, where the pair-correlation function changes its

behavior across the so-called Widom-Fisher line [64] despite
the absence of a phase transition.

On the experimental side, besides the present context,
anisotropic scale invariance is also present at the Lifshitz
points as well as in liquid crystals, to which (by virtue of
universality) our results concerning the Casimir force may
perhaps also apply. Realization of our model would require
a lattice with anisotropic, long-range (next-nearest neigh-
bors at least) hopping parameters. Three-dimensional optical
lattices with direction-dependent hoppings were reported in
Refs. [65,66]. Additionally, let us note that it is possible
to simulate higher dimensionalities using optical lattice se-
tups [67,68]. While the dimensional crossover as analyzed
in the present paper might be within range of current (or
near future) experimental techniques on ultracold gases in
optical lattices, accurate observation of the Casimir effect in
such systems might appear harder to achieve. In this aspect,
classical systems such as liquid crystals appear perhaps as
more promising candidates. Note that, due to the presence of
Goldstone modes, long-ranged Casimir forces in such systems
occur in the entire low-T phase, so that no tuning to the
critical point is required. A verification of our predictions
might be accomplished by inspecting very crude features of
the Casimir effect: for example, the dependence of the Casimir
force sign on the orientation of the confining walls. In addition
to experiments, our predictions are certainly also open to
verification via numerical simulations.
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