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Probing thermalization in quenched integrable and nonintegrable Fermi-Hubbard models
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Using numerically exact methods we examine the Fermi-Hubbard model on arbitrary cluster topology. We
focus on the question of which systems eventually equilibrate or even thermalize after an interaction quench
when initially prepared in a state highly entangled between system and bath. We find that constants of motion
in integrable clusters prevent equilibration to the thermal state. We discuss the size of fluctuations during
equilibration and thermalization and the influence of integrability. The influence of real-space topology and
in particular of infinite-range graphs on equilibration and thermalization is studied.
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I. INTRODUCTION

Nonequilibrium quantum physics is attracting much inter-
est currently. This is partly due to the significantly increased
experimental possibilities, for instance, in artificial systems
of atoms in optical lattices [1–3] and by ultrafast pump
and probe spectroscopy of condensed-matter systems [4–6].
Partly, fundamental conceptual issues [7] attract theoretical
interest more and more: How do equilibration and thermal-
ization occur in closed quantum systems? Which features of
the systems and of the quenches influence these processes?
Under which circumstances could thermalization even break
down [8,9] or be weakened? The main aim of the present
paper is to contribute to the understanding of these issues by
a comprehensive numerical study on clusters.

A common technique to create a nonequilibrium situation
is a quench [10–12], i.e., an abrupt change of parameters of
the system. The main aim of our paper is to examine both
equilibration and thermalization after such quenches in the
context of the Fermi-Hubbard model with arbitrary topology
and to study the prerequisites under which the different phe-
nomena occur. Throughout this paper, the terms equilibration
and thermalization appear. At first glance, they seem to refer
to the same phenomenon. Thus, it is worthwhile to point out
what is actually meant by these terms and to what extent they
differ from each other.

A. Equilibration

By equilibration of a quantum system we denote the pro-
cess that time-dependent observables 〈A(t )〉 eventually relax
for t → ∞ to an average value A = Tr(Aω) where ω := ρ(t )
denotes the density operator of the system averaged over
very long time intervals. Equilibration is considered a generic
phenomenon in quantum systems [13–16]. But finite quantum
systems with a finite-dimensional Hilbert space are special in
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a rigorous sense because they display a discrete and finite set
of eigenvalues. Hence, the temporal evolution of an arbitrary
quantum state and thereby of its expectation values is gov-
erned by frequencies corresponding to these eigenvalues or
more precisely to the differences between these eigenvalues.
For a finite set of eigenvalues one has a finite set of possible
frequencies so that an oscillatory evolution is induced (except
if one starts by accident from an eigenstate). Rigorously, no
equilibration towards A can occur, which seems to indicate
that only infinite systems can display equilibration. While this
conclusion is correct in the strict sense, it does not reflect the
range of observable phenomena. Due to the exponential in-
crease of the dimensionality of the Hilbert space with system
size already finite, not too large systems reflect the behavior
of their infinite counterparts. But there are fluctuations around
the long-time averages A and their size and its dependence on
the system size constitute an important issue which we will
address below.

For studying equilibration one conventionally starts by
partitioning a given closed quantum system into a small
subsystem and a considerably larger bath:

H = HS ⊗ HB with dS � dB, (1)

where di := dim Hi. In line with most of the present literature
we assume that this partitioning is done in real space. Certain
aspects may carry over to other representations as well. Mea-
surements are supposed to take place on the smaller subsystem
which can be taken as small as a single site if the measure-
ment of local, on-site observables is considered. Equilibration
means that the chosen subsystem S resides in a state described
by the partial density matrix ρS (t ) = TrBρ(t ) which is close to
its time-averaged state ωS = ρS (t ) for all times, at least after
a sufficiently long initial period of relaxation.

For initial product states, i.e., states of the form |ψ〉SB =
|ψ〉S ⊗ |ψ〉B, it has been proven rigorously by Linden et al.
[17] that the trace distance for two Hermitian operators as
given by

D(t ) = 1
2 Tr{

√
[ρS (t ) − ωS]2} (2)
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between ρS (t ) and ωS is bounded by

D(t ) � 1

2

√
dS

deff (ωB)
� 1

2

√
d2

S

deff (ω)
. (3)

Here and in similar studies [13–15,18,19] the relevant quantity
has proven to be the effective dimension deff (ω) := 1/Tr(ω2)
of the time-averaged state ω = ρ(t ). The effective dimension
is given by

deff (ω) =
(∑

n

{Tr[Pnρ(0)]}2

)−1

, (4)

where we use the projector Pn onto the eigenspace of energy
En and the initial state is given by ρ(0) [14,18]. If this effective
dimension is sufficiently large the above inequality implies
that the small subsystem equilibrates in the sense that the
expectation values in the subsystem deviate from their long-
time average little and very rarely. It is reasonable to presume
that the effective dimension in realistic cases of interacting
Hamiltonians is very large due to exponentially many energy
eigenstates contributing to quenched states, even if these states
display only small energy uncertainties [17,20].

The physical motivation for the phenomenon of equili-
bration in a subsystem is intuitively accessible. Equilibration
means that information encoded in the initial state of the
subsystem is lost. Since rigorously the unitary evolution of the
whole quantum system does not allow for information loss,
the loss must occur to the bath, i.e., to the remainder of the
system. This is favored if the quantum dynamics allows one
to reach the whole Hilbert space or a substantial part of it.
This, in turn, implies a high effective dimension.

But even though highly plausible it still remains unclear
whether the assumption of a sufficiently large effective dimen-
sion holds for all physically realistic configurations. What is
more, evaluation of the quantity deff (ω) requires an a priori
complete exact diagonalization (ED) and thus highly limits
the applicability of the bound (3) in practical situations.

Recent research has reformulated the effective dimension
in terms of the Rényi entanglement entropy. This reformu-
lation does not imply an improved calculability [15]. In ad-
dition, however, an upper bound for the Rényi entanglement
entropy was derived which predicts a linear increase of the
entropy with system size N , implying an exponential growth
of the effective dimension with N . The prefactor of N in these
estimates remains yet unknown.

Furthermore, the mathematical considerations implying
ln(deff ) ∝ N [15] consider product states of system and bath
as initial states. There remains the open issue whether the
situation changes fundamentally if the system is quenched
starting from other types of initial states. For this reason, we
will investigate another generic, but nonproduct, initial state.
We prepare the system initially in a state which is highly
entangled with respect to the chosen real-space partitioning,
namely, the Fermi sea (12). This means that there are no pure
states of both subsystems S and B individually since |FS〉
cannot be split into a product state of a state of S and B,
respectively. By doing so we intentionally violate one of the
main conditions conventionally assumed to hold in the process
of equilibration. We want to study whether equilibration still

occurs in the chosen more generic setting. Subsequently,
the system will be subjected to a quench to drive it out of
equilibrium in a well-defined and reproducible manner.

B. Thermalization

When referring to thermalization a specific form of equi-
libration is meant. If the average value A equals the thermal
value Ath which results from statistical ensemble theory ac-
cording to

Ath = Tr(Aρcan) (5)

thermalization has taken place. Here the canonical density
matrix at inverse temperature β reads

ρcan = 1

Z
e−βH , (6)

where, as usual, the partition function Z takes care of nor-
malization. The most intriguing aspect about thermalizing
systems is that the expectation values A = Ath only depend on
an effective inverse temperature βeff resulting from the overall
energy E = 〈H〉 according to

E = − d

dβ
ln(Z (β ))

∣∣
β=βeff

. (7)

In other words, it appears that the system has lost its memory
about the initial state at t = 0 except for its energy content.
Of course, this cannot be true if one had access to all con-
ceivable observables of a system. Then it is easy to see that
this access provides complete knowledge about the temporal
evolution of the initial state without any loss of information.
Hence, equilibration and thermalization can only occur for
observables measured on a small subsystem of the total quan-
tum system. Typically, observables acting only on a very few
adjacent sites are considered.

Conserved quantities Ci in integrable models restrict the
dynamics similar to the energy in the canonical ensemble.
Obviously, the expectation values of the Ci are constant in
time and do not change from their initial values. Thus, they
cannot relax to any thermal value. Hence, thermalization is
claimed to be a specific property of nonintegrable systems
[21–23]. As an example for the constraints of the dynamics of
an integrable system we consider the Fermi-Hubbard model
on a finite chain with periodic boundary conditions (PBCs)
[24,25] and nearest-neighbor hoppings Ji j = J and on-site
Hubbard repulsions Ui = U . Most of the integrals of motion,
but not all of them, are functionally dependent on the ratio J/U

[26,27]. As realizations of nonintegrable systems we consider
connected clusters of arbitrary topology.

Independent of integrability, any number of integrals of
motion Ci restricts equilibration. Instead of the thermal den-
sity matrix in the canonical ensemble it is straightforward to
derive that the maximization of the entropy of a density matrix
for given, fixed values 〈Ci〉 for Ci leads to a generalization of
(6) called the generalized Gibbs ensemble (GGE) [22,28]:

ρGGE = 1

Z
e− ∑

i λiCi , (8)

where the λi are Lagrange multipliers which are determined
by the condition

〈Ci〉GGE = 〈Ci〉initial. (9)
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We emphasize that this result does not require that the con-
served quantities commute pairwise, i.e., [Ci,Cj] = 0 is not
a necessary condition. This is so because the entropy to
be maximized is given by a trace which allows for cyclic
permutations after derivation so that the sequence of operators
can always be chosen such that Ci stands in front of (or after)
the density matrix. In literature, the GGE for noncommut-
ing integrals of motion is sometimes called the non-Abelian
thermal state [29,30]. In any case, a system with conserved
quantities may show generalized thermalization to the GGE
in (8) while its thermalization to the canonical ensemble (6)
is only possible if this ensemble fulfills the conditions (9)
accidentally.

For the scope of the present paper it is of importance to
stress the following key idea here once again: Nonintegrable
generic clusters, which are not restricted by any conserved
quantities other than the overall energy, are expected to show
signs of thermalization while integrable ones do not. Using
numerically exact methods we investigate this expectation for
the one-band Fermi-Hubbard model in the remainder of this
paper.

This paper is structured in the following way: In Sec. II,
the Fermi-Hubbard model and the general quench protocol
are explained briefly. Section III outlines the concepts and
algorithms used to access the time evolution of observables
and their thermal expectation values, namely, the Chebyshev
expansion technique (CET), the kernel polynomial method
(KPM), and thermal pure quantum states (TPQs). In Sec. IV
we discuss the results for the globally quenched Fermi-
Hubbard model on clusters of various topologies, study the
influence of the cluster properties on the general relaxation
behavior, and work out the thermalization behavior of differ-
ent systems. Summary and outlook are given in Sec. V.

II. MODEL

The Fermi-Hubbard model is one of the paradigmatic
models for interacting electrons on a lattice and combines
tight-binding electrons with a strongly screened Coulomb in-
teraction [31–33]. In the following, we restrict considerations
to the one-band model on arbitrarily shaped clusters such that
the Hamiltonian takes the form

H = H0 + Hint = −
∑
i jσ

Ji j f †
iσ f jσ +

∑
i

Uîni↑n̂i↓. (10)

Here, f †
iσ ( fiσ ) are the creation (annihilation) operators at site

i for a fermion of spin σ and n̂iσ is the corresponding number
operator, Ji j denotes the real hopping matrix element between
the sites i and j, and Ui > 0 is the on-site interaction, i.e.,
the energy cost of a double occupancy at site i. Since we
are dealing with arbitrarily shaped clusters, it is convenient
to introduce the cluster as the undirected graph G = (V, E )
consisting of consecutively labeled vertices (sites) V each
carrying information about its local repulsion Ui and edges
(hopping matrix elements) E . The most natural representation
of an undirected graph G is by means of its weighted adja-
cency matrix A(G). Here, the weights carry the information
about the different hopping strengths Ji j .

To excite the system to a nonequilibrium state a sudden
global interaction quench is used for which we initially pre-
pare the system in the Fermi sea state |FS〉 as an eigenstate of
H0 and suddenly turn on the local interaction. Consequently,
the quench protocol reads

HQ(t ) = H0 + �(t )Hint, (11)

where �(t ) is the Heaviside function. Since the quench in
HQ(t ) changes the overall system parameters Ui and thus in-
fluences all sites it is called a global quench. Global quenches
have been considered to a great extent [34–41].

As H0 concerns interaction-free particles diagonalizing H0

is a one-particle problem. It is sufficient to diagonalize the
one-particle Hamiltonian h0 := −A(G) in order to obtain the
Fermi sea. Let |iσ 〉 be the eigenstates of the number operator
of site i and spin σ and let h0 fulfill the eigenvalue equation
h0 |νσ 〉 = εν |νσ 〉 where ν is labeling the eigenstates. Then,
the Fermi sea is constructed by gradually filling the states |νσ 〉
in order of increasing eigenenergies εν according to

|FS〉 :=
∏

(ν,σ ) ∈ I

f †
νσ |0〉 =

∏
(ν,σ ) ∈ I

(∑
i

〈iσ |νσ 〉 f †
iσ

)
|0〉.

(12)

The index set I is chosen such that the condition εν < εF

with εF being the Fermi energy is fulfilled for all occupied
eigenstates of h0. In the case of degeneracy we construct all
possible Fermi sea states and use equal weights for them in
the initial density matrix ρ(0).

III. METHOD

In this section, we present a brief overview over the meth-
ods used to calculate the time dependence and the thermal
expectation values of observables as well as the predictions
of canonical ensemble theory. Importantly, we point out the
strengths and shortcomings of the techniques used. More de-
tailed mathematical derivations can be found in the references
given.

A. Chebyshev expansion technique

To obtain the time dependence O(t ) of an observable
we resort to CET [42], which consists of the expansion of
the unitary time evolution operator U = e−iHt in terms of
Chebyshev polynomials

T0(x) = 1, T1(x) = x, (13a)

Tn+1(x) = 2xTn(x) − Tn−1(x), (13b)

which are defined on the closed interval I = [−1; 1]. To be
able to apply this technique to a general Hamiltonian H as in
(10) a finite rescaling H → H ′ = (H − b)/a is a prerequisite.
This is to ensure that the Chebyshev polynomials can be
used as an orthonormal basis set. In order to perform an
appropriate rescaling an estimate of the extremal eigenvalues
[43–45] of H is needed to obtain a = 1/2(Emax − Emin) and
b = 1/2(Emax + Emin). Note that estimates in the form of upper
bounds for Emax and lower bounds for Emin are sufficient
because the rescaling only has to ensure that the rescaled
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eigenvalues all lie within I . Finally, the time evolution opera-
tor becomes

U =
∞∑

n=0

αn(t )Tn(H ′), (14a)

αn(t ) = (2 − δn,0)ine−ibt Jn(at ), (14b)

where the time-dependent coefficients essentially depend on
the Bessel functions of the first kind Jn(at ). The dynamics of
an initial state |ψ0〉 is given by

|ψ (t )〉 = U |ψ0〉 =
∞∑

n=0

αn(t ) Tn(H ′) |ψ0〉︸ ︷︷ ︸
=: |φn〉

(15)

with the basis states of the expansion |φ0〉=|ψ0〉 and |φ1〉 =
H ′ |ψ0〉 as well as |φn+1〉 = 2H ′ |φn〉 − |φn−1〉.

Numerically, the infinite series must be cut off at some
finite value Nc < ∞. The time dependence of the prefactors
is essentially determined by the time dependence [46] of the
Bessel functions Jn(t ). The higher the order n the longer it
takes the Bessel function Jn(t ) to yield a noticeable contribu-
tion to the series. Hence, an estimate for the accuracy of the
truncated series with cutoff value of Nc can be given:

ε �
(

ate

2Nc

)Nc

. (16)

Consequently, the truncation error is not only related to Nc,
but depends also directly on the maximum time up to which
results are calculated as well as on the parameter a which
equals half the width of the energy spectrum. Importantly,
increasing Nc linearly increases the time t up to which the
error estimate is the same.

B. Kernel polynomial method

The main aim in the application of the KPM [47] and
of TPQ states [48] is to obtain thermal expectation values
without the necessity to fully diagonalize the Hamiltonian.
A brief comparison of the results of these two approaches in
different temperature ranges will be given in Sec. III C.

For KPM we resort again to the rescaled Hamiltonian H ′
as given in Sec. III A such that all energies E ∈ I . For brevity,
we omit the superscripts from now on. Given the canonical
partition function

Z =
∫ 1

−1
ρ(E )e−βE dE (17)

the desired thermal expectation value becomes

〈O〉th = 1

Z

∫ 1

−1
o(E )e−βE dE . (18)

The problem consists in finding suitable approximations of the
(rescaled) density of states ρ(E ) and of the observable density
o(E ) given by

ρ(E ) = 1

d

d−1∑
i=0

δ(E − Ei ), (19a)

o(E ) = 1

d

d−1∑
i=0

〈i|O|i〉δ(E − Ei ), (19b)

where d :=dim(H) denotes the dimension of the Hilbert
space. To obtain appropriate approximations, we expand the
real functions (19) as

f (E ) = 1

π
√

1 − E2

[
μ0 + 2

∞∑
n=1

μnTn(E )

]
, (20a)

μn =
∫ 1

−1
f (E )Tn(E )dE . (20b)

The most detrimental effect of truncating infinite series
such as the one in (20a) after k < ∞ terms is Gibbs’s oscilla-
tions. In the vicinity of points where the function to be approx-
imated possesses singularities, for instance, discontinuities,
the truncated series displays strong oscillations. This leads
to unsatisfactory approximations of f (E ) and may spoil the
integration of the approximated function with high precision
which is necessary for the determination of thermal quantities.
As a remedy, we convolve (20a) with the Jackson kernel
[49,50] as introduced by Weisse et al. [47]. This amounts to
rescaling the Chebyshev moments of the expansion according
to μn → gnμn with α := k + 1 by

gn = (α − n) cos (πn/α) + sin (πn/α) + cot (π/α)

α
. (21)

For the calculation of the moments of the expansion

μn =
∫ 1

−1
o(E )Tn(E )dE = 1

d
Tr[OTn(H )] (22)

we employ stochastic trace evaluation as initially proposed
by Skilling [51] and later generalized by others [52,53]. It
consists of the approximation of the full trace Tr(A) by R � d
randomly chosen quantum states (see also next section).

C. Thermal pure quantum states

This approach relies on what is called quantum typicality
these days. It is based on two ingredients. The first is actually
the stochastic evaluation of traces [51–53] in order to compute
thermal averages of quantum-mechanical observables in the
canonical ensemble. This element was already used in the
KPM approach. The second lies in the evolution of stochastic
states in imaginary time to determine the thermal pure quan-
tum states.

Using a set of R normalized states |r〉 the complex coeffi-
cients of which are each drawn from a normal distribution we
approximate traces by the average of the expectation values

Tr(O) = d〈r|O|r〉, (23)

where the overbar denotes the process of determining the
arithmetic mean from the set of all different random states
{|r〉} and d stands for the dimension of the Hilbert space.

A central idea in TPQ is to decompose the application
of the Boltzmann weight to the random state |r〉 into two
contributions for bra and ket. The invariance of the trace under
cyclic permutations ensures that this is correct:

Tr[O exp(−βH )]

= Tr[exp(−βH/2)O exp(−βH/2)] (24a)

= d〈r| exp(−βH/2)O exp(−βH/2)|r〉. (24b)
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FIG. 1. Comparison of the results for the thermal expectation
value (5) of the double occupancy di stemming from exact diagonal-
ization (solid lines) and TPQ states (circles) for a one-dimensional
chain with periodic boundary conditions at Ui = U = 3J = 3Ji j . All
TPQ results are calculated using a Krylov space dimension of s = 10
except for the open circles in the N = 10 case (s = 50).

Defining

|β〉 := exp(−βH/2)|r〉, (25)

the partition sum Z can be expressed by 〈β|β〉 and the thermal
expectation value itself is given by

〈O〉 = 〈β|O|β〉
〈β|β〉 . (26)

The standard deviation of the estimate (26) scales like 1/
√

Rd .
A crucial advantage of this technique is the possibil-

ity to easily evaluate the TPQ states |β〉 without fully
diagonalizing H first. An especially efficient way [54]
to determine the matrix exponentials is by resorting to
the Lanczos algorithm [43] to approximate the Hamilto-
nian by its matrix form in the Krylov space Ks(|r〉) =
span(|r〉 , H |r〉 , H2 |r〉 , . . . , Hs−1 |r〉). We draw sufficiently
many states |r〉 to gain a deviation below the tolerance 10−3,
i.e., achieving 1/

√
Rd � 10−3, and compute an adequately

large Krylov space of dimension s in each step; the dimension
s must be chosen sufficiently large in order to ensure that
the systematic error due to s < d is less than the required
tolerance. For best efficiency, the systematic error is chosen
of the same order of magnitude as the stochastic error.

In Fig. 1 we exemplarily checked the convergence of TPQ
results (circles) against results from exact diagonalization
(solid lines) at half filling and lattice sizes up to N = 10.
Even for comparably small Krylov dimensions s = 10 a good
agreement up to N = 8, corresponding to d = 4900 of the
full Hilbert space, can be achieved. Only for N = 10 sites
(d ≈ 6.4 × 104) the results of TPQ states start to deviate
from the exact results. Using a Krylov space with s = 50 is
enough as a remedy leading again to a good convergence. This
observation is in full accordance with the expectation that only
small fractions of the overall Hilbert space are needed to yield
accurate results in Krylov space procedures.

Before comparing KPM and TPQ to each other we point
out that low temperatures T result in large relative Boltzmann

FIG. 2. Thermal expectation value of the double occupancy in
a half-filled N = 10 Hubbard chain at U = 3J calculated by KPM
using k moments μn. The number of moments increases from top to
bottom. A higher number of moments improves the accuracy, but it
does not change the overall behavior for βJ > 1.

weights in Eqs. (17) and (18) for the low-energy part of
the spectrum approximated by KPM. This, in turn, heavily
amplifies even small numerical errors of stochastic or system-
atic origin. This spoils numerical results altogether for low
temperatures. This issue is fundamental and cannot be solved
by trivial means such as increasing the number of moments
μn. Approaches have been suggested to overcome these ob-
stacles in the interacting regime by combining partial exact
diagonalization and the kernel polynomial method [47]. The
ground state and the m − 1 energetically lowest excitations
of the systems are treated exactly while the remainder of the
spectrum is calculated using KPM.

We illustrate the sketched caveat of KPM in its unmodified
form described in Sec. III B. Specifically, Fig. 2 displays KPM
results which reproduce the physics at lower temperatures
(larger inverse temperatures β) slightly better for a higher
number k of moments. But the true low-temperature limit (see
Fig. 1) is not captured at all. The degree of double occupancy
is significantly overestimated by KPM.

Nevertheless, we stress that the high-energy physics is
captured very well by KPM. To emphasize this point the most
accurate results of KPM for k = 900 and the exact results
(ED) are compared in the inset of Fig. 3. Although KPM
results start deviating from the ED results at about β ≈ 0.5 the
high-energy physics for T � 2J is described very accurately
by KPM.

In contrast to KPM, using TPQ states is very robust against
accumulating numerical errors since neither a functional ap-
proximation based on a truncated series nor a numerical
integration is involved. In addition, TPQ states are easy to deal
with. This makes this approach advantageous. Its convergence
has been examined in detail [48], indicating that the choice of
the individual random states |r〉 has an exponentially small
effect at finite temperatures and that results from TPQ states
converge to the actual ensemble results exponentially fast
in the system size N . Thus, TPQ states can be used with
predictable accuracy leading to well-controlled results for
a broad range of temperature as shown in Fig. 3. For this
reason, all computations of thermal expectation values in the
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FIG. 3. Comparison of results from KPM (k = 900) and TPQ
states (Krylov space dimension s = 50) with results from exact
diagonalization (ED). KPM results show notable deviations for in-
creasing β while TPQ does not. Results for a half-filled Hubbard
chain with periodic boundary conditions of N = 10 sites at U = 3J .

remainder of this paper are performed using TPQ states. Two
sources of errors need to be controlled: (i) the stochastic error
in the evaluation of the traces and (ii) the systematic error in
the evaluation of the matrix exponentials in Krylov spaces of
finite dimension s.

IV. RESULTS

In this section, we tackle the issues of equilibration and
thermalization on finite clusters. Temporal averages of expec-
tation values and the corresponding temporal fluctuations will
be discussed. The first section deals with equilibration, and
the subsequent one deals with thermalization.

A. Equilibration

As outlined in the Introduction, analytic arguments for
equilibration have been brought forward for the case of initial
product states of system and bath [15]. In order to extend evi-
dence for equilibration beyond this special situation, we focus
on the Fermi sea |FS〉 as generic nonproduct state in real-space
representation. The initial nonequilibrium is generated by an
interaction quench according to (11).

In the highly excited state ensuing from the quench we
examine the tendency of the finite clusters to equilibrate by
simulating the time dynamics of proper local observables
which are measurable in the subsystem S. To study this
phenomenon in detail we consider two types of clusters:
(i) integrable ones with PBCs and a constant ratio U/J as
well as (ii) generic clusters with an arbitrary topology. A
complete overview over the used finite-size clusters is given
in Appendix A. Henceforth, the labels (a), (b),..., (n) ascribed
to the individual topologies will be used for identifying a
particular cluster. In order to avoid any undesired symmetries
in the generic clusters, we additionally slightly randomize the
parameters of the model such as the hopping strengths Ji j =
Jji by drawing their values with uniform probability from
the respective intervals [J − p · J; J + p · J] with p = 0.01.
The same applies to the on-site interactions Ui as well: they

FIG. 4. Time evolution of the double occupancy on the integrable
periodic Hubbard chain after interaction quench U = 3J and on the
nonintegrable (generic) cluster of N = 12 sites at half filling. For the
nonintegrable case, the time evolution of cluster (l) of Appendix A
and its site i = 10 is depicted and a 1% randomization around the
average U ≈ 3J is chosen. Solid lines denote the average values (27),
and dashed lines denote the average plus and minus the standard
deviation σi, both calculated at τ = 0.6.

are taken from the interval [U − p · U ; U + p · U ]. Note that
the randomization is deliberately chosen weak in order to
avoid any many-body localization [55]. The only purpose of
randomization is to avoid the influence of accidental symme-
tries. In the integrable clusters no randomization is performed
because it would spoil the integrability.

As a meaningful local observable which incorporates two-
particle interaction we choose the double occupancy di =
n̂i↑n̂i↓. Thus, the subsystem S consists of site i. For the
calculation of the time dependence we resort to CET as given
in (15).

Results of the time dependence in the integrable N = 12
cluster and in the nonintegrable cluster (l) of Appendix A
of the same size are shown in Fig. 4 for half filling and for
U = 3J . We clearly see signs of the expected fluctuations
(see Introduction) around an average value without a tendency
to converge to a constant stationary value. Even on longer
time scales (not shown here) no constant stationary value is
approached. This is to be attributed to the finite system size.

Interestingly, there seem to be indeed qualitative differ-
ences between the integrable and the generic cluster. The time
series of the integrable cluster shows fluctuations which are of
the same magnitude for all times. In contrast, the time series of
the generic cluster first shows larger fluctuations which subse-
quently diminish to some extent. This observation, however,
certainly needs to be substantiated further.

Next, we want to determine the long-time averages of the
fluctuating quantities. These values are the best guesses on
finite clusters for stationary values after relaxation. Since at
the beginning there are various transient effects (see Fig. 4),
it is not obvious how the long-time averages can be computed
reliably. We account for this obstacle by introducing an aver-
aging according to

d (τ ) := 1

tmax − tmin

∫ tmax

tmin

dtd (t ) (27)

013321-6



PROBING THERMALIZATION IN QUENCHED … PHYSICAL REVIEW A 102, 013321 (2020)

FIG. 5. Averages of the double occupancy of cluster (l) at the
sites i determined according to (27). A tendency of the dynamics
to converge towards an essentially constant value around τ ≈ 0.5 to
≈0.6 is discernible for all sites.

with τ := tmin/tmax ∈ [0; 1] for fixed values of tmax. By tuning τ

and thus the minimum time starting from which the averaging
is performed we are able to eliminate the influence of initial
relaxation effects on the dynamics. If not noted otherwise, all
calculations are performed up to tmax = 100/J .

Exemplary results for all sites of the nonintegrable, half-
filled N = 12 cluster (l) of Appendix A are shown in Fig. 5.
As can be seen, some weak initial transients are visible up to
the range of τ � 0.2. During this initial time span we consider
the data not fully converged yet (see especially the data for
sites i = 6 or 8). After this initial transient, the averaged data
converge to an almost constant value. But choosing τ too
large, i.e., too close to unity, large fluctuations appear. The
reason is that the averaged time span becomes too small so
that the fluctuations do not cancel sufficiently anymore (see
the range τ � 0.8 in Fig. 5). In conclusion, avoiding the
initial transient effects as well as the final fluctuations can
be achieved by reading off di for medium values, i.e., around
τ ≈ 0.5 to ≈ 0.6.

In all checked cases of various lattice sizes N and both
integrable and nonintegrable topology the determination of
the time-averaged value according to (27) is possible since no
significant variations occur in the range of τ ≈ 0.5 to ≈ 0.6.
Thus, all following calculations are performed for a constant
τ = 0.6. In this way, we obtain a suitable approximation of
the stationary value of an observable A as discussed in Sec. I.
We refer to these time averages in the study of equilibration
and thermalization.

For visual orientation, Fig. 4 shows the long-time averages
(solid lines) and the standard deviations around them (dashed
lines), both calculated at τ = 0.6. The initial dynamics differs
qualitatively between the two cases considered. The generic
model shows longer-lasting transients after the quench. Nev-
ertheless, the long-time fluctuations show roughly the same
amount of spread. This leads to the hypothesis that fluctu-
ations show no pronounced dependence on the integrability
of the model. We will substantiate this conjecture in the
following.

The fluctuations present in the dynamics of the system
around the time-averaged values di of the double occupancies

are quantified by the individual variances σ 2
i . They are a

measure for how well the (finite) system stays close to the
time average di. A fully equilibrating system would show
vanishing fluctuations since it would fulfill limt→∞ di(t ) = di

so that σ 2
i = 0 if the latter is determined for long, ideally

infinite, time ranges. Practically, we use (27) also for the
determination of the σ 2

i . We are not aware of analytic a priori
predictions of the values of σ 2

i in the physical situation we
are considering, namely, a highly entangled initial state in real
space. Applying a scheme similar to (3) for an observable O
leads to an upper bound to its variance [14] given by

σ 2
O � �(O)2

4deff (ω)
� ||O||2

deff (ω)
(28)

with ||O|| being the largest absolute eigenvalue of the Hermi-
tian operator O and

�(O) = 2 min
c∈C

||O − c1||. (29)

Unfortunately, these upper bounds (28) still require the cum-
bersome calculation of the effective dimension as the main
ingredient which can neither be predicted without a complete
diagonalization nor estimated except for initial product states
of system and bath. For this reason, our main interest here is to
study to what extent the considered systems equilibrate after
their quench.

In order not to discuss each site in a cluster separately we
define the global variance

σ 2 = 1

N

N∑
i=1

σ 2
i . (30)

This quantity provides a good measure for the degree of
equilibration. If it vanishes it indicates equilibration, at least
on average. Figure 6 depicts the global standard deviation σ .
For the generic, nonintegrable cluster the values for σ 2 are
averaged additionally over all clusters of the same size N (see
Appendix A), e.g., all generic clusters of N = 12 sites are
those labeled by (l)–(n). The plotted error bars indicate the
average spread between the maximum and minimum standard
deviation for each of the different clusters contributing to each
data point for a specific cluster size N , i.e., half the error bar
amounts to 1/2(σmax − σmin).

The first remarkable observation is that the standard devia-
tions of the integrable and the nonintegrable clusters are very
similar for the same cluster size. One could have expected that
the fluctuations in the integrable systems are larger because
there is less accessible Hilbert space due to the large number
of conserved quantities. But this does not seem to be the
case. Furthermore, one could think that the similarity of
the integrable and nonintegrable fluctuations in Fig. 6 is at
odds with the time series shown in Fig. 4 where the generic
fluctuations are larger briefly after the quench. But for longer
times this is no longer true and it is for these longer times that
the quantity σ is determined by definition, e.g., the evaluation
at τ = 0.6 for tmax = 100/J implies that σ is computed for
the time interval [60/J, 100/J]. In Fig. 4 the dashed lines and
their mutual distance illustrate that the fluctuations of both
systems are comparable in size.
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FIG. 6. Global standard deviations σ as derived from (30) of the
double occupancies di(t ) fluctuating around their individual average
values di. Results for both integrable (PBC) and nonintegrable
(generic) clusters are shown. Three different least-square fits to
the numerical data are displayed using either σ = a0 + b0/N (upper
panel), log(σ ) = log(a1) − b1N (lower panel, solid lines), or σ =
a2 exp(−b2N ) (lower panel, dashed lines). The latter two fits seem
to be the same, but this is not the case because the condition of least
squares depends on the functional form and leads to differing weights
and thus to differing optimum sets (ai, bi ).

In Fig. 6 we tackle the issue to extrapolate the data to
the thermodynamic limit. To do so, we compare two kinds
of fits with the first one being linear in the inverse lattice
size, i.e., σ = a + b/N (upper panel), and the second one being
exponential in the lattice size, i.e., σ = a exp (−bN ) (lower
panel). The exponential fit is carried out in two ways of
least-square fits: (i) σ is fitted with a exp (−bN ), and (ii)
ln(σ ) is fitted with ln(a) − bN . The difference between both
seemingly equal approaches lies in the least squares which are
computed for σ or ln(σ ) implying different weights. The first
procedure keeps the fit close to the data points at larger values
of σ while the second procedure focuses on the data points at
smaller values.

We find that our data are consistent with the exponential
scaling predicted [15]. But the numerical data do not provide
compelling evidence for the exponential scaling either. Thus,
further study on this issue is certainly called for. However,
both data sets and all fits regardless of the implied form of
scaling indicate a vanishing global variance for N → ∞. So

FIG. 7. Comparison of the actual global standard deviations σ

(filled symbols) to the upper bounds (open symbols) given by
Eq. (31) on logarithmic scale. The same fits and parameters as in the
lower panel of Fig. 6 are shown; they appear here as straight lines.

this provides numerical evidence that equilibration takes place
for systems of increasing system size. Equilibration appears to
be the generic scenario independent of the property of integra-
bility. This leads us to conclude that equilibration is an even
more generic property than currently proven as it is limited
neither by a highly entangled initial state nor by constants
of motion present in integrable systems. These conclusions
are corroborated by quenches to stronger interactions (for
results see Appendix B for U = 6J). For significantly weaker
interaction quenches, the studied time scales and system sizes
are not large enough to allow for unambiguous evidence (see
Appendix B for U = J).

For system sizes that are accessible to complete exact
diagonalization we additionally determine the effective di-
mensions and the respective upper bounds (28) to variance and
standard deviation. In this context, we compare the tightest
upper bound for the double occupancies, i.e., O = di and
c = 1/2 in (29), leading to the upper bound

σi � 1
2 deff (ω)−

1
2 . (31)

The required effective dimension is computed assuming the
absence of any degeneracy so that the following relation
holds:

1

deff (ω)
=

∑
n, j

(p j |〈n|ψ j〉|2)2. (32)

Here, the initial state may be given as mixture ρ(0) =∑
j p j |ψ j〉〈ψ j | and |n〉 denote the eigenstates of H .
The upper bounds are displayed by open symbols in the

same color as the time-averaged standard deviations. The
results and fits to the data are shown in Fig. 7 on a logarithmic
scale. It is evident that the mathematically rigorous upper
bounds are not particularly tight for the actually occurring
fluctuations.

Discussing fluctuations it is interesting to consider the
influence of the coordination number z. In the clusters consid-
ered so far, the typical coordination numbers is z = 2 for the
PBC and a mean value of z = 2.45 for the generic clusters.
Hence these numbers do not vary much. But it is to be
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FIG. 8. Infinite-range clusters for N = 4 and 8 denoting clusters
with the maximum number of hoppings possible, also called com-
plete graphs. For each of the N sites the coordination number is
z = N − 1 leading to a total of K = 1/2N (N − 1) hopping links.

expected that systems with large coordination number display
smaller fluctuations. At least in equilibrium, it is common
lore that mean-field approaches work much better in higher
dimensions and for larger coordination numbers because the
relevance of the relative fluctuations is lower. Hence, the
same presumption is a plausible working hypothesis out of
equilibrium.

Here we want to test it for the accessible clusters. Due
to the computational limitations in system size N we choose
to consider the limiting case of the maximum value of the
coordination number. It is reached by linking each site with
every other site implying z = N − 1. The resulting clusters
Gc are called infinite-range clusters in physics and complete
graphs in mathematics. In total, they have K = 1/2N (N − 1)
bonds. The respective adjacency matrix reads

A(Gc) = JN − 1N , (33)

where JN denotes the N × N all-ones matrix and 1N stands for
the identity matrix. We subtract the latter one to exclude local
terms corresponding to hops from site i to i. We point out that
in infinite-range clusters without any randomization the initial
Fermi sea state is highly degenerate, leading to ρ2 � ρ. Due
to this inherent self-averaging the fluctuations in fully sym-
metric clusters Gc with the same J on each bond and the same
U at each site are strongly suppressed (not shown). Since this
is not what we want to study here we again slightly randomize
the hoppings Ji j and the interactions Ui by 1%. This is exactly
what we did for the generic clusters allowing for a study of the
direct influence of large coordination numbers without being
distracted by a large number of symmetries.

An example of two infinite-range graphs with N = 4 and
8, respectively, is given in Fig. 8. We use such clusters
to compute the time-averaged double occupancies di and
subsequently the global standard deviations σ as before for
(non)integrable models in Fig. 6. No averaging over various
clusters is conducted. The results are displayed in Fig. 9 and
compared to the ones for integrable chains. Again, we insert
the upper bounds for σi determined by (31) by means of
open symbols for small systems. A clear difference of the
thermodynamic behavior, i.e., for N → ∞, can be noticed.
In PBC systems with a small coordination number the extrap-
olated fluctuations are noticeably larger than in the infinite-

FIG. 9. Global standard deviations σ of integrable chains with
coordination number z = 2 and of infinite-range clusters Gc with
z = N − 1 and a 1% randomization. Results are to be compared
with Fig. 6. The amount of fluctuations depends on the number of
bonds and decreases upon increasing coordination number so that
the infinite-range clusters display only small fluctuations in the limit
N → ∞ relative to the fluctuations in the PBC clusters. The available
upper bounds (31) are inserted using open symbols. Dashed and solid
lines are fits (cf. Fig. 6).

range clusters Gc. The standard deviations in the infinite-range
clusters have a much steeper slope for increasing N rendering
fluctuations less important for larger complete graphs than for
long PBC chains. This clearly supports the hypothesis that
a larger connectivity favors smaller fluctuations. Hence, as a
rule of thumb we expect that systems with larger coordination
number equilibrate better than those with smaller coordination
number. We stress that this finding does not necessarily imply
that the equilibration occurs faster, i.e., on a shorter time scale.
The issue of time scales is beyond the scope of the present
paper since the reliable determination of equilibration time
scales is numerically very challenging.

B. Thermalization

Here we address the process of thermalization. In Sec. IV A
we noted no substantial influence of integrability on the de-
gree of equilibration. In both cases of PBC and of the generic
clusters the results indicated a stationary, equilibrated state in
the thermodynamic limit. Moreover, the fluctuations due to
the finite size of the studied clusters are comparable for the
same system sizes.

In a next step, it suggests itself to investigate thermalization
in the integrable chains and the generic clusters. To this end,
we compare the equilibrated, time-averaged double occupan-
cies di with the thermal predictions 〈di〉th where the latter are
computed for the canonical statistical ensemble at the same
energy as the quenched system. Are they equal? In order not to
be distracted by accidental effects at particular sites we define
the global deviation from the thermalized values

�therm := 1

N

N∑
i=1

|di − 〈di〉th| (34)

for integrable (PBC) and nonintegrable (generic) clusters of
size N . The thermal predictions 〈di〉th are calculated using
TPQ states as described in Sec. III C. Since each site i of a
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FIG. 10. Global deviation of the time averages di from the ther-
mal predictions 〈di〉th at the effective temperature for U = 3J . This
deviation �therm is shown in dependence on the inverse cluster size N .
For the generic clusters the shown values are averaged over various
clusters of the same size and the error bar indicates the spread within
this set of clusters. The lines represent linear regressions to the data.

given cluster contributes in (34) this definition accommodates
for the highly differing individual topologies in a systematic
way. A system showing perfect thermalization is characterized
by a vanishing �therm = 0.

Since we are dealing with closed quantum systems the
total energy is conserved, which allows us to determine the
effective temperature of the system easily. Knowing the cor-
responding inverse temperature β is necessary to compute
the thermal expectation value of the cluster since it defines
the statistical density matrix of the canonical ensemble. The
initial state of the system [see Eq. (12)] defines this effective
temperature. It has an overall energy E = 〈FS|H |FS〉 which
translates into an effective inverse temperature according to
Eq. (7).

In Fig. 10 the different global deviations are plotted against
the inverse cluster sizes N for the various topologies. Error
bars again account for the spread of the values between
the differently shaped clusters of same N in the generic,
nonintegrable cases. In order to analyze the data, a linear fit
�therm = A/N + B is performed and included in the plot for
both data sets. In accordance with previous studies [23,28,56–
60] and with our expectations, clear trends can be read off. The
generic, nonintegrable clusters display a vanishing deviation
�therm in the limit N → ∞. This is a definite indication that
these clusters thermalize. In contrast, the integrable chains
show only a slight decrease of the global deviation which is
not consistent with a vanishing value for N → ∞. The persist-
ing finite value of �therm even for extrapolated infinitely large
systems is a strong sign for equilibration of the integrable
chains towards a nonthermal state. This must be attributed to
the restricted dynamics due to the large number of constants
of motion.

Since a perfectly thermalizing system loses all of its
knowledge about the initial state ρ(0) to the larger bath two
borderline cases come to one’s mind here. First, it is of interest
whether a system which is only weakly perturbed, i.e., which
is quenched to U/J � 1, is kept from thermalizing. Does a

weak quench allow one to retain memory about ρ(0)? Second,
one can wonder whether quenches even stronger than U = 3J
also lead to thermalization. We discuss both these questions in
Appendix B for brevity.

V. SUMMARY

Using numerically exact methods we computed results for
equilibration and thermalization of arbitrarily shaped finite-
size clusters of the quenched Fermi-Hubbard model. The
chosen initial state is the Fermi sea which is highly entangled
in real space. The double occupancy is the local quantity of
which the nontrivial quantum dynamics is studied after the
interaction quenches.

We showed that even for the Fermi sea, which is a quan-
tum state extremely far from a product state in real space,
equilibration towards a stationary state is a generic property
regardless of topology or integrability in the thermodynamic
limit, i.e., for infinite system sizes. The fluctuations present
in the finite systems are of comparable magnitude for various
topologies and do not show a strong influence of integrability.

In addition, we studied infinite-range graphs which rep-
resent systems with maximum coordination number at given
system size. It was found that the fluctuations in these graphs
become significantly smaller for N → ∞ than those in graphs
of coordination number z = 2. We stress that in infinite-range
graphs the coordination number increases with system size
z = N − 1. This corroborates the expectation that fluctuations
are less important for higher connectivity of the cluster. This
paradigm is well established at equilibrium and the evidence
found indicates that it holds true as well in nonequilibrium.

Concerning thermalization, we confirmed the expectations
established in the literature that it depends decisively on the
extent that integrals of motion exist. The integrable chains
studied do not show thermalization, but stay away from the
thermal canonical ensemble. In contrast, the generic clusters
clearly display thermalization.

Obviously, many issues in the field of equilibration and
thermalization still require intensive investigation. Our data
showed that there are clear signs of transient behavior briefly
after the quench before the long-time average values and
variances emerge. For conceptual and practical purposes it is
highly desirable to understand this transient behavior better,
for instance, by determining or at least estimating the relevant
time scales. Knowledge of the relevant time scales in turn will
help to compute long-time averages and stationary values with
high accuracy. Finally, passing from quenches to more general
forms of time dependences of closed or open quantum systems
represents a vast field of research.
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APPENDIX A: FINITE CLUSTERS

Below, all clusters are presented which are used in the study of quenches in the generic nonintegrable one-band Fermi-
Hubbard model at half filling. The Ji j and Ui have been chosen randomly in a uniform manner within a 1% range around J and
U . The number of sites N increases by two row by row starting from N = 4 and going up to N = 12.

APPENDIX B: ADDITIONAL RESULTS
FOR U = 1J AND U = 6J

Additionally to the results for sudden interaction quenches
to U = 3J provided in the main text, we simulated quenches
to both U = 1J and 6J . We again calculated the global stan-
dard deviation σ as well as the global deviation �therm. The
respective results are thus comparable to the results shown in
Figs. 6 and 10, respectively. Results for U = 1J are shown
in Figs. 11 and 12. The results for U = 6J are depicted in
Figs. 13 and 14.

Both for U = 1J and 6J , we again notice a clear tendency
of the global standard deviation σ to decrease exponentially
with increasing cluster size N (see Figs. 11 and 13). This
is in full accordance with the results of quenches to U =
3J and corroborates our conclusion that this is the generic
behavior.

The situation is slightly different for the thermalization
behavior characterized by the global deviation �therm between
actual results and thermal predictions. The predictions re-
garding thermalization with a vanishing �therm → 0 in the
thermodynamic limit hold when the quenching strength is
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FIG. 11. Results for U = 1J showing the global standard de-
viation σ as derived from (30) of the double occupancies di(t )
fluctuating around their average values di after interaction quenches.
In accordance with Fig. 6 fluctuations are becoming exponentially
smaller with increasing cluster size N . Upper bounds (31) are
computed by complete exact diagonalization and shown using open
symbols. The bounds are indeed well above the actual data, but
they are clearly not tight. Solid and dashed lines denote fits (cf.
Fig. 6).

reasonably large (see Fig. 14). In situations, however, where
the quench is comparably weak—which is the case when
hopping strength J and interaction U are about equal at
U = 1J—the system is only weakly perturbed. The amount
of energy deposited in the system is relatively small. It is
plausible that the effects induced by the lower amount of
quenched energy make themselves felt only on larger time

FIG. 12. Results for an interaction quench of the strength U =
1J showing the global deviation �therm of the time averages di from
the thermal predictions 〈di〉th at the effective temperature of the
quench. Integrable (PBC) and nonintegrable (generic) clusters are
shown. A pronounced spread between the different generic clusters
can be noticed. Since the system is only weakly quenched no clear
tendency of thermalization or the absence thereof is visible in the
data for both the PBC and the generic systems.

FIG. 13. Global standard deviations σ for U = 6J as derived
from (30). The tendency of the fluctuations to decrease exponentially
with increasing system size N is obvious. Open symbols show upper
bounds (31).

scales. Concomitantly, larger spatial scales are also required.
While the computations can be done also for longer times with
reasonable effort, increasing linearly in time, it is extremely
tedious, if not impossible, to tackle larger systems because
they have exponentially larger Hilbert spaces.

It is worthwhile to notice that the average spread of �therm

among the generic clusters is much larger for U = 1J in
Fig. 12 than in the other cases U = 3J and 6J . This fact
emphasizes the higher influence of the varying topology of
the generic clusters for a particular system size N for weak
quenches. We attribute this to the fact that for weak interaction
quenches the kinetic part of the Hamiltonian comprising the
hoppings remains important. It is this part which defines the
topology; for the local interaction any set of N sites behaves
the same.

FIG. 14. Global deviation of the time averages di from the ther-
mal predictions 〈di〉th at the effective temperature for U = 6J . The
results agree qualitatively with the ones shown in Fig. 10 where a
detailed analysis can be found.
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