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Supersolid phase of the extended Bose-Hubbard model with an artificial gauge field
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We examine the zero- and finite-temperature phase diagrams of soft-core bosons of the extended Bose-
Hubbard model on a square optical lattice. To study various quantum phases and their transitions we employ
single-site and cluster Gutzwiller mean-field theory. We have observed that the Mott insulator phase vanishes
above a critical value of nearest-neighbor interaction and the supersolid phase occupies a larger region in the
phase diagram. We show that the presence of an artificial gauge field enlarges the domain of the supersolid
phase. The finite temperature destroys the crystalline structure of the supersolid phase and thereby favors the
normal fluid–to–superfluid phase transition. The presence of an envelope harmonic potential demonstrates the
coexistence of different phases, and at zkBT � V , thermal energy comparable to or higher than the long-range
interaction energy, the supersolidity of the system is destroyed.
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I. INTRODUCTION

Ultracold atomic systems have played an important role in
the study of quantum many-body systems. In particular, the
novel experimental developments in manipulating ultracold
atoms in optical lattices have led to the realization of new
quantum states and quantum phase transitions in strongly
correlated systems [1,2]. In recent years, there has been a
surge of interest in understanding the supersolid (SS) phase,
which is characterized by the simultaneous appearance of a
crystalline and an off-diagonal long-range order [3,4]. This
phase breaks two continuous symmetries: the phase invari-
ance of the superfluid (SF) and translational invariance to
form crystal. Although the SS phase was predicted in liquid
4He a long time ago [5,6], the experimental observation of
supersolidity in liquid 4He remains elusive [7–9]. However,
the quest for the SS phase has gained new impetus fol-
lowing the remarkable theoretical insights and experimental
achievements in ultracold atoms in optical lattices, which
are excellent quantum many-body systems to observe the
SS phase, as they are clean and controllable. Recently, the
characteristic signature of the SS phase has been observed
in ultracold atoms [10–14] and this phase may emerge by
tuning the bosonic interactions of different length scales [15].
Furthermore, the excitation spectrum and various properties
of the SS phase have been observed in recent quantum gas
experiments [16–18].

Regarding the theoretical aspects, the existence of the SS
phase has been studied using the extended Bose-Hubbard
model (eBHM). The checkerboard supersolid phase of hard-
core bosons is thermodynamically unstable towards phase
separation and this phase is not stabilized by next-nearest-
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neighbor (NNN) interactions [19]. However, in the soft-
core model, due to the larger Fock space and possibility of
a higher number fluctuations, the SS order is stable with
nearest-neighbor (NN) interactions [20–22]. Similarly, the SS
phase emerges in honeycomb lattices when the hard-core
limit of bosons is relaxed [23,24]. The existence and stability
of supersolidity have also been confirmed for bosons with
infinite-range cavity-mediated interactions [25]. The SS phase
has been explored in various lattice systems, such as the one-
dimensional chain [26,27] and ladder [28], two-dimensional
(2D) square [21,29–34], triangular [35–40], honeycomb
[23,24], kagome [41,42], and bilayer lattices of dipolar
bosons [43], and three-dimensional cubic lattice [31,44–46].
The eBHM with an artificial gauge field has been studied to
examine the fractional quantum Hall [47] and vortex-solid
states [48].

In this work we investigate theoretically the presence of
the SS phase of soft-core bosons in a 2D square optical lattice
with long-range interaction and an artificial gauge field. The
long-range interaction can be realized with dipolar ultracold
atoms [49,50]. And it is possible to introduce an artificial
gauge field with lasers [51–54]. For our studies we use the
single-site and cluster mean-field theories. We show that the
combined effect of the long-range interaction and artificial
gauge field increases the domain of the SS phase. In particular,
we examine the effect of magnetic flux quanta on the SS-
SF phase boundary in the presence of the NN interaction.
Furthermore, to relate to experimental realizations, we incor-
porate the effects of thermal fluctuations arising from finite
temperatures.

The paper is organized as follows. In Sec. II we introduce
the model considered in our study and describe the theoretical
approach employed. Here we provide a description of the
single-site, cluster, and finite-temperature Gutzwiller (GW)
mean-field theories. Ground-state phase diagrams and study
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of dipolar atoms in the confining potential are presented in
Sec. III. Finally, we conclude with the key findings of the
present work in Sec. IV.

II. THEORETICAL METHODS

A. Extended Bose-Hubbard model

Consider a system of bosonic atoms with long-range in-
teractions in a 2D square optical lattice in the presence of a
synthetic magnetic field. The temperature of the system is low
so that all the atoms occupy the lowest Bloch band. Such a
system is well described by the eBHM, and the Hamiltonian
of the model is

ĤeBHM = −
∑
p,q

(
Jxb̂†

p+1,qb̂p,q + Jyb̂†
p,q+1b̂p,q + H.c.

)

+
∑
p,q

n̂p,q

[
(εp,q − μ) + U

2
(n̂p,q − 1)

]

+
∑
〈ξξ ′〉

Vξ,ξ ′ n̂ξ n̂ξ ′ , (1)

where p(q) is the lattice site index along the x(y) direction,
b̂†

p,q (b̂p,q) is the bosonic operator which creates (annihilates)

an atom at the lattice site (p, q), n̂p,q = b̂†
p,qb̂p,q is the boson

number operator, Jx and Jy are the tunneling or hopping
strength between two NN sites along the x and y directions, re-
spectively, εp,q is the offset energy arising due to the presence
of an external envelope potential, μ is the chemical potential,
and U > 0 is the on-site interatomic interaction. Here ξ is
a combination of lattice indices in two dimensions, that is,
ξ ≡ (p, q) and ξ ′ ≡ (p′, q′) are neighboring sites to ξ . The
long-range interaction Vξ,ξ ′ is given by

Vξ,ξ ′ =
⎧⎨
⎩

V1 if |rpq − rp′q′ | = a,

V2 if |rpq − rp′q′ | = √
2a,

0 otherwise,
(2)

where a is the lattice spacing, and rpq = (pa, qa) are the
lattice site coordinates. The parameters V1 � 0 and V2 � 0
are the NN and NNN interactions, respectively. In the present
work, we consider V2/V1 = 1/2

√
2, which corresponds to the

inverse cube power law of the isotropic dipolar interaction.
These terms encapsulate the observable effects of the dipolar
interaction in the system. The higher V1 compared to V2 tends
to induce a checkerboard density pattern for the density wave
(DW) and SS phases. This minimal model captures the essen-
tial physics arising due to the hopping-induced competition
among different solid orders and the superfluidity. We also
consider this model to examine the ground states of inho-
mogeneous dipolar bosons at zero and finite temperatures in
optical lattices with an envelope confining harmonic potential.

B. Artificial gauge field

The long-range interaction in the above Hamiltonian,
Eq. (1), is characteristic of or inherent to the internal state
of the atomic species. In terms of the many-body physics,
the nature of the correlation can further be modified through
the introduction of an artificial gauge field. The presence of

the artificial gauge field modifies the Hamiltonian to

ĤeBHM = −
∑
p,q

(
Jxei2παqb̂†

p+1,qb̂p,q + Jyb̂†
p,q+1b̂p,q + H.c.

)

+
∑
p,q

n̂p,q

[
(εp,q − μ) + U

2
(n̂p,q − 1)

]

+
∑
〈ξξ ′〉

Vξ,ξ ′ n̂ξ n̂ξ ′ , (3)

where the strength of the magnetic field is reflected in the
number of flux quanta per plaquette α = (e/h̄)

∫
dr.A(r).

Here, 0 � α < 1, and A(r) is the vector potential which
gives rise to the synthetic magnetic field B = ∇ × A. In the
presence of the synthetic magnetic field, atoms acquire a 2πα

phase when they hop around a plaquette. This results in a
phase shift in the hopping strength of the model. Physically,
the synthetic magnetic field introduces a force on the atoms
which is equivalent to the Lorentz force on a charged particle
in the presence of an external magnetic field. The system is
then a charge-neutral analog of the quantum Hall system in
condensed matter systems. In the present study, we consider
the Landau gauge, where the vector potential A(r) = −Byx̂.
Hence, for the homogeneous system, at zero magnetic field
the system possesses translational invariance along both axes,
whereas in the presence of a magnetic field the system pre-
serves the invariance only along the x axis of the lattice.

C. Gutzwiller mean-field theory

To study the ground states of the systems described by the
model Hamiltonians in Eqs. (1) and (3) and their properties
we use the single-site Gutzwiller mean-field (SGMF) and
cluster Gutzwiller mean-field (CGMF) theories. The latter is
an extension of the SGMF which incorporates the correlation
within a cluster of neighboring sites exactly. In the SGMF
theory [34,55–59], the bosonic operators are expanded about
their expectation values as

b̂p,q = φp,q + δb̂p,q, (4a)

b̂†
p,q = φ∗

p,q + δb̂†
p,q. (4b)

Therefore, the product of the creation and annihilation
operators which occurs in the hopping term can be written
as

b̂†
p,qb̂p′,q′ ≈ φ∗

p,qb̂p′,q′ + b̂†
p,qφp′,q′ − φ∗

p,qφp′,q′ , (5)

where second-order terms in the fluctuation δb̂p,q are ne-
glected. Here, φp,q = 〈b̂p,q〉 is the SF order parameter of the
system. Using the above approximation in the Hamiltonian,
Eq. (3), the single-site mean-field Hamiltonian is

ĤMF
p,q = −[

Jxei2παq
(
φ∗

p+1,qb̂p,q − φ∗
p+1,qφp,q

)
+ Jy(φ∗

p,q+1b̂p,q − φ∗
p,q+1φp,q) + H.c.

]
+

[
(εp,q − μ) + U

2
(n̂p,q − 1)

]
n̂p,q

+
∑
〈ξ,ξ ′〉

Vξ,ξ ′ (n̂ξ 〈n̂ξ ′ 〉 − 〈n̂ξ 〉〈n̂ξ ′ 〉), (6)
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and the total Hamiltonian of the system is

ĤMF =
∑
p,q

ĤMF
p,q . (7)

Here, the neighboring lattice sites are coupled through φp,q,
the SF order parameter. And therefore the eigenstate of the
entire lattice is the product of single-site states. Accordingly,
the many-body wave function of the ground state of the
system is given by the GW ansatz

|�〉 =
∏
p,q

|ψ〉p,q =
∏
p,q

(
Nb∑

n=0

c(p,q)
n |n〉p,q

)
, (8)

where |ψ〉p,q is the single-site ground state, Nb is the number
of the occupation basis or maximum number of bosons at
each lattice site, |n〉p,q is the occupation or Fock state of n

bosons occupying site (p, q), and c(p,q)
n are the coefficients of

the occupation state. The normalization of the wave function
leads to the normalization of c(p,q)

n at each lattice site as

n|c(p,q)

n |2 = 1. Using the above ansatz the SF order param-
eter φp,q = 〈�| b̂p,q |�〉 is obtained as

φp,q =
Nb∑

n=0

√
n c(p,q)∗

n−1 c(p,q)
n . (9)

Similarly, the occupancy of each lattice site np,q =
〈�| b̂†

p,qb̂p,q |�〉 is

np,q =
Nb∑

n=0

n
∣∣c(p,q)

n

∣∣2
. (10)

The two parameters φp,q and np,q together serve to define
the quantum phases of the system. Using the mean-field
Hamiltonian, Eq. (6), the total energy of the system E =
〈�| ĤMF |�〉 is obtained as a sum of the single-site energies
Ep,q = 〈�| ĤMF

p,q |�〉. And E is minimized self-consistently
with Eqs. (9) and (10) to obtain the ground state of the system.

In the CGMF theory, a lattice of dimension K × L is
partitioned into W clusters of size M × N , that is, W = (K ×
L)/(M × N ) [58–64]. Then the hopping terms of the model
are decomposed into two types. One is the exact term which
corresponds to hopping within the cluster, and the other is
the intercluster hopping between lattice sites which lie on the
boundary of two neighboring clusters. The latter is defined by
coupling through the mean-field or the SF order parameter.
The Hamiltonian of a cluster is

ĤC = −
∑

p,q∈C

′(
Jxei2παqb̂†

p+1,qb̂p,q + Jyb̂†
p,q+1b̂p,q + H.c.

)

−
∑

p,q∈δC

(
Jxei2παq

(
φc

p+1,q

)∗
b̂p,q+Jy

(
φc

p,q+1

)∗
b̂p,q+H.c.

)

+
∑

p,q∈C

[
(εp,q − μ)n̂p,q + U

2
n̂p,q(n̂p,q − 1)

]

+
∑

〈ξξ ′〉∈C

Vξ,ξ ′ n̂ξ n̂ξ ′ +
∑

〈ξξ ′〉∈δC

Vξ,ξ ′ n̂ξ 〈n̂ξ ′ 〉, (11)

where the model parameters Jx, Jy, U , and Vξ,ξ ′ are defined as
in the SGMF and the prime in the first summation indicates

that the (p + 1, q) and (p, q + 1) lattice sites are also within
the cluster. Here, δC in the second summation represents
the lattice sites at the boundary of the clusters and (φc

p,q) =∑
p′,q′ �∈C〈b̂p′,q′ 〉 is the SF order parameter at the lattice site

which lies at the boundary of the neighboring cluster. Like the
hopping parameter, the long-range interaction term also has
two contributions; one is within the cluster, which is exact, and
the other is the intercluster interaction at the boundary, which
is defined through the mean occupancy 〈n̂ξ ′ 〉. The matrix
elements of ĤC are then calculated in terms of the cluster basis
states,

|�c〉� =
N−1∏
q=0

M−1∏
p=0

∣∣nq
p

〉
, (12)

where |nq
p〉 is the occupation number basis at the (p, q) lattice

site, and � ≡ {n0
0, n0

1, . . . , n0
M−1, n1

0, n1
1, . . . n1

M−1, . . . , nN−1
M−1}

is the index quantum number to identify the cluster state. After
diagonalizing the Hamiltonian, we can get the ground state of
the cluster as

|�c〉 =
∑

�

C� |�c〉� , (13)

where C� are components of the eigenvector and naturally
satisfy the normalization condition

∑
� |C�|2 = 1. The ground

state of the entire K × L lattice, as in the SGMF, is the direct
product of the cluster ground states∣∣�c

GW

〉 =
∏

k

|�c〉k , (14)

where k is the cluster index and varies from 1 to W =
(K × L)/(M × N ). The SF order parameter φ, as in Eq. (9),
can be computed in terms of the cluster states. The average
occupancy of the kth cluster can also be computed similarly.

D. Finite-temperature Gutzwiller mean-field theory

At finite temperature, the thermal fluctuations modify the
properties of the system, and observable properties are the
thermal averages. To calculate the thermal averages we need
the entire eigenspectrum. So, in the SGMF, we retain the en-
tire energy spectrum El

p,q and the eigenstates |ψ〉l
p,q obtained

from the diagonalization of the single-site Hamiltonian ĤMF
p,q

in Eq. (6). Then we evaluate the single-site partition function
of the system,

Z =
Nb∑

l=1

e−βEl
, (15)

where β = 1/kBT and T is the temperature of the system.
At finite T , the region in the phase diagram with φ = 0 and
the real occupancy 〈n̂p,q〉 is identified as the normal fluid
(NF) phase. Similarly, in the CGMF, the partition function is
defined in terms of all the eigenvalues El

k and eigenfunctions
|�c〉l

k of each kth cluster from all the W clusters.
From the definition of the partition function, in the SGMF,

the thermal average of φp,q is

〈φp,q〉 = 1

Z

Nb∑
i=0

p,q
i〈ψ |b̂p,qe−βEi |ψ〉i

p,q , (16)
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TABLE I. Classification of phases at zero and finite temperatures.

Quantum phase np,q φp,q 〈�n〉 κ

Mott insulator (MI) Integer 0 0 0
Density wave (DW) Integer 0 �=0 (integer) 0
Supersolid (SS) Real �=0 �=0 (real) �=0
Superfluid (SF) Real �=0 0 �=0
Normal fluid (NF) Real 0 0 or real �=0

where 〈. . .〉 represents the thermal averaging. Similarly, the
occupancy or the density at finite T is defined as

〈〈n̂p,q〉〉 = 1

Z

Nb∑
i=0

p,q
i〈ψ |n̂p,qe−βEi |ψ〉i

p,q . (17)

The average occupancy is 〈n〉 = ∑
p,q〈〈n̂p,q〉〉/(K × L). These

definitions can be extended to the CGMF by replacing the
single-site states and energies with those of the cluster.

E. Characterization of phases

The ground-state phases in the eBHM and the phase
boundaries are characterized by several order parameters. At
zero temperature, the ground states of the eBHM support
two incompressible and two compressible phases. The incom-
pressible phases are the Mott insulator (MI) and DW and the
compressible phases are the SS and SF. Among these phases,
the DW and SS are due to the long-range interaction between
atoms. The characteristic distinction between the DW and the
MI is their density distributions: the MI has commensurate
occupancy, whereas the DW phase has incommensurate occu-
pancy with long-range crystalline order. The insulating phases
have zero φ and integer occupancy of each site np,q; on the
other hand, the compressible phases have finite φ and real np,q.
We identify the phase boundaries between the MI(DW) and
the SF(SS) phases based on the order parameter φ and np,q.
The SS phase has long-range crystalline order in φ and np,q,
whereas the SF phase has a uniform density distribution of
atoms. The DW and SS phases are better described in terms of
sublattices A and B such that the NN sites belong to different
sublattices. The relative average occupancy 〈�n〉 is another
order parameter which can distinguish the DW and SS phases
from the MI and SF phases. In the SGMF method, for a K × L
lattice it is defined as

〈�n〉 = 1

K × L

∑
〈ξξ ′〉

|〈n̂ξ 〉 − 〈n̂ξ ′ 〉|, (18)

where 〈n̂ξ 〉 ≡ 〈n̂A〉 and 〈n̂ξ ′ 〉 ≡ 〈n̂B〉 are sublattice occupan-
cies. A similar expression can be defined for the CGMF
theory. For the DW and SS phases 〈�n〉 is nonzero, and in
particular, it is integer and real for the DW and SS phases,
respectively. But for the MI and SF phases 〈�n〉 is zero, as
〈n̂p,q〉 is uniform. Table I summarizes the classification of all
the phases discussed in the present work.

At finite temperature, an NF phase is present in the system
which is distinguishable from the incompressible MI and DW
phases by examining the local density variance, which is also

the measure of the local compressibility [65,66]

κ = ∂〈n̂〉
∂μ

= β
(〈n̂2

p,q〉 − 〈n̂p,q〉2
)
. (19)

This quantity defines the density fluctuations of the system.
κ is zero for MI and DW phases whereas it is nonzero
for the NF phase. We use these order parameters to obtain
the phase boundaries between various phases at zero and
finite temperatures. In the phase diagrams, discussed in the
next section, the incompressible phases are indicated by their
sublattice occupancies (nA, nB), with nA = nB for the MI and
nA �= nB for the DW phase.

III. RESULTS AND DISCUSSION

The standard BHM shows two phases, the incompressible
MI phase, corresponding to commensurate integer filling, and
the compressible SF phase, which has finite φ. The SF-MI
quantum phase transition was observed by tuning the depth
of the optical lattice [67]. In the eBHM, the introduction
of the NN interaction changes the phase diagram through
the emergence of two more phases. First is the DW, which
sandwiches the MI lobes at low values of NN interaction, and
second is the SS phase, which occurs as an envelope around
the DW lobes. In this work, we first examine the phase dia-
gram for homogeneous systems. We then study the impact of
an artificial gauge field on the phase diagram by considering
α = 1/2. For comparison with experimental realizations, we
also study this with an envelope potential.

A. Homogeneous case

The phase diagram of the eBHM obtained from the SGMF
is as shown in Fig. 1 for different values of V . It is important
to note that here V is the NN interaction which is V1 of
long-range interaction [Eq. (2)] and V2 = 0. In the phase
diagram, the incompressible DW and MI phases are identified
by their sublattice occupancies (nA, nB). We observed that for
zV < U , where z is the coordination number of the system,
the ground state alternates between MI and DW phases, and
regions of the SS phase occur as envelopes around the DW
phase lobes. With increasing V , at a critical value zVc = U
the MI lobes are transformed into the DW phase. For V � Vc,
the SS phase occupies a larger region in the phase diagram. As
V is increased, the other observable effect is that the critical
value of the hopping strength Jc/U for the DW-SS transition
also increases. At higher values, when zV � 1.5U , the SS-SF
phase boundary is like a linear function of J , and this is
discernible in Fig. 1(d). In particular, the phase boundary is
linear when zJ/U > 1. These findings are in good agreement
with the previous work of Iskin [68]. The numerical results
of the phase boundaries are in good agreement with the
analytical predictions of mean-field decoupling theory [69].
For example, the critical hopping Jc/U for the DW(1,0)-to-
SS transition at V/U = 0.32 is 0.0994 and analytical theory
predicts the same value for this set of parameters. Similarly,
we find that the MI-SF phase boundaries from our study are
consistent with the mean-field decoupling theory [69]. To
examine the importance of the intersite correlation effects the
phase diagram using the 2 × 2 CGMF method is as shown
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FIG. 1. Phase diagrams of the eBHM with uniform hopping am-
plitude (Jx = Jy = J) for (a) V/U = 0.2, (b) V/U = 0.27, (c) V/U =
0.32, and (d) V/U = 0.5. Plots show the phase boundaries for two
cases, α = 0 and α = 1/2. The dashed (solid) green line indicates
the MI-SF, DW-SF, and DW-SS phase boundaries for the α = 0
(α = 1/2) case. The dashed (solid) blue line represents the SS-SF
phase boundary for the α = 0 (α = 1/2) case. The phase boundaries
in the α = 1/2 case are obtained using the Landau gauge. Data points
obtained using the symmetric gauge are represented by filled black
circles. Here, the DW and MI phases are indicated by their sublattice
occupancies (nA, nB ).

in Fig. 2. It is qualitatively similar to the one based on the
SGMF in Fig. 1. But there are several quantitative differences.
First, the MI phase lobe is enhanced, whereas the DW phase
lobe is suppressed. As an example, for V/U = 0.2 the tip of
the DW(1,0) lobe is at Jc/U = 0.0717 using SGMF theory,
but with CGMF theory it is decreased to 0.0709. Although
the difference between the Jc values using the two theories is
very small, using higher clusters with the CGMF one can get
significantly different Jc’s. This is apparent from the cluster
finite-size scaling of the cluster sizes discussed in the next
subsection. Second, at higher values of V and α = 1/2, the
SS-SF phase boundary commences at J/U ≈ 0 and μ/U ≈ 0
with the SGMF theory. On the other hand, with the CGMF
theory the SS-SF boundary starts at a finite value of J/U and
μ/U = 0 [Figs. 2(c) and 2(d)]. Third, compared to the SGMF
results, with the CGMF theory we obtain SS domains which
are smaller in size. This is due to the better representation
of fluctuations in the CGMF theory. Our results demonstrate
the greater accuracy of the CGMF theory by correcting the
overestimation of the SS domain obtained from the single-site
mean-field theory. This observation is also consistent with a
similar comparison between results obtained from the single-
site mean-field theory and the quantum Monte Carlo (QMC)
[22,25]. And, finally, for higher values of V/U the SS-SF
boundary is linear at higher μ with the SGMF theory. But it
is curved with the CGMF theory. Qualitatively, the value of Jc

obtained using the SGMF and CGMF are close to the QMC
results available in the literature. The values of Jc/U for the

FIG. 2. Phase diagrams of the eBHM obtained from the CGMF
theory with 2 × 2 clusters for a uniform hopping amplitude (Jx =
Jy = J) at (a) V/U = 0.2, (b) V/U = 0.27, (c) V/U = 0.32, and
(d) V/U = 0.5. Plots show the phase boundaries for two cases, α = 0
and α = 1/2. The left dashed (solid) green line indicates the MI-
SF, DW-SF, and DW-SS phase boundaries for the α = 0 (α = 1/2)
case. The right dashed (solid) blue line represents the SS-SF phase
boundary for the α = 0 (α = 1/2) case. Here the DW and MI phases
are indicated by their sublattice occupancies (nA, nB ).

DW(1,0)-SS quantum phase transition at zV/U = 1 obtained
using the SGMF and CGMF methods are 0.0841 and 0.0832,
respectively, and these values are close to the QMC result
of 0.0822 [22]. Furthermore, we also carried out additional
computations to compare the Jc/U of the DW-SF quantum
phase transition at half-filling with the QMC predictions [70].
For example, at V/U ≈ 0.35, using the SGMF we obtain
Jc/U = 0.175. Using CGMF theory this value is improved
to 0.153. And this is in very good agreement with the QMC
result of 0.143 reported in Ref. [70]. Further improvements
in the values of the Jc of various quantum phase transitions
is possible when clusters of larger sizes are considered. This
is also evident from the cluster finite-size scaling analysis
discussed in the next subsection.

As mentioned earlier, to study the effect of an artificial
gauge field, we choose α = 1/2. So, hereafter by with an arti-
ficial gauge field we mean α = 1/2. And without an artificial
gauge field means α = 0. The artificial gauge field modifies
the phase boundaries of the MI, DW, and SS phases, and the
changes are discernible from the phase diagrams in Fig. 1.
For example, for the (1,0) DW lobe at V/U = 0.2, the tip of
the lobe is enhanced by 40%, from Jc/U ≈ 0.0717 to Jc/U ≈
0.101 with an artificial gauge field. This enhancement of the
insulating lobe and the phase boundaries of the DW(MI)-
SS(SF) transition with an artificial gauge field is in agreement
with the mean-field decoupling theory [69]. For example,
the Jc/U of the DW(1,0)-SS quantum phase transition with
α = 1/2 at V/U = 0.32 is 0.1406, which is the same as the
value obtained from the analytical theory [69]. The tip of the
SS lobe is enhanced from Jc/U ≈ 0.084 to Jc/U ≈ 0.119, and
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these changes together imply a larger domain of the SS phase
surrounding the DW(1,0) phase. These changes arise from the
localizing effect of the Landau quantization, associated with
the artificial gauge field, on the itinerant bosons. In addition,
there are major differences between the SGMF and the CGMF
phase diagrams. For example, the tip of the DW(1,0) lobe is
increased from Jc/U ≈ 0.101 in the SGMF to Jc/U = 0.110
in the CGMF. This implies that the effect of correlation due to
finite magnetic flux is better captured by the CGMF method.
We perform a stability analysis of the SS phase by computing
the average occupancy 〈n〉 as a function of μ [21,25]. The
unstable phase is characterized by a discontinuity in 〈n〉 as
μ is varied. In our study, we fix the J/U and vary μ/U
such that the SS phase is traversed, then compute the average
occupancy. As an example, at J/U = 0.12 and V/U = 0.32
for the α = 0 case, we do not observe any discontinuity in
〈n〉 as a function of μ/U . This confirms the stability of the
SS phase of soft-core bosons. We further include the NNN
interaction term and find that the SS phase remains stable. The
stability of the soft-core SS phase is consistent with the QMC
results in Refs. [21] and [22]. In addition, our analysis also
demonstrates the stability of the SS phase in the presence of
an artificial gauge field.

To check the gauge invariance of the phase boundaries, we
also compute the phase boundaries for α �= 0 using the SGMF
and CGMF with a symmetric gauge. For the symmetric gauge,
the vector potential A(r) = (1/2)(−Byx̂ + Bxŷ). We observe
that the phase boundaries obtained with the symmetric gauge
are in good agreement with the results with the Landau gauge.
This can be seen in Fig. 1, where the filled black circles are
the phase boundaries obtained using the symmetric gauge. For
example, with the symmetric gauge, the tip of the DW(1,0)
lobe for V/U = 0.2 is Jc/U = 0.101, which is identical to the
Landau gauge result. Similarly, for the same value of V/U ,
the CGMF result with 2 × 2 is Jc/U = 0.110. And this result
is invariant under Landau and symmetric gauges. The SS-SF
phase boundaries are also gauge invariant. To illustrate, con-
sider the SS-SF phase transition for V/U = 0.2. With μ/U =
0.44, both the symmetric and the Landau gauges give Jc/U =
0.119. And in the case of the CGMF, the value Jc/U =
0.1207 obtained with 2 × 2 clusters is gauge invariant. Thus,
the SGMF and CGMF methods give gauge-invariant phase
boundaries for the incompressible-to-compressible and SS-SF
quantum phase transitions. This is consistent with the general
principle that the observable quantities are gauge invariant
[71,72]. And it shows that the numerical methods we have
used are robust, as the results are gauge invariant.

The nature of the DW-SS transition is better represented
by 〈�n〉 and values for V = 0.22U and 0.32U corresponding
to V < Vc and V > Vc are shown in Fig. 3. In the figure,
the black regions correspond to MI and SF phases and the
regions in other colors correspond to DW and SS phases. For
V = 0.22U , the yellow regions are DW phases and the regions
in other shades correspond to SS phases. The gradient of the
shades indicates that the transition from DW to SS in terms
of 〈�n〉 is smooth. For the case of V = 0.32U , there are no
black regions in the neighborhood of J/U ≈ 0. This is due
to the absence of MI lobes and is consistent with the phase
diagram shown in Fig. 1, as all the MI lobes are transformed
to DW lobes. The nature of the DW phases is apparent and

V = 0.22 U V = 0.32 U

0 0.1 0.2
J/U

0

1

2

3
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/
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0 0.1 0.2

0

1

2

3

FIG. 3. The relative average occupancy of two consecutive sites
are shown as a function of the chemical potential μ and hopping
parameter J . The NN interaction is shown at the top.

visible from the color gradient in Fig. 3, as the colors indicate
the difference in the occupancy of two neighboring lattice
sites. As in the case of V = 0.22U , regions with a color
gradient indicate the SS phase, and overall the relative average
occupancy is in agreement with the phase diagram in Fig. 1.
However, the phase diagram in terms of 〈�n〉 provides a
richer description of the two phases, DW and SS, unique to
the eBHM vis-à-vis the BHM, and it serves as an appropriate
order parameter to examine the regions of the SS phase.

B. Cluster finite-size scaling

The results obtained from the SGMF and CGMF do pro-
vide qualitatively correct phase diagrams. And this can be
improved further by using a cluster finite-size scaling analysis.
Such an analysis provides the location of the phase boundary
in the thermodynamic limit. As a case study, we examine the
location of the DW and MI lobe tips Jc for α = 0, and V =
0.2U . To implement the cluster finite-size scaling analysis,
we use a series of square and rectangular clusters NC = 2 × 2,
4 × 2, 6 × 2, and 4 × 4. In addition, we include the results of
4 × 2 and 4 × 4 clusters with exact hopping along one spatial
direction. Here, we consider clusters with an even number of
sites along x and y directions, as only these clusters generate
a checkerboard order. To obtain the thermodynamic limit, we
introduce the scaling parameter λ = NB/(NB + NδB), which
varies from 0 to 1. Here, NB is the number of bonds within the
cluster and NδB is the number of bonds at the boundary which
couple the cluster to its neighbors through the mean-field
term [64,73]. The parameter λ is a measure of the atomic
correlations taken into account by using clusters of various
sizes. In the extreme limits, the SGMF NC = 1 × 1 and exact
NC = ∞ results correspond to λ = 0 and λ = 1, respectively.
Thus, the value of Jc improves as λ of the cluster approaches
1.

The cluster finite-size scaling analysis for the DW(1,0)
and MI(1,1) phases with α = 0 and V = 0.2U are shown in
Fig. 4. As shown in the figure, the location of the MI lobe tip,
Jc, increases with the cluster size. The SGMF favors the SF
phase, leading to underestimation of the MI phase. And the
CGMF with larger cluster sizes enhances the MI lobe. Based
on the linear fit the thermodynamic limit of Jc is 0.05428.
One key feature is that the results from the periodic boundary
condition with exact hopping in one direction lie closer to the
fitted line. And, more importantly, these have higher λ values,
as they have fewer bonds coupled to the mean field. The
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FIG. 4. The cluster finite-size scaling of Jc for the MI(1,1)-SF
(blue line) and DW(1,0)-SS (green line) transitions for different
cluster sizes. Circles represent the critical values obtained using
periodic boundary conditions along bothspatial dimensions; trian-
gles, along one dimension. Squares represent the exact values in
the thermodynamic limit. The scaling is performed for α = 0 and
V = 0.2U .

scaling behavior of Jc is in good agreement with the scaling
results for MI-SF in the BHM [63,64].

In the case of the DW(1,0) phase, Jc decreases with in-
creasing cluster size. In other words, the domain with DW
order decreases with larger clusters and implies that SGMF
theory overestimates the DW order. This is corrected by the
fluctuations incorporated with larger clusters. The trend is
opposite to the MI-phase case. From the cluster finite-size
scaling analysis, the linear fit gives the thermodynamic limit
of Jc as 0.06021. This trend of Jc is also reported in earlier
studies of the hard-core eBHM [40,73]. Furthermore, the
scaled Jc values of eBHM phase boundaries at zV/U = 1
are in good agreement with the QMC results [22]. In the
presence of an artificial gauge field, the qualitative features of
the scaling analysis will be modified, and the predicted exact
critical values of the transitions will differ from those in the
α = 0 case.

C. Finite-temperature effects

Thermal fluctuations associated with finite temperatures
are an essential feature of experimental observations. Al-
though the zero-temperature phase diagrams do provide key
insights and qualitative understanding, to relate them to the
experimental results it is essential to incorporate thermal
fluctuations. We do this through the approach outlined in
Sec. II D. As mentioned earlier, the SS phase is yet to be
observed in the eBHM and this could be due to the sensitivity
of the phase to thermal fluctuations. At zero temperature,
the SS phase appears in the system at a finite value of the
NN interaction V . In Fig. 5, we show the finite-temperature
phase diagrams obtained using 2 × 2 clusters in the CGMF
method. As we and others have demonstrated [58–64] that
the results with the CGMF are more reliable, hereafter we
only consider the results from CGMF theory. In the plots in
Fig. 5, a distinguishing feature of the thermal fluctuations is
the emergence of the NF phase. The thermal fluctuation melts
both the MI and the DW phases and destroys the SF phase at
the MI-DW and DW-DW boundaries.

To be more specific, at kBT = 0.02U , as shown in
Figs. 5(a) and 5(b), the orange shading marks the DW and MI
phases and the NF phase exists outside of these. The MI and

FIG. 5. Finite-temperature phase diagrams of the eBHM ob-
tained from CGMF theory with 2 × 2 clusters. The shaded orange
regions mark the DW and MI phases. (a) Phase diagram for α = 0 at
kBT = 0.02U . The dashed green line represents the MI-SF, NF-SF,
DW-SS, and NF-SS phase boundaries; the dashed blue line, the SS-
SF phase boundary. (b) Phase diagram for α = 1/2 at kBT = 0.02U .
The solid green line marks the MI-SF, NF-SF, DW-SS, and NF-SS
phase boundaries; the solid blue line, the SS-SF phase boundary.
Phase diagrams for α = 0 and 1/2 at (c) kBT = 0.1U and (d) kBT =
0.3U , with the combined color scheme from (a) and (b). Here, the
NN interaction V = 0.2U .

NF phases both have zero φ and commensurate densities. The
difference is that the MI phase has an integer commensurate
density, but the NF phase has a real commensurate density.
The DW phase, on the other hand, has a checkerboard density
but with integer values. The NF region around the DW phase
has an incommensurate real density. By observing the local
density variance or the compressibility, the incompressible
DW and MI phases can be differentiated from the NF phase as
mentioned in Sec. II E. Comparing the plots in Fig. 5(a) and
Fig. 5(b), it is clear that the larger MI and DW lobes with a
finite α are retained at finite temperatures and hence the larger
SS domain as well. At intermediate temperatures, both the MI
and the DW phases are entirely transformed into the NF phase
but a portion of the SS lobes survives. This is visible in the
phase diagram at kBT = 0.1U shown in Fig. 5(c). In the plots
in the figure, the quantitative differences with and without an
artificial gauge field are also visible. With an artificial gauge
field, the domains of the NF and SS phases are larger. For
example, at μ = 0 the NF extends up to J/U = 0.064 and
J/U = 0.104 for zero and finite α, respectively. This trend
of a larger extent of the NF phase with finite α extends to
higher values of μ. Upon a further increase in temperature
the crystalline order of the SS phase is destroyed and it
vanishes from the phase diagram. At kBT ≈ 0.3U , as shown in
Fig. 5(d), only the NF and SF phases are present in the system.
At μ/U = 0 the NF-SF phase boundary is located at J/U =
0.136 and J/U = 0.212 for zero and finite α, respectively.
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The separation between the location of the phase boundaries
is reduced as μ/U is increased. This is to be expected, as
the size of the DW lobes decreases with increasing μ/U .
As in the zero-temperature case, the phase boundaries of the
finite-temperature phase diagrams are also gauge invariant.
We confirmed this by analyzing the phase boundaries using
a symmetric gauge. As an illustration, consider the DW-SS
transition at μ/U = 0.4 and kBT/U = 0.02 with α = 1/2;
this point is chosen from the phase diagram in Fig. 5(b).
We obtain Jc/U = 0.098 using the symmetric gauge and this
value is in excellent agreement with the Landau gauge result.
Similarly, for the same value of μ/U the SS-SF transition
occurs at Jc/U = 0.122 and this value is gauge independent.
At a higher temperature, kBT/U = 0.3, the phase bound-
ary of the NF-SF transition is also gauge invariant. Hence,
comparison of the Jc/U values for various quantum phase
transitions using Landau and symmetric gauges demonstrates
the gauge invariance of the phase boundaries obtained with
the numerical methods we have adopted in this work.

D. Inhomogeneous case

The system considered so far is uniform and we emulate
it with a 12 × 12 lattice with periodic boundary conditions.
However, in most quantum gas experiments the optical lattice
has a confining envelope potential. Most often the external
envelope potential is a harmonic oscillator. Hence, the in-
homogeneity arising from this confining potential is another
factor to be considered for comparison with the experimental
observations. Therefore, we examine the ground state of the
eBHM in a 50 × 50 square lattice with SGMF theory where
the external harmonic potential is incorporated in the chemical
potential through the offset energy εp,q = �(p2 + q2). Here
� is the strength of the confining potential. The parameters
of the system considered are J/V = 0.1, μ/V = 2.8, and
�/V = 0.01 [74]. The value of � is such that the atomic
density outside the lattice potential is zero. The finite �

modifies the local μ and therefore the ground state exhibits
coexistence of various phases. Here V is the strength of the
dipolar interaction and the range of the potential is considered
up to second nearest neighbors. Therefore, for the long-range
interaction, Eq. (2), V1 = V and V2 = V/2

√
2.

To determine the changes in the competing phases we
examine the ground state of the system at V/U = 0.05, 0.5,
and 1.0. These values cover the weak and strong limits of
the dipolar interaction. In the experiments these regimes are
reachable using Feshbach resonance in dipolar atoms like Cr
[75], Er [76], and Dy [77,78]. As in the previous cases, to
study the effects of thermal fluctuations we consider three
values of kBT/V : 0, 0.2, and 0.3. At zero temperature, the
profiles of np,q and φp,q corresponding to V/U = 0.05, 0.5,
and 1.0 are shown in Fig. 6. For a weak dipolar interaction
V/U = 0.05 the density is nearly uniform in the central re-
gion. The corresponding φp,q, though nearly uniform, shows
a dip around the center. But it is more uniform at the inter-
mediate strength of the dipole interaction 0.5U . In both of
these cases, V/U = 0.05 and 0.5, the central SF region is
surrounded by the DW(1,0) phase and this is evident from the
ring-shaped profile of the checkerboard density pattern in the
figure. The other key feature is that the domain of the DW
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FIG. 6. Zero-temperature density distribution (upper panel) and
SF order parameter (lower panel) of a 50 × 50 square lattice for
different values of the dipolar interaction strength V/U . The V/U
value is shown at the top. Here x and y are in units of the lattice
spacing a.

phase becomes narrower as V/U is increased, and above a
critical value V/U = 0.8 there is a quantum phase transition
from the DW phase to the SS phase. This happens when both
the interaction strengths, on-site and dipole interactions, are
comparable. As shown in Fig. 6, for V/U = 1, there is a large
region around the center where both the density and the SF
order parameter show checkerboard distributions. This is the
signature of the SS phase.

Next, to relate to the experimental realizations we in-
corporate the finite-temperature effects. For weak dipolar
interaction thermal fluctuations lead to the melting of the
SF phase. This is evident from the density and SF order
parameter corresponding to V/U = 0.05 at kBT/V = 0.2 as
shown in Fig. 7. A more detailed study, where V/U is fixed
and the temperature is changed, shows that the SF phase in
the central region does exist at lower temperatures. But it
melts to the NF phase at the critical temperature of kBT/V =
0.16. At the higher value of V/U = 0.5 the central SF region
reemerges and so does the SS phase at the still higher value
of V/U = 1. In short, with thermal fluctuations it is essential
to have stronger dipolar interactions to observe the SS phase.
Considering the parameters for the experimental realization
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FIG. 7. Density distribution (upper panel) and SF order param-
eter (lower panel) of a 50 × 50 square lattice at kBT/V = 0.2 for
different values of the dipolar strength V/U . The V/U value is shown
at the top. Here x and y are in units of the lattice spacing a.
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FIG. 8. Density distribution (upper panel) and SF order param-
eter (lower panel) of a 50 × 50 square lattice in the presence of
an artificial gauge field α = 1/2 at kBT/V = 0.2. The V/U value
is shown at the top. Here x and y are in units of the lattice
spacing a.

of dipolar condensates of 168Er in optical lattices [50], the
corresponding temperature of kBT/V = 0.2 is ≈40 nK. This
is within the experimental realm, and hence the combined ef-
fect of the dipolar interaction and artificial gauge field can lead
to the emergence of the SS phase within an experimentally
achievable parameter domain.

At a higher temperature, kBT/V ≈ 0.3, the central region
is in the NF phase for weaker dipole interactions V/U � 0.5.
Then, upon increasing V/U further the density assumes a
checkerboard pattern, but the SF order parameter is zero.
That is, the central region of the system is in the DW phase.
This is to be compared and contrasted with the earlier result
at kBT/V ≈ 0.2, where, as shown in Fig. 7 the SS phase
exists for V/U = 1. Thus, focusing on the strong-interaction
domain V/U = 1, our results show the existence of an SS-DW
transition at z kBT = V . In short, the SS phase exists in the
system at lower temperatures, but the SS order melts into the
DW phase when zkBT � V . Upon increasing the temperature
further, the crystalline structure or diagonal long-range order
of the DW phase starts to melt and at zkBT ≈ 3V the system is
fully in the NF phase. So, the melting of the SS phase occurs
in two steps. First, the off-diagonal long-range SF order is
destroyed. This transforms the SS phase into the DW phase.
And second, the DW phase melts into the NF phase. In the
presence of an artificial gauge field the ground state and the
corresponding SF order parameter at kBT/V = 0.2 are shown

in Fig. 8. As in the case of a uniform system, there are no
qualitative changes in the results with the introduction of
an artificial gauge field, although the atoms have a velocity
current. For the parameters considered, at μ/V = 2.8 and
kBT/V = 0.2, the SS phase appears in the range �J = 0.04,
whereas in the presence of a gauge field this range is enhanced
to �J = 0.07. As discussed in the homogeneous case, for
a given μ the range of J values for the SS phase to occur
is larger than without a gauge field. This would enhance
the possibility of observing the SS phase with the eBHM in
experimental realizations.

IV. CONCLUSIONS

We have examined the zero- and finite-temperature phase
diagrams of the eBHM in two dimensions using SGMF and
CGMF theory. In the presence of an artificial gauge field the
domain of the SS phase is enhanced and 2 × 2 CGMF theory
provides a better description of the system. The cluster finite-
size scaling analysis demonstrates the key role of fluctuations
in determining the quantum phases. For the DW-SS transition,
the suppression of fluctuations favors the DW phase. But in
the MI-SF transition, suppression of fluctuations favors the
SF phase. This is indicated by the decrease and increase in Jc

in the DW-SS and MI-SF transitions, respectively. At higher
temperatures, thermal fluctuations destroy the SS phase and
the phase diagram exhibits an NF-SF transition. Furthermore,
we have studied the system of ultracold bosons with long-
range interactions in the presence of a harmonic confinement
to relate to quantum gas experiments. Our results show that
beyond a critical threshold of temperature, zkBT � V , the SS
phase vanishes and the system is occupied by the DW phase.
These results suggest that the prospect of observing the SS
phase is higher when the temperature zkBT < V ; this range
of temperatures is possible in experiments on dipolar Bose
gases loaded into optical lattices. This offers the opportunity
to observe the SS phase with the eBHM in quantum dipolar
gas experiments.
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