
PHYSICAL REVIEW A 102, 013315 (2020)

Stoner-Wohlfarth switching of the condensate magnetization in a dipolar spinor gas
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We consider quasi-one-dimensional dipolar spinor Bose-Einstein condensates in the homogeneous-local-spin-
orientation approximation, that is, with unidirectional local magnetization. By analytically calculating the exact
effective dipole-dipole interaction, we derive a Landau-Lifshitz-Gilbert equation for the dissipative condensate
magnetization dynamics, and show how it leads to the Stoner-Wohlfarth model of a uniaxial ferromagnetic
particle, where the latter model determines the stable magnetization patterns and hysteresis curves for switching
between them. For an external magnetic field pointing along the axial, long direction, we analytically solve
the Landau-Lifshitz-Gilbert equation. The solution explicitly demonstrates that the magnetic dipole-dipole
interaction accelerates the dissipative dynamics of the magnetic moment distribution and the associated
dephasing of the magnetic moment direction. Under suitable conditions, dephasing of the magnetization
direction due to dipole-dipole interactions occurs within time scales up to two orders of magnitude smaller
than the lifetime of currently experimentally realized dipolar spinor condensates, e.g., those produced with the
large magnetic-dipole-moment atoms 166Er. This enables experimental access to the dissipation parameter � in
the Gross-Pitaevskii mean-field equation, for a system currently lacking a complete quantum kinetic treatment
of dissipative processes and, in particular, an experimental check of the commonly used assumption that � is a
single scalar independent of spin indices.

DOI: 10.1103/PhysRevA.102.013315

I. INTRODUCTION

Ever since a phenomenological theory to describe the be-
havior of superfluid helium II near the λ point was developed
by Pitaevskii [1], the dynamics of Bose-Einstein condensates
(BECs) under dissipation has been intensely studied (see,
e.g., Refs. [2–8]). Experimentally, the impact of Bose-Einstein
condensation on excitation damping and its temperature de-
pendence has for example been demonstrated in Refs. [9–12].

Dissipation in the form of condensate loss is defined by
a dimensionless damping rate � entering the left-hand side
of the Gross-Pitaevskii equation, replacing the time deriva-
tive as i∂t → (i − �)∂t . While a microscopic theory of con-
densate damping is comparatively well established in the
contact-interaction case, using various approaches (cf., e.g.,
Refs. [5,13–15]), we emphasize the absence of a microscopic
theory of damping in dipolar spinor gases. While for scalar
dipolar condensates, partial answers as to the degree and
origin of condensate-excitation damping have been found
(see, e.g., Refs. [16–19]), in spinor or multicomponent gases
the interplay of anisotropic long-range interactions and in-
ternal spinor or multicomponent degrees of freedom leads
to a highly intricate and difficult-to-disentangle many-body
behavior of condensate-excitation damping.

In this paper, we propose a method to experimentally
access � in a dipolar spinor condensate by using the dynam-
ics of the unidirectional local magnetization in a quasi-one-
dimensional (quasi-1D) dipolar spinor BEC in the presence
of an external magnetic field. To this end, we first derive an

equation of motion for the magnetization of the BEC that
has the form of a Landau-Lifshitz-Gilbert (LLG) equation
[20–22], with an additional term due to the dipole-dipole
interaction between the atoms. The LLG equation is ubiqui-
tous in nanomagnetism, where it describes the creation and
dynamics of magnetization. The static limit of this equation is,
in the limit of homogeneous local spin orientation, described
by the well-known Stoner-Wohlfarth (SW) model [23–25] of
a small magnetic particle with an easy axis of magnetization.
We then investigate the magnetization switching after flipping
the sign of the external magnetic field, and demonstrate the
detailed dependence of the switching dynamics on the dissi-
pative parameter �.

For a quasi-two-dimensional (quasi-2D) spinor BEC with
inhomogeneous local magnetization, Ref. [26] has studied
the magnetic domain wall formation process by deriving a
LLG type equation. Here, we derive the LLG equation in a
quasi-1D spinor BEC with unidirectional local magnetization
in order to establish a most direct connection to the original
SW model. In distinction to Ref. [27], which studied the
effective quasi-1D dipole-dipole interaction resulting from
integrating out the two transverse directions within a simple
approximation, we employ below an exact analytic form of
the dipole-dipole interaction.

In Sec. II, we establish the quasi-1D spinor Gross-
Pitaevskii (GP) equation with dissipation, and equations of
motion for the magnetization direction (unit vector) M.
Section V shows how the LLG equation and the SW model
result, and Sec. VI derives analytical solutions to the equations

2469-9926/2020/102(1)/013315(17) 013315-1 ©2020 American Physical Society

https://orcid.org/0000-0002-2041-5292
https://orcid.org/0000-0002-9874-9639
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.013315&domain=pdf&date_stamp=2020-07-16
https://doi.org/10.1103/PhysRevA.102.013315


SHINN, BRAUN, AND FISCHER PHYSICAL REVIEW A 102, 013315 (2020)

of motion for M when the external magnetic field points along
the long, z axis. We summarize our results in Sec. VII.

We defer two longer derivations to the Appendixes. The an-
alytical form of the effective dipole-dipole interaction energy
is deduced in Appendix A, and the quasi-1D GP mean-field
equation with dissipation is described in detail in Appendix B.
Finally, in Appendix C, we briefly discuss to what extent
relaxing the usual simplifying assumption that dissipation
even in the spinor case is described by a single scalar changes
the LLG equation, and whether this affects the SW model and
its predictions.

II. GENERAL DESCRIPTION OF DAMPING IN BECs

The standard derivation of the quantum kinetics of Bose-
Einstein condensate damping [5] starts from the microscopic
Heisenberg equation of motion for the quantum field operator
ψ̂ (r, t ), for a scalar (single-component) BEC in the s-wave
scattering limit. We use the results of Ref. [28], which ob-
tained a mean-field equation to describe the dissipation of a
scalar BEC, whose form is

(i − �)h̄
∂ψ

∂t
= Hψ, (1)

where ψ is (in the large-N limit) the dominant mean-field part
upon expanding the full bosonic field operator ψ̂ .

In Ref. [1], Pitaevskii obtained a similar but slightly dif-
ferent form of the dissipative mean-field equation based on
phenomenological considerations, ih̄ ∂ψ

∂t = (1 − i�)Hψ , by
parametrizing the deviation from exact continuity for the
condensate fraction while minimizing the energy [1]. The
latter deviation is assumed to be small, which is equivalent to
assuming that � remains small. This provides a clear physical
interpretation of the damping mechanism, namely, one based
on particle loss from the condensate fraction. The version of
Pitaevskii can be written as

(i − �)h̄
∂ψ

∂t
= (1 + �2)Hψ. (2)

It can thus be simply obtained by rescaling time with a
factor 1 + �2 compared to Eq. (1). Hence, as long as one
does not predict precisely �, the two dissipative equations
(1) and (2) cannot be distinguished experimentally from the
dynamics they induce. From the data of Ref. [11], employing
the results of Ref. [29], the estimated typical values are � �
0.03 for a scalar BEC of 23Na atoms at T � Tc/10 [4]. At
low temperatures (T → 0), the latter reference derived � ∝
T 3/2e(2μ−μN )/kBT for a BEC in a harmonic trap, where μ is the
chemical potential of the condensate and μN its nonconden-
sate counterpart (also compare the discussion in Ref. [12]).
Assuming that indeed � is of order 10−2 demonstrates that
to distinguish between Eqs. (1) and (2) experimentally the
theoretical predictions of � would need to be precise to
order 10−4.

How Eqs. (1) and (2) can be generalized to the dipolar
spinor gases is comparatively little investigated. Using a
symmetry-breaking mean-field approach by writing the quan-
tum field operator ψ̂ (r, t ) as ψ̂ (r, t ) = ψ (r, t ) + δψ̂ (r, t ),
with ψ (r, t ) = 〈ψ̂ (r, t )〉 and 〈δψ̂ (r, t )〉 = 0, Refs. [5,28]
showed that � can be derived from the three-field corre-
lation function 〈δψ̂†(r, t )δψ̂ (r, t )δψ̂ (r, t )〉 in a basis where

〈δψ̂ (r, t )δψ̂ (r, t )〉 = 0. Then, � ∝ A(T )/T for a homoge-
neous scalar BEC, where A(T ) is of order unity for T/Tc >

0.5 and A(T ) → 0 when T → 0. From this microscopic ori-
gin, based on correlation functions, it is clear that in principle
� might depend on the spin indices in a spinor BEC and hence
become a tensor (see Appendix C for a corresponding phe-
nomenological generalization). Nevertheless, it is commonly
assumed (cf., e.g., Refs. [26,30]) that � does not depend on
spin indices, and the scalar value found specifically in Ref. [4]
for a scalar BEC of 23Na atoms is commonly used, while a
clear justification of this assumption is missing.

Extending the microscopic derivations in Refs. [5,28] to
the spinor case would be theoretically interesting, but it is
beyond the scope of the present paper. Here, we instead focus
on the question whether the standard assumption that the
damping of each spinor component can be described by the
mean-field equation [28] leads to experimentally falsifiable
dynamical signatures. It will turn out that this assumption
introduces an additional strong dephasing in the spin degrees
of freedom, amplified by the dipolar interaction. Hence, even
on time scales on which the decay of the condensate frac-
tion according to Eq. (1) can be neglected, the relaxation
of the magnetization of the BEC potentially offers valuable
insights whether the scalar-� assumption is justified. Indeed,
in Ref. [31] it was shown experimentally that on the time scale
of the switching dynamics of the magnetization the number of
particles in the condensates remains approximately constant.
One might wonder, then, which dissipative mechanism is left.
However, as we show, by assuming the same GP equation for
each component of the spinor as for scalar bosons, additional
dephasing occurs that is in fact much more rapid than the
decay of condensate density due to dephasing accelerated by
the dipole-dipole interaction.

III. MEAN-FIELD DYNAMICS OF DAMPING
IN DIPOLAR SPINOR BECs

For a spinor BEC, linear and quadratic Zeeman interactions
are commonly included in the Hamiltonian. The quadratic
Zeeman interaction is related to a second-order perturbation
term in the total energy that can be induced by the interaction
with an external magnetic field (qB) as well as with the
interaction with a microwave field (qMW) [32]. Specifically, by
applying a linearly polarized microwave field, one can change
qMW without changing qB [33,34]. Hence, we assume that
the quadratic Zeeman term can be rendered zero by suitably
changing qMW.

Following Ref. [26], we thus assert that, for a dipolar spinor
BEC without quadratic Zeeman term, the mean-field equation
can be written as

(i − �)h̄
∂ψ (r, t )

∂t
=

[
− h̄2

2m
∇2 + Vtr (r) + c0|ψ (r, t )|2

− h̄{b − bdd (r, t )} · f̂
]
ψ (r, t )

+
S∑

k=1

c2k

∑
ν1,ν2,...,νk=x,y,z

Fν1,ν2,...,νk (r, t )

× f̂ν1 f̂ν2 · · · f̂νk ψ (r, t ), (3)
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where ψ (r, t ) is a vector quantity whose αth component
in the spinor basis is ψα (r, t ) (spin-space indices from the
beginning of the greek alphabet such as α, β, γ , . . . are
integers running from −S to S). In this expression, h̄ f̂
is the spin-S operator where the spin ladder is defined
by f̂z|α〉 = α|α〉 and 〈α|β〉 = δα,β , while Fν1,ν2,...,νk (r, t ) :=
ψ†(r, t ) f̂ν1 f̂ν2 · · · f̂νk ψ (r, t ) are the components of the expec-
tation value of f̂ν1 f̂ν2 · · · f̂νk . The Larmor frequency vector
reads b = gF μBB/h̄ (with Landé g factor gF , Bohr magneton
μB, and the external magnetic induction B), and h̄bdd (r, t ) ·
eν = cdd

∫
d3r′ ∑

ν ′=x,y,z Qν,ν ′ (r − r′)Fν ′ (r′, t ). Here, cdd =
μ0(gF μB)2/(4π ) and eν is a unit vector along the ν axis
[32] (by convention, indices from the middle of the greek al-
phabet such as κ, λ, μ, ν, . . . = x, y, z denote spatial indices),
and Qν,ν ′ is the spin-space tensor defined in Eq. (A2) of
Appendix A. Finally, m is the boson mass, c0 the density-
density interaction coefficient, and c2k the interaction coef-
ficient parametrizing the spin-spin interactions, where k is a
positive integer running from 1 to S [26]. For example, c2 is
the spin-spin interaction coefficient of a spin-1 gas (S = 1).

To develop a simple and intuitive physical approach, we
consider a quasi-1D gas for which one can perform analytical
calculations. We set the trap potential as

Vtr (x, y, z) = 1
2 mω2

⊥(x2 + y2) + V (z), (4)

so that the long axis of our gas is directed along the z axis and
the gas is strongly confined perpendicularly.

For a harmonic trap along all directions, i.e., when V (z) =
mω2

z z2/2, we set ω⊥ 
 ωz. For a box trap along z, i.e., when
V (z) = 0 for |z| � Lz and V (z) = ∞ for |z| > Lz, our gas
will be strongly confined along z as long as the quasi-1D
condition is satisfied; we discuss below whether the condition
is satisfied, in Sec. VI A.

Single-domain spinor BECs have been already realized,
for example, using spin-1 87Rb [35]. This single-domain ap-
proximation is common in nanomagnetism (see, for example,
Ref. [24]), by assuming magnetic particles much smaller than
the typical width of a domain wall. The local magnetization is
related to the expectation value h̄F(r, t ) ≡ h̄ψ†(r, t ) f̂ψ (r, t )
of the spatial spin density operator by d(r, t ) = gF μBF(r, t ).
A unidirectional local magnetization d(z, t ) is then given by

dx(z, t ) = d (z, t ) sin θ (t ) cos φ(t ),

dy(z, t ) = d (z, t ) sin θ (t ) sin φ(t ),

dz(z, t ) = d (z, t ) cos θ (t ), (5)

where dν (z, t ) = d(z, t ) · eν is the νth component of d(z, t ),
d (z, t ) = |d(z, t )|, θ (t ) is polar angle of d(z, t ), and φ(t ) is
azimuthal angle of d(z, t ). For an illustration of the geometry
considered, see Fig. 1. For a single-component dipolar BEC,
F(r, t ) has a fixed direction. To study the relation of the
Stoner-Wohlfarth model, in which F(r, t ) changes its direc-
tion, with a dipolar BEC, a multicomponent dipolar BEC
should therefore be employed.

In the quasi-1D approximation, the order parameter
ψα (r, t ) is commonly assumed to be of the form

ψα (r, t ) = e−ρ2/(2l2
⊥ )

l⊥
√

π
�α (z, t ), (6)

FIG. 1. Schematic of the considered geometry in a quasi-1D gas
(shaded ellipsoid). The length of the red magnetization arrows, all
pointing in the same direction (homogeneous local-spin-orientation
limit), represents |d(z, t )|.

where l⊥ is the harmonic oscillator length in the x-y plane
and ρ =

√
x2 + y2 . Assuming our gas is in the homogeneous

local spin-orientation limit, we may also apply a single mode
approximation in space so that �α (z, t ) = �uni(z, t )ζα (t ). The
time-dependent spinor part is

ζα (t ) = 〈α|e−i f̂zφ(t )e−i f̂yθ (t )|S〉 (7)

for spin-S particles [26,32] and the normalization reads
|ζ (t )|2 := ζ †(t )ζ (t ) = 1. Finally, due to the (i − �) factor on
the left-hand side of Eq. (3), for ease of calculation, we may
make the following Ansatz for the ψα (r, t ) (cf. Ref. [36]),

ψα (r, t ) = e−ρ2/(2l2
⊥ )

l⊥
√

π
�(z, t )ζα (t )e−(i+�)ω⊥t/(1+�2 ). (8)

From our Ansätze in Eqs. (7) and (8), one concludes that the
expectation value of the (spatial) spin-density operator is

h̄Fx(r, t ) = h̄S
e−ρ2/l2

⊥

π l2
⊥

|�(z, t )|2e−2�ω⊥t/(1+�2 )

× sin θ (t ) cos φ(t ),

h̄Fy(r, t ) = h̄S
e−ρ2/l2

⊥

π l2
⊥

|�(z, t )|2e−2�ω⊥t/(1+�2 )

× sin θ (t ) sin φ(t ),

h̄Fz(r, t ) = h̄S
e−ρ2/l2

⊥

π l2
⊥

|�(z, t )|2e−2�ω⊥t/(1+�2 )

× cos θ (t ). (9)

The above equations lead to unidirectional local magnetiza-
tion, which has been assumed in Eqs. (5), in the quasi-1D
limit (after integrating out the strongly confining x and y
axes). Note, however, that our Ansatz in Eq. (8) is sufficient,
but not necessary, for the homogeneous-local-spin-orientation
limit, and the homogeneous-local-spin-orientation Ansatz is
thus designed to render our approach as simple as possible.

Because we are not assuming any specific form of �(z, t )
in our Ansatz in Eq. (8), we cover every possible time behavior
of |ψ (r, t )|2 := ψ†(t )ψ (t ):

|ψ (r, t )|2 = e−ρ2/l2
⊥

π l2
⊥

|�(z, t )|2e−2�ω⊥t/(1+�2 ). (10)

Equation (10) explicitly shows that Eq. (8) does not imply
an exponentially decaying wave function with time since
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|�(z, t )|2 can be any physical function of time t . However,
the Ansatz (8) simplifies the resulting equation for �(z, t ),
Eq. (11) below.

By integrating out the x and y directions, the GP equation
for a quasi-1D spin-S BEC can be written as (for a detailed
derivation see Appendix B)

(i − �)h̄
∂{�(z, t )ζα (t )}

∂t
=

{
− h̄2

2m

∂2

∂z2
+ V (z) + c0

2π l2
⊥

n(z, t )

}
�(z, t )ζα (t )

+ h̄[−b + S{M(t ) − 3Mz(t )ez}Pdd (z, t )] ·
⎧⎨
⎩

S∑
β=−S

( f̂ )α,β�(z, t )ζβ (t )

⎫⎬
⎭

+
S∑

k=1

c2k

2π l2
⊥

n(z, t )
∑

ν1,ν2,...,νk=x,y,z

SMν1,ν2,...,νk (t )

⎧⎨
⎩

S∑
β=−S

(
f̂ν1 f̂ν2 · · · f̂νk

)
α,β

�(z, t )ζβ (t )

⎫⎬
⎭, (11)

where we defined the two functions

Mν1,ν2,...,νk (t ) := 1

S

S∑
α,β=−S

ζ †
α (t )

(
f̂ν1 f̂ν2 · · · f̂νk

)
α,β

ζβ (t ), (12)

Pdd (z, t ) := cdd

2h̄l3
⊥

∫ ∞

−∞
dz′n(z′, t )

{
G

( |z − z′|
l⊥

)
− 4

3
δ

(
z − z′

l⊥

)}
, (13)

with the axial density n(z, t ) := ∫
d2ρ |ψ (r, t )|2 =

|�(z, t )|2e−2�ω⊥t/(1+�2 ), where
∫

d2ρ := ∫ ∞
−∞ dx

∫ ∞
−∞ dy.

Finally, the function G appearing in Pdd is defined as

G(λ) :=
√

π

2
(λ2 + 1)eλ2/2erfc

(
λ√
2

)
− λ. (14)

We plot G(λ) as a function of λ in Fig. 2.
Equation (11) represents our starting point for analyzing

the dynamics of magnetization. We now proceed to show how
it leads to the LLG equation and the Stoner-Wohlfarth model.

IV. EFFECTIVE LAGRANGIAN DESCRIPTION

To provide a concise phase-space picture of the condensate
magnetization dynamics, we discuss in this section a collec-
tive coordinate Lagrangian appropriate to our system.

Let M(t ) := d(z, t )/d (z, t ) where the magnetization
d(z, t ) is defined in Eq. (5). Explicitly, the local

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

FIG. 2. The function G(λ) defined in Eq. (14). Note that G(λ) �
2/λ3 + O(λ−5) for λ 
 1, so G(λ) is always positive for λ � 0.

magnetization direction reads M(t ) = (sin θ (t ) cos φ(t ),
sin θ (t ) sin φ(t ), cos θ (t )). Then, from Eqs. (9) and (10),
F(r, t ) = SM(t )|ψ (r, t )|2 and one obtains (for a detailed
derivation see Appendix B)

∂M
∂t

= M × {b + S�′
dd (t )Mzez} − �M × ∂M

∂t
, (15)

where the renormalized interaction function �′
dd (t ) reads

�′
dd (t ) = 3

N (t )

∫ ∞

−∞
dz n(z, t )Pdd (z, t ), (16)

and N (t ) := ∫
d3r |ψ (r, t )|2 = ∫ ∞

−∞ dz n(z, t ). From
Eqs. (A9), (A12), and (13), �′

dd (t ) is connected to the
dipole-dipole interaction contribution Vdd (t ) by

Vdd (t ) = 3

2
h̄S2

{
sin2 θ (t ) − 2

3

}∫ ∞

−∞
dz n(z, t )Pdd (z, t )

= h̄

2
S2N (t )�′

dd (t )

{
1

3
− cos2 θ (t )

}
. (17)

We note that in order to obtain the effective quasi-1D dipolar
interaction (17), we did not use, in distinction to Ref. [27], any
simplifying approximation. A detailed derivation is provided
in Appendix A.

Equation (15) is the LLG equation with the external
magnetic field in the z direction modified by the magne-
tization in the z direction due to the dipole-dipole inter-
action. The corresponding term in units of magnetic field,
h̄S�′

dd (t )Mzez/(gF μB), can be seen as an additional magnetic
field that is itself proportional to the magnetization in the z
direction, and which leads to an additional nonlinearity in the
LLG equation.

From Eqs. (13) and (16), to get how �′
dd (t ) depends on

time t , one has to calculate the double integral∫
dz

∫
dz′n(z, t )n(z′, t )

{
G

( |z − z′|
l⊥

)
− 4

3
δ

(
z − z′

l⊥

)}
. (18)
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To achieve a simple physical picture, we assume that n(z, t )
does not depend on time t within the time range we are
interested in. Then we may write �′

dd (t ) = �′
dd . The lifetime

of a typical dipolar BEC with large atomic magnetic dipole
moments such as 164Dy [37], 162Dy and 160Dy [38], or 166Er
[31] is of the order of seconds. Since taking into account
the time dependence of n(z, t ) generally requires a numerical
solution of Eq. (11), we here consider the case where n(z, t )
is constant in time t as in Ref. [26], to predominantly extract
the effect of magnetic dipole-dipole interaction per se.

We also neglect the possible effect of magnetostriction.
The latter effect, amounting to a distortion of the aspect ratio
of the condensate in a harmonic trap as a function of the angle
of the external magnetic field with the symmetry axis of the
trap, was measured in a condensate of chromium atoms [39]
(with a magnetic moment of 6μB, comparably large to those
of Er, 7μB, and Dy, 10μB). The magnetostriction effect in that
experiment was of the order of 10%. For alkali-metal atoms
with spin 1 the effect should be a factor of 62 smaller. In
addition, theoretical analyses in the Thomas-Fermi limit show
that magnetostriction in harmonic traps becomes particularly
small for very small or very large asymmetries of the trap
[40,41].

More specifically, Ref. [42] has shown that magnetostric-
tion is due to the force induced by the dipole-dipole mean-
field potential �dd (r, t ). In Appendix D, we apply the ap-
proach of Ref. [42] to a dipolar spinor BEC. From Eqs. (16),
(17), (A1), and (D5), �′

dd (t ) contains �dd (z, t ) [the quasi-1D
form of �dd (r, t ) defined in Eq. (D5)] by

S2
{
1 − 3M2

z (t )
}
N (t )h̄�′

dd (t ) = 3
∫ ∞

−∞
dz n(z, t )�dd (z, t ).

(19)

Hence, our LLG-type equation in Eq. (15) effectively contains
the dipole-dipole mean-field potential which causes magne-
tostriction and the form of Eq. (15) itself will not be changed
whether the effect of magnetostriction is large or not. Only
the value of �′

dd (t ) will be changed because magnetostriction
changes the integration domain. Furthermore, we show in
Appendix D that, for our quasi-1D system, the effect of
magnetostriction is smaller in a box trap than in a harmonic
trap. In fact, for the box trap, this effect can be neglected if
Lz/l⊥ is sufficiently large. Thus, we may neglect the effect
of magnetostriction under suitable limits for both box and
harmonic traps.

To get a simple physical idea of the dynamical behavior of
our system, let us, for now, assume that there is no damping,
� = 0. When the external magnetic field is chosen to lie in the
x-z plane, B = (Bx, 0, Bz ), Eq. (15) becomes

dθ

dt
= bx sin φ,

dφ

dt
= bx cot θ cos φ − bz − S�′

dd cos θ, (20)

where we already defined the Larmor frequency vector b =
gF μBB/h̄ below Eq. (3).

By using the Lagrangian formalism introduced in
Ref. [43], the Lagrangian L of this system then fulfills

L

h̄
= φ̇ cos θ + bx sin θ cos φ + bz cos θ + S

4
�′

dd cos(2θ ),

(21)

where φ̇ = dφ/dt . The equations of motion are

1

h̄

∂L

∂θ
= −φ̇ sin θ + bx cos θ cos φ − bz sin θ

− S

2
�′

dd sin(2θ ),

∂L

∂θ̇
= 0,

1

h̄

∂L

∂φ
= −bx sin θ sin φ,

1

h̄

∂L

∂φ̇
= cos θ. (22)

One easily verifies that Eq. (21) is indeed the Lagrangian
which gives Eqs. (20). Let pξ be the conjugate momentum
of the coordinate ξ . Since pθ = 0 and pφ = h̄ cos θ (h̄ times
the z component of M), the Hamiltonian H is given by

H = −bx

√
h̄2 − p2

φ cos φ − bz pφ + h̄2 − 2p2
φ

4h̄
S�′

dd . (23)

Note that the energy Ẽ := H − h̄S�′
dd/4 is conserved. Hence,

if we put pφ = (pφ )in and φ = π/2 at some time t = t0,
Ẽ = −bz(pφ )in − S�′

dd (pφ )2
in/2h̄. We can then express φ as

a function of pφ as

cos φ = − Ẽ + bz pφ + 1
2h̄ S�′

dd p2
φ

bx

√
h̄2 − p2

φ

= {(pφ )in − pφ}bz + S�′
dd

(pφ )in+pφ

2h̄

bx

√
h̄2 − p2

φ

. (24)

The canonical momentum pφ remains the initial (pφ )in when
bx = 0, implying that θ does not change when bx = 0, con-
sistent with Eqs. (20). If |bx| is larger than |bz ± S�′

dd |, we
can have pφ �= (pφ )in with | cos φ| � 1, which allows for the
switching process of the magnetization. Below a threshold
value of |bx| that depends on bz and S�′

dd , pφ has to remain
constant for Eq. (24) to be satisfied, which corresponds to
simple magnetization precession about the z axis.

When pφ is a function of time, there are two important
cases:

(a) |bz| 
 S�′
dd : cos φ = bz

bx

(pφ )in − pφ√
h̄2 − p2

φ

,

(b) |bz| � S�′
dd : cos φ = S�′

dd

2bx

(pφ )2
in − p2

φ

h̄
√

h̄2 − p2
φ

. (25)

We plot the corresponding phase diagrams (θ vs φ) in Fig. 3.
Let (pφ )in = h̄ cos θin, bx = b sin θ0, and bz = b cos θ0.

When case (a) holds |bz| 
 S�′
dd , one concludes that

cos θ0 cos θ + sin θ0 sin θ cos φ = cos θ0 cos θin, which is con-
stant. Since d · b = db(cos θ0 cos θ + sin θ0 sin θ cos φ), in
case (a) the magnetization d precesses around the external
magnetic field B, as expected. When case (b) holds, SW
switching can occur, to the description of which we proceed
in the following.
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FIG. 3. pφ/h̄ vs φ/π when � = 0 (no dissipation), with ini-
tial values (pφ )in = h̄/2 and φin = π/2 (top) and (pφ )in = −h̄/2
and φin = π/2 (bottom). Dashed blue line, bz/bx = 0.2 and |bz| 

S�′

dd ; black line, bz/bx = 0.2 and S�′
dd/bx = 0.6; dash-dotted red

line, S�′
dd/bx = 0.6 and |bz| � S�′

dd ; dotted orange horizontal line,
bx = 0.

V. CONNECTION TO STONER-WOHLFARTH MODEL

The phenomenological SW model can be directly read off
from the equations in the preceding section. From Eq. (23),
H̃ := H + h̄S�′

dd/4 is given by

H̃

h̄
= −bx sin θ cos φ − bz cos θ + S�′

dd

2
sin2 θ. (26)

Let (bν )cr be the value of bν at the stability limit where
∂H̃/∂θ = 0 and ∂2H̃/∂θ2 = 0. Then one obtains the critical
magnetic fields

(bx )cr cos φ = S�′
dd sin3 θ, (bz )cr = −S�′

dd cos3 θ, (27)

which satisfy the equation

{(bx )cr cos φ}2/3 + (bz )2/3
cr = {S�′

dd}2/3. (28)

We coin the curve in the (bx, bz ) plane described by Eq. (28)
the switching curve, in accordance with the terminology
established in Ref. [44]. Because φ changes in time [see
Eqs. (20) and Fig. 3], the switching curve depends in general
on the timing of the applied external magnetic fields. We note
that, for φ = 0, Eqs. (26) and (28) are identical to the SW
energy functional

HSW

h̄
= −bx sin θ − bz cos θ + K sin2 θ (29)

and the SW astroid [44], respectively, if we identify K =
S�′

dd/2.

The LLG equation in Eq. (15) has stationary solu-
tions with M parallel to the effective magnetic field
h̄{b + S�′

dd (t )Mzez}/(gF μB). Since we set b to lie in the xz
plane, φ will go to zero for sufficiently large times. Thus
Eq. (26) leads to the SW model (29) due to the damping
term in Eq, (15) if � > 0. In Appendix C, we demonstrate
that a more general tensorial damping coefficient � introduces
additional terms on the right-hand side of the LLG equation
(15), which involve time derivatives. While these will thus not
affect the SW phenomenology, which results from the steady
states as a function of the applied magnetic fields, and which
is thus governed by the vanishing (in the stationary limit) of
the first term on the right-hand side of the LLG equation, they
affect the detailed relaxation dynamics of the magnetization
and its time scales. These deviations can hence can be used to
probe deviations from assuming a single scalar �.

Before we move on to the next section, we show the
characteristic behavior of �′

dd defined in Eq. (16), for a box-
trap scenario defined by n(z, t ) = N/(2Lz ) for −Lz � z � Lz

and n(z, t ) = 0 otherwise (N is the number of particles).
We stress that due to the finite size of the trap along the

“long” z direction, in variance with the Hohenberg-Mermin-
Wagner theorem holding for infinitely extended systems in
the thermodynamic limit, a quasi-1D BEC can exist also at
finite temperatures [45]. This remains true up to a ratio of
its proper length to the de Broglie wavelength [46], beyond
which strong phase fluctuations set in [47]. In fact, such
strongly elongated quasi-1D BECs at finite temperature were
first realized already long ago (cf., e.g., Ref. [48]).

For the box trap, �′
dd = �dd (Lz/l⊥), where

�dd (λ) = 3Ncdd

2h̄l3
⊥

1

λ

{∫ 2λ

0
dv

(
1 − v

2λ

)
G(v) − 2

3

}
. (30)

From Eq. (14), G(v) � 2/v3 + O(v−5) for v 
 1, so that

�dd (λ) � Ncdd

2h̄l3
⊥

1

λ
for λ = Lz/l⊥ 
 1. (31)

Hence �dd (λ) is a slowly decreasing function of the cigar’s
aspect ratio λ (keeping everything else fixed). We see below
that for the parameters of experiments such as in Ref. [31],
the effective magnetic field due to dipolar interactions greatly
exceeds the externally applied magnetic fields (in the range
relevant for SW switching to be observed) [49].

VI. ANALYTICAL RESULTS FOR AXIALLY DIRECTED
EXTERNAL MAGNETIC FIELD

Without dissipation, when bx = 0, pφ = h̄ cos θ = h̄Mz is
rendered constant [see Eq. (20)]. However, in the presence
of dissipation, Mz changes in time even if bx = 0. By em-
ploying this change, we propose an experimental method to
measure �.

For simplicity, we assume that the number density is con-
stant in time (also see Sec. IV) and the external magnetic field
points along the z direction, B = Bzez. Let a critical (see for a
detailed discussion below) value of the magnetization be

(Mz )cr := − bz

S�′
dd

. (32)
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Then Eq. (15) can be written as

∂M
∂t

= S�′
dd M × ez{Mz − (Mz )cr} − �M × ∂M

∂t

= M × ez(bz + S�′
dd Mz ) − �M × ∂M

∂t
. (33)

Since M · ∂M
∂t = 0, by taking the cross product with M on both

sides of Eq. (15), one can derive an expression for M × ∂M
∂t :

∂Mz

∂t
= −�S�′

dd

1 + �2
{Mz − (Mz )cr}

(
M2

z − 1
)

= − �

1 + �2
(bz + S�′

dd Mz )
(
M2

z − 1
)
. (34)

Since M is the scaled magnetization, |M| = 1 with a conden-
sate. Hence, −1 � Mz � 1. Also, according to the discussion
below Eq. (26), the generally positive SW coefficient (with
units of frequency) K is S�′

dd/2.
From Eq. (34), for time-independent �′

dd , one concludes
that there are three time-independent solutions: Mz = (Mz )cr
and Mz = ±1. For a box-trapped BEC and constant number
density, �′

dd = �dd which is always positive in the quasi-
1D limit [cf. Eq. (30) and the discussion following it]. For
some arbitrary physical quasi-1D trap potential, in which the
number density is not constant in space, from Eqs. (13) and
(16) and Fig. 2 one can infer that �′

dd > 0, due to the fact
that the quasi-1D number density n(z, t ) > 0, n(z, t ) has its
maximum value near z = 0 for a symmetric trap centered
there, and then G(λ) also has its maximum value near λ = 0.

Then, if |(Mz )cr| < 1, Mz = (Mz )cr is an unstable solution
and Mz = ±1 are stable solutions. When |(Mz )cr| < 1 and
−1 < Mz < (Mz )cr, Mz goes to −1. Likewise, Mz goes to
1 when (Mz )cr < Mz < 1. This bifurcation does not occur
if |(Mz )cr| > 1. For simplicity, we assume that |(Mz )cr| < 1.
This is the more interesting case due to the possibility of a
bifurcation of stable solutions leading to SW switching.

Let (Mz )in be the value of Mz at t = 0. The analytic solution
of Eq. (34) satisfies

t = 1 + �2

�S�′
dd

[
1

{(Mz )cr}2 − 1
ln

{
(Mz )in − (Mz )cr

Mz − (Mz )cr

}

− 1

2{1 − (Mz )cr} ln

{
1 − Mz

1 − (Mz )in

}

+ 1

2{1 + (Mz )cr} ln

{
1 + (Mz )in

1 + Mz

}]

= 1 + �2

�

[
S�′

dd

b2
z − (S�′

dd )2
ln

{
bz + S�′

dd (Mz )in

bz + S�′
dd Mz

}

− 1

2(bz + S�′
dd )

ln

{
1 − Mz

1 − (Mz )in

}

− 1

2(bz − S�′
dd )

ln

{
1 + (Mz )in

1 + Mz

}]
. (35)

The above equation tells us that, if (Mz )in �= (Mz )cr and
(Mz )in �= ±1, Mz goes to its stable time-independent solution
(|Mz| = 1) at time t = ∞. Thus, we define a critical switching

timetcr to be the time when |Mz| = 0.99. Also, note that
the form of the LLG equation [Eq. (33)] does not change
whether the BEC is confined in a quasi-1D, quasi-2D, or a
three-dimensional (3D) geometry. This is because one can
find a connection between �′

dd and the effective dipole-dipole
interaction potential Veff , so one can measure � even if the
BEC is effectively confined in a space with dimension higher
than one, using Eq. (35).

We point out, in particular, that tcr is inversely proportional
to �′

dd . Hence, for a constant-density quasi-1D BEC confined
in −Lz � z � Lz, �′

dd = �dd (Lz/l⊥), and thus tcr is also
inversely proportional to the linear number density along z.
This follows from the relation between �dd (Lz/l⊥) and the
linear number density along z displayed in Eq. (30).

For large dipolar interaction, the asymptotic expression for
tcr is, assuming � � 1,

tcr � 1

�S�′
dd

ln

⎡
⎣5

√
2
(
1 − (Mz )2

in

)
|(Mz )in − (Mz )cr|

⎤
⎦

provided S�′
dd 
 |bz| ⇐⇒ |(Mz )cr| � 1. (36)

The above tcr diverges at (Mz )in = (Mz )cr or ±1, as expected,
since Mz = (Mz )cr and Mz = ±1 are time-independent solu-
tions of the LLG equation. We stress that Eq. (36) clearly
shows that the magnetic dipole-dipole interaction accelerates
the decay of Mz. Hence, by using a dipolar spinor BEC with
large magnetic dipole moment such as produced from 164Dy
or 166Er one may observe the relaxation of Mz to the stable
state within the BEC lifetime, enabling the measurement
of �.

Before we show how the critical switching time tcr depends
on (Mz )in and �, we qualitatively discuss when our quasi-1D
assumption and homogeneous-local-spin-orientation assump-
tion are valid. Typically, spin-spin-interaction couplings are
much smaller than their density-density-interaction counter-
parts, by two orders of magnitude. For a spin-1 23Na BEC or a
spin-1 87Rb BEC, c0 � 100|c2| [32,35]. Thus we may neglect
to a first approximation the S2 times c2k terms in Eq. (11) (see
the discussion at the end of Appendix D). We also require
|(Mz )cr| < 1. Thus, we may additionally neglect the b term
compared to the Pdd (z, t ) term since, for b = bzez, S�′

dd > |b|
should be satisfied to make |(Mz )cr| < 1 [see Eq. (32)] and
�′

dd is related to Pdd (z, t ) by Eq. (16). When � = 0, using our
Ansatz in Eq. (8) and integrating out the x and y directions,
Eq. (D4) can be approximated by the expression

μ(t )�(z, t ) =
{
− h̄2

2m

∂2

∂z2
+ V (z)

+ c0

2π l2
⊥

|�(z, t )|2 + �dd (z, t )

}
�(z, t ), (37)
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where, from Eqs. (D5), (A1), and (17), the dipole-dipole interaction mean-field potential reads

�dd (z, t ) = h̄S2
{
1 − 3M2

z (t )
}
Pdd (z, t )

= cdd

2l3
⊥

S2
{
1 − 3M2

z (t )
} ∫ ∞

−∞
dz′ |�(z′, t )|2

{
G

( |z′ − z|
l⊥

)
− 4

3
δ

(
z′ − z

l⊥

)}

= cdd

2π l2
⊥

πS2
{
1 − 3M2

z (t )
}{∫ ∞

−∞
dz̄ |�(z + z̄l⊥, t )|2G(|z̄|)−4

3
|�(z, t )|2

}
. (38)

From Fig. 2, the function G(λ) is positive and decreases
exponentially as λ increases. Thus, if l⊥ is small enough such
that |�(z + z̄l⊥, t )|2 does not change within the range |z̄| � 5,
one may conclude that

�dd (z, t ) � 2π

3
S2{1 − 3M2

z (t )
} cdd

2π l2
⊥

|�(z, t )|2, (39)

due to the property
∫ ∞

0 dλ G(λ) = 1.
A spinor (S = 6) dipolar BEC has been realized using

166Er [31]. For this BEC, c0 = 4π h̄2a/m, where a � 67aB

(aB is the Bohr radius) and 2πS2cdd/3 = 0.4911c0. Due to
|Mz(t )| � 1 from the definition of M(t ), the maximum value
of the chemical potential μ(t ) is achieved when Mz(t ) = 0,
where

μ(t ) � V (z) +
(

c0 + 2π

3
S2cdd

)
n(z, t )

2π l2
⊥

. (40)

From above Eq. (40), we may regard the 3D number
density as n(z, t )/(2π l2

⊥). In Ref. [31], N = 1.2 × 105,
ω⊥/(2π ) = √

156 × 198 = 175.75 Hz, ωz/(2π ) = 17.2 Hz,
l⊥ = 0.589 μm, and the measured peak number density n̄peak

is 6.2 × 1020 m−3. Using Eqs. (37) and (39), by denoting Lz

as the Thomas-Fermi radius along z, (−Lz � z � Lz ) with
V (z) = mω2

z z2/2, one derives

Lz =
{

3(c0 + 2πS2cdd/3)N

4πmω2
z l2

⊥

}1/3

, (41)

and the mean number density n̄ = (N/2Lz )/(2π l2
⊥) =

6.721 × 1020 m−3 as well as chemical potential μ/(h̄ω⊥) =
mω2

z L2
z /(2h̄ω⊥) = 23.22. Note that n̄ � 1.1n̄peak. Because μ

is not less than h̄ω⊥, the experiment [31] is not conducted
within the quasi-1D limit.

The homogeneous-local-spin-orientation approximation is
valid when the system size is on the order of the spin
healing length ξs or less, which has been experimentally
verified in Ref. [35]. Using c0 � 100|c2|, ξs � 10 ξd , where
ξd =

√
h̄2/(2mc0n̄) is the density healing length and ξs =√

h̄2/(2m|c2|n̄) is the spin healing length. Thus, if Lz is on
the order of 10ξd , the homogeneous-local-spin-orientation
approximation is justified.

Using the S = 6 element 166Er, we can provide numerical
values which satisfy both the quasi-1D and homogeneous-
local-spin-orientation limits, as well as they enable us to
explicitly show how tcr depends on (Mz )in in a concretely
realizable setup. We consider below two cases: A box trap
along z [50] and a harmonic trap along z.

A. Box traps

We set V (z) = 0 for |z| < Lz and ∞ otherwise.
Then n(z, t ) = N/(2Lz ) and we estimate μ �
(c0 + 2πS2cdd/3)N/(4π l2

⊥Lz ) from Eq. (40). In this case,
�′

dd = �dd (Lz/l⊥) as is calculated in Eq. (30). Fixing
Bz = −0.03 mG and N = 100, we consider the following two
cases:

(1) ω⊥/(2π ) = 2.4 × 104 Hz and Lz = 3.125 μm.
Then Lz/l⊥ = 62.03, μ/(h̄ω⊥) = 0.1692, and Lz/ξd =
29.55. Thus, the system is in both the quasi-1D and
homogeneous-local-spin-orientation limits. S�dd (Lz/l⊥) =
4.074 × 103 Hz, h̄S�dd (Lz/l⊥)/(gF μB) = 0.3969 mG, and
θcr := cos−1 (Mz )cr is 85.67◦.

(2) ω⊥/(2π ) = 1.2 × 104 Hz and Lz = 6.250 μm. Then
Lz/l⊥ = 87.72, μ/(h̄ω⊥) = 0.0846, and Lz/ξd = 29.55.
Thus, again the system is in both the quasi-1D and
homogeneous-local-spin-orientation limits. S�dd (Lz/l⊥) =
1.028 × 103 Hz, h̄S�dd (Lz/l⊥)/(gF μB) = 0.1002 mG, and
θcr = 72.57◦.

Figure 4 shows the relation between tcr and (Mz )in.

B. Harmonic traps

We set V (z) = mω2
z z2/2. Using the Thomas-Fermi approx-

imation, from Eq. (40), μ = mω2
z L2

z /2, where Lz is given
by Eq. (41). (c0 + 2πS2cdd/3)n(z, t )/(π l2

⊥) = mω2
z (L2

z − z2)
for |z| � Lz and n(z, t ) = 0 for |z| > Lz. From this n(z, t ),
we performed a numerical integration to calculate �′

dd in
Eq. (16). Fixing Bz = −0.03 mG, we consider the following
two cases:

(1) N = 240, ω⊥/(2π ) = 2000 Hz, and ωz/(2π ) =
50 Hz, for which Lz = 5.703 μm and Lz/l⊥ = 32.68.
We obtain again the quasi-1D and homogeneous-local-
spin-orientation limits since μ/(h̄ω⊥) = 0.3337 and
Lz/ξd = 17.85. Furthermore, S�′

dd = 1.644 × 103 Hz,
h̄S�′

dd/(gF μB) = 1.602 × 10−1 mG, and θcr = 79.21◦.
(2) N = 340, ω⊥/(2π ) = 1000 Hz, and ωz/(2π ) =

25 Hz, where Lz = 8.070 μm and Lz/l⊥ = 32.70. Again, we
have the quasi-1D and homogeneous-local-spin-orientation
limits fulfilled due to μ/(h̄ω⊥) = 0.3341 and Lz/ξd = 17.87.
In addition, S�′

dd = 8.230 × 102 Hz, h̄S�′
dd/(gF μB) =

8.019 × 10−2 mG, and θcr = 68.03◦.
Figure 5 shows for the harmonic traps the relation between

tcr and (Mz )in.

C. Measurability of critical switching time

Figures 4 and 5 demonstrate that the critical switching time
tcr is much smaller than the lifetime of a BEC (several seconds
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FIG. 4. tcr as a function of (Mz )in when B = Bzez, where Bz =
−0.03 mG and particle number N = 100. From top to bottom: Red,
� = 0.01; black, � = 0.03; and blue, � = 0.09. Solid lines are from
the exact analytic formula in Eq. (35), and dot-dashed lines are from
the asymptotic expression in Eq. (36). Generally, tcr decreases as
� increases. Also, note that tcr diverges as (Mz )in → (Mz )cr. For
larger mean number density N/(4πLzl2

⊥) (top), the asymptotic ex-
pression of tcr is essentially indistinguishable from the exact analytic
formula of tcr . Top: ω⊥/(2π ) = 2.4 × 104 Hz, Lz = 3.125 μm, and
l⊥ = 0.0504 μm, where N/(4πLzl2

⊥) = 10.03 × 1020 m−3 [(Mz )cr =
0.0756]. Bottom: ω⊥/(2π ) = 1.2 × 104 Hz, Lz = 6.250 μm, and
l⊥ = 0.0712 μm, where N/(4πLzl2

⊥) = 2.508 × 1020 m−3 [(Mz )cr =
0.2995].

[31]) and thus, by measuring tcr by varying (Mz )in, one will
be able to obtain the value of �, provided � indeed does
not depend on spin indices as for example Refs. [26,30] have
assumed. Conversely, if one obtains from the measurements a
different functional relation which does not follow Eq. (35),
this implies that � may depend on spin indices.

Note that both Figs. 4 and 5 show that tcr is inversely
proportional to the mean number density N/(4πLzl2

⊥).
Equation (36) states that tcr is inversely proportional to �′

dd ,
but except for the box trap case, in which one can analytically
calculate �′

dd = �dd (Lz/l⊥) in Eq. (30), the dependence
of �′

dd and the mean number density N/(4πLzl2
⊥) is not

immediately apparent. Thus, at least for harmonic traps,
and in the Thomas-Fermi approximation, one may use the
box trap results of Eq. (30) to provide an estimate of the
behavior of tcr.
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N = 240, ω⊥/ (2π) = 2000Hz, and ωz/ (2π) = 50Hz.
Lz = 5.703 μm and l⊥ = 0.1745μm where

N/ 4πLzl2⊥ = 1.010 × 1020 m−3 ((Mz)cr = 0.1873).
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N = 340, ω⊥/ (2π) = 1000Hz, and ωz/ (2π) = 25Hz.
Lz = 8.070 μm and l⊥ = 0.2468μm where

N/ 4πLzl2⊥ = 0.550 × 1020 m−3 ((Mz)cr = 0.3741).

FIG. 5. tcr as a function of (Mz )in when B = Bzez, where
Bz = −0.03 mG, for two particle numbers N as shown. From top
to bottom: Red, � = 0.01; black, � = 0.03; and blue, � = 0.09.
Solid lines are from exact analytic formula in Eq. (35), and
dot-dashed lines are from the asymptotic expression in Eq. (36).
Generally, tcr decreases as � increases. Also, note that tcr diverges as
(Mz )in → (Mz )cr. For larger mean number density N/(4πLzl2

⊥) (top),
the asymptotic expression of tcr is essentially indistinguishable
from the exact analytic formula of tcr . Top: N = 240,
ω⊥/(2π ) = 2000 Hz, and ωz/(2π ) = 50 Hz. Lz = 5.703 μm
and l⊥ = 0.1745 μm, where N/(4πLzl2

⊥) = 1.010 × 1020 m−3

[(Mz )cr = 0.1873]. Bottom: N = 340, ω⊥/(2π ) = 1000 Hz, and
ωz/(2π ) = 25 Hz. Lz = 8.070 μm and l⊥ = 0.2468 μm, where
N/(4πLzl2

⊥) = 0.550 × 1020 m−3 [(Mz )cr = 0.3741].

VII. CONCLUSION

For a quasi-1D dipolar spinor condensate with unidi-
rectional local magnetization (that is in the homogeneous-
local-spin-orientation limit), we provided an analytical
derivation of the Landau-Lifshitz-Gilbert equation and the
Stoner-Wohlfarth model. For an external magnetic field along
the long axis, we obtained an exact solution of the quasi-
1D Landau-Lifshitz-Gilbert equation. Our analytical solution
demonstrates that the magnetic dipole-dipole interaction ac-
celerates the relaxation of the magnetization to stable states
and hence strongly facilitates observation of this process
within the lifetime of typical dipolar spinor BECs. Employing
this solution, we hence propose a method to experimentally
access the dissipative parameter(s) �.
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We expect, in particular, that our proposal provides a viable
tool to verify in experiment whether � is indeed independent
of spin indices, as commonly assumed, and does not have to
be replaced by a tensorial quantity for spinor gases. We hope
that this will stimulate further more detailed investigations
of the dissipative mechanism in dipolar BECs with internal
degrees of freedom.

We considered that the magnetization along z, Mz, has con-
tributions solely from the atoms residing in the condensate, an
approximation valid at sufficiently low temperatures. When
the magnetization from noncondensed atoms is not negligible,
as considered by Ref. [5] for a contact interacting scalar BEC,
correlation terms mixing the noncondensed part and the mean
field, such as

∑S
β=−S ψ∗

β (r, t )〈δψ̂α (r, t )δψ̂β (r, t )〉, will appear

on the right-hand side of Eq. (3). Here, δψ̂α (r, t ) is the αth
component of quantum field excitations above the mean-field
ground state in the spinor basis. Considering the effect of these
terms is a subject of future studies.

ACKNOWLEDGMENTS

The work of S.H.S. was supported by the National Re-
search Foundation of Korea (NRF), Grant No. NRF-2015-
033908 (Global Ph.D. Fellowship Program). S.H.S. also
acknowledges the hospitality of the University of Tübin-
gen during his stay in the summer of 2019. U.R.F.
has been supported by the NRF under Grants No.
2017R1A2A2A05001422 and No. 2020R1A2C2008103.

APPENDIX A: DERIVATION OF THE EFFECTIVE POTENTIAL Veff

The dipole-dipole interaction term Vdd (t ) in the total energy is given by [32]

Vdd (t ) = cdd

2

∫
d3r

∫
d3r′ ∑

ν,ν ′=x,y,z

Fν (r, t )Qν,ν ′ (r − r′)Fν ′ (r′, t ), (A1)

where cdd is the dipole-dipole interaction coefficient, Fν (r, t ) = ψ†(r, t ) f̂νψ (r, t ), and Qν,ν ′ (r) is defined as the tensor

Qν,ν ′ (r) : = r2δν,ν ′ − 3rνrν ′

r5
(A2)

in spin space, where r = |r| and rν = r · eν , with eν being the unit vector along the ν axis. From now on, we define ρ = (x, y)
such that dxdy = d2ρ = dϕdρ ρ, where tan ϕ = y/x.

Using the convolution theorem, the dipole-dipole interaction term Vdd (t ) can be expressed by

Vdd (t ) = cdd

2
(2π )D/2

∫
d3k ñ(k, t )ñ(−k, t )Ũdd (k, t ) (A3)

with the Fourier transform

Udd (η, t ) = 1

n(r, t )n(r′, t )

∑
ν,ν ′=x,y,z

Fν (r, t )Qν,ν ′ (η)Fν ′ (r′, t ),

(A4)

where g̃(k, t ) = (2π )−D/2
∫

dr g(r, t )eik·r is the Fourier transform of the function g(r, t ) in D-dimensional space r (in our case,
D = 3), η = r − r′, and n(r, t ) = |ψ (r, t )|2.

By denoting k = (kρ, kz ), where kρ = (kx, ky) with kρ =
√

k2
x + k2

y and tan ϕkρ
= ky/kx, with our mean-field wave function

in Eq. (8), one derives

ñ(k, t ) = 1

π l2
⊥

1

(2π )3/2

∫
d2ρ

∫ ∞

−∞
dz e−(ρ/l⊥ )2

n(z, t )eiρ·kρ eikzz = 1

2π
ñ(kz, t )e−k2

ρ l2
⊥/4, (A5)

where n(z, t ) := |�(z, t )|2e−2�ω⊥t/(1+�2 ). Note the factor of (2π )−1 appearing, when compared to Eq. (12) in Ref. [27], which is
stemming from our definition of Fourier transform.

Denoting η = |η|, by writing eη for the unit vector along η, we obtain

Udd (η, t ) = − 1

η3

√
6π

5

[{
Y 2

2 (eη)e−2iφ(t ) + Y −2
2 (eη)e2iφ(t )

}
S2 sin2 θ (t ) − {

Y 1
2 (eη)e−iφ(t ) − Y −1

2 (eη)eiφ(t )
}
S2 sin{2θ (t )}]

+ 1

η3

√
6π

5
Y 0

2 (eη)

√
2

3
S2{3 sin2 θ (t ) − 2}, (A6)

where Y m
l (eη) are the usual spherical harmonics. Its Fourier transform Ũdd (k, t ) is

Ũdd (k, t ) = 1

(2π )3/2

4π

3
S2

{
1 − 3

2
sin2 θ (t )

}(
3

k2
z

k2
ρ + k2

z

− 1

)

+ 1√
2π

k2
ρ

k2
ρ + k2

z

S2 sin2 θ (t ) cos
{
2ϕkρ

− 2φ(t )
} +

√
2

π

kρkz

k2
ρ + k2

z

S2 sin{2θ (t )} cos{ϕkρ
− φ(t )}. (A7)
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By plugging Eqs. (A5) and (A7) into Eq. (A3), we finally obtain Vdd (t ) as

Vdd (t ) = cdd

2

√
2π

∫ ∞

−∞
dkz ñ(kz, t )ñ(−kz, t )

2S2

l2
⊥
√

2π

{
1 − 3

2
sin2 θ (t )

}{(
k2

z l2
⊥/2

)
ek2

z l2
⊥/2E1

(
k2

z l2
⊥/2

) − 1

3

}
, (A8)

where E1(x) = ∫ ∞
x du e−u/u is an exponential integral.

Note that Eq. (A8) can be also written as

Vdd (t ) = cdd

2

√
2π

∫ ∞

−∞
dkz ñ(kz, t )ñ(−kz, t )Ṽeff (kz, t )

= cdd

2

∫ ∞

−∞
dz

∫ ∞

−∞
dz′ n(z, t )n(z′, t )Veff (z − z′, t ). (A9)

Due to the fact that Ṽeff (kz, t ) can be obtained by Eq. (A8), we can get Veff (z, t ) by inverse Fourier transform. As a preliminary
step, we first write some integrals of E1(x) as follows:∫ ∞

−∞
dx ex2

E1(x2)e−ikx =
∫ ∞

−∞
dx e−ikx

∫ ∞

x2
dt

e−(t−x2 )

t
= (π )3/2ek2/4erfc(|k|/2). (A10)

Differentiating Eq. (A10) with respect to k two times results in∫ ∞

−∞
dx x2ex2

E1(x2)e−ikx = −(π )3/2

{
1

2

(
k2

2
+ 1

)
ek2/4erfc(|k|/2) − |k|

2
√

π
− 2√

π
δ(k)

}
. (A11)

Therefore, Veff (z, t ) can be calculated as

Veff (z, t ) = 1√
2π

∫ ∞

−∞
dkz

2S2

l2
⊥
√

2π

{
1 − 3

2
sin2 θ (t )

}{(
k2

z l2
⊥/2

)
ek2

z l2
⊥/2E1

(
k2

z l2
⊥/2

) − 1

3

}
e−ikzz

= S2

l3
⊥

{
3

2
sin2 θ (t ) − 1

}{
G(|z|/l⊥) − 4

3
δ(z/l⊥)

}
, (A12)

where G(x) is defined in Eq. (14), and δ(x) is the Dirac delta function.
The Fourier transform of Eq. (A12) acquires the form

Ṽeff (kz, t ) = 1√
2π

∫ ∞

−∞
dz Veff (z, t )eikzz =

√
2

π

S2

l2
⊥

{
3

2
sin2 θ (t ) − 1

}{∫ ∞

0
dv G(v) cos (kzl⊥v) − 2

3

}

=
√

2

π

S2

l2
⊥

{
3

2
sin2 θ (t ) − 1

}[∫ ∞

0
du

{√
π (2u2 + 1)eu2

erfc(u) − 2u
}

cos(
√

2kzl⊥u) − 2

3

]
. (A13)

From Ref. [51], the following integral involving the complementary error function is∫ ∞

0
du eu2

erfc(u) cos(bu) = 1

2
√

π
eb2/4E1(b2/4). (A14)

By differentiating Eq. (A14) two times with respect to b, we get∫ ∞

0
du u2eu2

erfc(u) cos(bu) = − 1

2
√

π

{
1

2

(
b2

2
+ 1

)
eb2/4E1(b2/4) − 1 + 2

b2

}
. (A15)

Hence, Eq. (A13) becomes

Ṽeff (kz, t ) =
√

2

π

S2

l2
⊥

{
3

2
sin2 θ (t ) − 1

}[
−
{

1

2

(
k2

z l2
⊥ + 1

)
ek2

z l2
⊥/2E1

(
k2

z l2
⊥/2

) − 1 + 1

k2
z l2

⊥

}
+ 1

2
ek2

z l2
⊥/2E1

(
k2

z l2
⊥/2

) + 1

k2
z l2

⊥
− 2

3

]

= 2S2

l2
⊥
√

2π

{
1 − 3

2
sin2 θ (t )

}{(
k2

z l2
⊥/2

)
ek2

z l2
⊥/2E1

(
k2

z l2
⊥/2

) − 1

3

}
. (A16)

Comparing Eq. (A8) with Eq. (A16), one verifies that Eq. (A12) is the correct result for the effective interaction of the quasi-1D
dipolar spinor gas.

APPENDIX B: QUASI-1D GROSS-PITAEVSKII EQUATION WITH DISSIPATION

By introducing an identical damping coefficient for each component of the spinor (cf., e.g., Refs. [26,30]) (i.e., as if each
component effectively behaves as a scalar BEC [28]), and neglecting a possible quadratic Zeeman term, the GP equation for a
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spin-S BEC can be written as [26]

(i − �)h̄
∂ψα (r, t )

∂t
=

{
− h̄2

2m
∇2 + Vtr (r) + c0|ψ (r, t )|2

}
ψα (r, t ) − h̄

S∑
β=−S

{b − bdd (r, t )} · ( f̂ )α,βψβ (r, t )

+
S∑

k=1

c2k

∑
ν1,ν2,...,νk=x,y,z

Fν1,ν2,...,νk (r, t )
S∑

β=−S

(
f̂ν1 f̂ν2 · · · f̂νk

)
α,β

ψβ (r, t ), (B1)

where ψα (r, t ) is the αth component of the mean-field wave function ψ (r, t ) (the spin-space index α is an integer taking
2S + 1 values running from −S to S), Fν1,ν2,...,νk (r, t ) := ψ†(r, t ) f̂ν1 f̂ν2 · · · f̂νk ψ (r, t ), h̄ f̂ is the spin-S operator, and b =
gF μBB/h̄ (gF is the Landé g factor, μB is the Bohr magneton, and B the external magnetic field). Finally, h̄bdd (r, t ) · eν =
cdd

∫
d3r′ ∑

ν ′=x,y,z Qν,ν ′ (r − r′)Fν ′ (r′, t ), where eν is the unit vector along the ν axis (ν = x, y, z) [32]. Applying the formalism
of Ref. [1] to a spinor BEC assuming that � does not depend on spin indices, one just needs to transform t → (1 + �2)t in
Eqs. (B1) and (8). We then integrate out the x and y directions in Eq. (B1) to obtain the quasi-1D GP equation.

From Eq. (8) in the main text, we have∫
d2ρ

S∑
β=−S

e−ρ2/(2l2
⊥ )

l⊥
√

π
{h̄bdd (r) · ( f̂ )α,β}ψβ (r, t )

= cdd

2l3
⊥

∫ ∞

−∞
dz′ n(z′, t )

{
G

( |z − z′|
l⊥

)
− 4

3
δ

(
z − z′

l⊥

)}
�(z, t )e− i+�

1+�2 ω⊥t S{M(t ) − 3Mz(t )ez} ·
S∑

β=−S

( f̂ )α,βζβ (t ), (B2)

where
∫

d2ρ := ∫ ∞
−∞ dx

∫ ∞
−∞ dy and n(z, t ) := ∫

d2ρ |ψ (r, t )|2 = |�(z, t )|2e−2�ω⊥t/(1+�2 ).
For a spin-S BEC, from Eq. (B1), for the trap potential given in Eq. (4) and if we use Eq. (8), by integrating out the x and y

directions, one acquires the expression

(i − �)h̄
∂{�(z, t )ζα (t )}

∂t
=

{
− h̄2

2m

∂2

∂z2
+ V (z) + c0

2π l2
⊥

n(z, t )

}
�(z, t )ζα (t )

+ [−h̄b + h̄S{M(t ) − 3Mz(t )ez}Pdd (z, t )] ·
⎧⎨
⎩

S∑
β=−S

( f̂ )α,β�(z, t )ζβ (t )

⎫⎬
⎭

+
S∑

k=1

c2k

2π l2
⊥

n(z, t )
∑

ν1,ν2,...,νk=x,y,z

SMν1,ν2,...,νk (t )

⎧⎨
⎩

S∑
β=−S

(
f̂ν1 f̂ν2 · · · f̂νk

)
α,β

�(z, t )ζβ (t )

⎫⎬
⎭, (B3)

where Mν1,ν2,...,νk (t ) is defined in Eq. (12) and

Pdd (z, t ) = cdd

2h̄l3
⊥

∫ ∞

−∞
dz′ n(z′, t )

{
G

( |z − z′|
l⊥

)
− 4

3
δ

(
z − z′

l⊥

)}
= cdd

h̄S2{3 sin2 θ (t ) − 2}
∫ ∞

−∞
dz′ n(z′, t )Veff (z − z′, t ), (B4)

with Veff defined in Eq. (A12). It is already clear from Eq. (B3) that, besides particle loss from the condensate encoded in a
decaying |�(z, t )|, dissipation also leads to a dephasing, i.e., the decay of ζ (t ) due to the term −�∂ζ (t )/∂t .

From now on, if there is no ambiguity, and for brevity, we drop the arguments such as x, y, z, t from the functions. From
Eq. (B3), we then get

h̄
∂ζα

∂t
= − h̄

�

∂�

∂t
ζα − � + i

1 + �2

(
− h̄2

2m

1

�

∂2�

∂z2
+ V + c0

2π l2
⊥

n

)
ζα + � + i

1 + �2
{h̄b − S(M − 3Mzez )h̄Pdd} ·

⎧⎨
⎩

S∑
β=−S

( f̂ )α,βζβ

⎫⎬
⎭

− � + i

1 + �2

S∑
k=1

c2k

2π l2
⊥

n
∑

ν1,ν2,...,νk=x,y,z

SMν1,ν2,...,νk

⎧⎨
⎩

S∑
β=−S

(
f̂ν1 f̂ν2 · · · f̂νk

)
α,β

ζβ

⎫⎬
⎭. (B5)

Since ∂|ζ |2
∂t = 0 due to the normalization |ζ |2 = 1, we then have

0 = 2Re

{
− h̄

�

∂�

∂t
− �

1 + �2

(
− h̄2

2m

1

�

∂2�

∂z2
+ V + c0

2π l2
⊥

n

)}
+ i

1 + �2

h̄2

2m

(
1

�

∂2�

∂z2
− 1

�∗
∂2�∗

∂z2

)

+ 2�

1 + �2
{h̄b − S(M − 3Mzez )h̄Pdd} · SM − 2�

1 + �2

S∑
k=1

c2k

2π l2
⊥

n
∑

ν1,ν2,...,νk=x,y,z

S2M2
ν1,ν2,...,νk

. (B6)

013315-12



STONER-WOHLFARTH SWITCHING OF THE CONDENSATE … PHYSICAL REVIEW A 102, 013315 (2020)

Hence the dynamics of the magnetization direction follows the equation

h̄S
∂Mν

∂t
= 2Re

⎧⎨
⎩

S∑
α,β=−S

ζ †
α ( f̂ν )α,β

(
h̄
∂ζβ

∂t

)⎫⎬
⎭

= − 2�

1 + �2
S2Mν{h̄b − S(M − 3Mzez )h̄Pdd} · M + 2�

1 + �2
Mν

S∑
k=1

c2k

2π l2
⊥

n
∑

ν1,ν2,...,νk=x,y,z

S3M2
ν1,ν2,...,νk

+ �

1 + �2

∑
μ=x,y,z

{h̄bμ − S(Mμ − 3Mzδμ,z )h̄Pdd}S{δμ,ν + (2S − 1)MμMν}

− 1

1 + �2

∑
μ,κ=x,y,z

{h̄bμ − S(Mμ − 3Mzδμ,z )h̄Pdd}εν,μ,κSMκ

− 2Re

⎧⎨
⎩ � + i

1 + �2

S∑
k=1

c2k

2π l2
⊥

n
∑

ν1,ν2,...,νk=x,y,z

SMν1,ν2,...,νk

S∑
α,β=−S

ζ †
α

(
f̂ν f̂ν1 f̂ν2 · · · f̂νk

)
α,β

ζβ

⎫⎬
⎭, (B7)

since the scalar product ζ †( f̂α f̂β + f̂β f̂α )ζ = S{δα,β + (2S − 1)MαMβ} [26].
By direct comparison, we can identify Eq. (B8) below as being identical to Eq. (B21) in Ref. [26], the only difference

consisting in the definition of Mν1,ν2,...,νk : We employ a scaled version of Mν1,ν2,...,νk , which is normalized to S in Ref. [26]. From
Eq. (7) in the main text,

∑
ν1,ν2,...,νk=x,y,z

Mν1,ν2,...,νk

S∑
α,β=−S

ζ †
α

(
f̂ν f̂ν1 f̂ν2 · · · f̂νk

)
α,β

ζβ =
∑

ν1,ν2,...,νk=x,y,z

M2
ν1,ν2,...,νk

S2Mν, (B8)

which is real. Therefore, Eq. (B7) can be written in the form

∂M
∂t

= − �

1 + �2
M × [M × {b − S(M − 3Mzez )Pdd}] + 1

1 + �2
M × {b − S(M − 3Mzez )Pdd}

= 1

1 + �2
M × (b + 3SPdd Mzez ) − �

1 + �2
M × [M × (b + 3SPdd Mzez )]

= M × (b + 3SPdd Mzez ) − �M × ∂M
∂t

, (B9)

since M · ∂M
∂t = 0 holds.

As P is a function of z and t , but M is independent of z [M is the scaled local magnetization and our aim is to study a dipolar
spinor BEC with unidirectional local magnetization (the homogeneous-local-spin-orientation limit)], by multiplying with n(z, t )
both sides of Eq. (B9) and integrating along z, we finally get the LLG equation

∂M
∂t

= M × (b + S�′
dd Mzez ) − �M × ∂M

∂t
, (B10)

where �′
dd is defined in Eq. (16). Note here that �′

dd becomes �dd (Lz/l⊥) defined in Eq. (30) when n(z, t ) = N/(2Lz ) for
−Lz � z � Lz and n(z, t ) = 0 otherwise.

APPENDIX C: MODIFICATION OF THE LLG EQUATION FOR �, A SPIN-SPACE TENSOR

When � depends on spin indices, i.e., is a tensor, Eq. (B3) can be generalized to read

S∑
β=−S

(iδα,β − �α,β )h̄
∂{�(z, t )ζβ (t )}

∂t
=

S∑
β=−S

Hα,β�(z, t )ζβ (t ). (C1)

The spinor part of the wave function is normalized to unity, |ζ |2 = 1. Hence, we know that ∂|ζ |2
∂t = 0. Therefore, from Eq. (C1),

we derive the expression

S∑
α,β=−S

Re

[
−iζ ∗

α �α,β

∂ζβ

∂t
− iζ ∗

α �α,βζβ

1

�

∂�

∂t
− i

1

h̄�
ζ ∗
α Hα,β�ζβ

]
− Re

[
1

�

∂�

∂t

]
= 0. (C2)
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This then leads us to

∂Mν

∂t
= 2

S

S∑
α,β,γ=−S

Re

[
−iζ ∗

α ( f̂ν )α,β�β,γ

∂ζγ

∂t
− iζ ∗

α ( f̂ν )α,β�β,γ ζγ

1

�

∂�

∂t
− i

1

h̄�
ζ ∗
α ( f̂ν )α,βHβ,γ �ζγ

]
− 2Re

[
Mν

1

�

∂�

∂t

]
. (C3)

For scalar �, �α,β → �δα,β , the equation above becomes Eq. (B7).
From Eqs. (C2) and (C3), one concludes that the stationary solution Mν of Eq. (C3) is independent of �. In other words,

whether � depends on spin indices or not, the SW model (29) is left unaffected (also see the discussion in Sec. V of the
main text).

APPENDIX D: DESCRIPTION OF MAGNETOSTRICTION

For a dipolar spinor BEC without quadratic Zeeman term, when there is no dissipation (� = 0), the mean-field equation in
Eq. (3) can be written as

μα (t )ψα (r, t ) =
⎧⎨
⎩− h̄2

2m
∇2 + Vtr (r) + c0

S∑
β=−S

|ψβ (r, t )|2
⎫⎬
⎭ψα (r, t ) − h̄{b − bdd (r, t )} ·

S∑
β=−S

( f̂ )α,βψβ (r, t )

+
S∑

k=1

c2k

∑
ν1,ν2,...,νk=x,y,z

S∑
α1,β1,β=−S

(
f̂ν1 f̂ν2 · · · f̂νk

)
α1,β1

(
f̂ν1 f̂ν2 · · · f̂νk

)
α,β

ψ∗
α1

(r, t )ψβ1 (r, t )ψβ (r, t ), (D1)

where we have substituted ih̄ ∂ψα (r,t )
∂t = μα (t )ψα (r, t ).

Since we consider the homogeneous-local-spin-orientation limit, we may write ψα (r, t ) = �uni(r, t )ζα (t ). In this limit, we
have

|ψ (r, t )|2 := ψ†(r, t )ψ (r, t ) =
S∑

α=−S

ψ†
α (r, t )ψα (r, t ) = |�uni(r, t )|2, (D2)

since
∑S

α=−S |ζα (t )|2 = 1 from the definition of ζα (t ) in Eq. (7). Thus |�uni(r, t )|2 is equal to the number density. Then Eq. (D1)
can be written as

μα (t )ζα (t )�uni(r, t ) =
{
− h̄2

2m
∇2 + Vtr (r) + c0|�uni(r, t )|2

}
ζα (t )�uni(r, t ) − h̄{b − bdd (r, t )} ·

S∑
β=−S

( f̂ )α,βζβ (t )�uni(r, t )

+ S
S∑

k=1

c2k

∑
ν1,ν2,...,νk=x,y,z

S∑
β=−S

Mν1,ν2,...,νk (t )
(

f̂ν1 f̂ν2 · · · f̂νk

)
α,β

ζβ (t )|�uni(r, t )|2�uni(r, t ). (D3)

Now, we decompose the chemical potential μ(t ) as μ(t ) := ∑S
α=−S μα (t )|ζα (t )|2. Then one obtains

μ(t )�uni(r, t ) =
[
− h̄2

2m
∇2 + Vtr (r) +

{
c0 + S2

S∑
k=1

c2k

∑
ν1,ν2,...,νk=x,y,z

M2
ν1,ν2,...,νk

(t )

}
|�uni(r, t )|2

]
�uni(r, t )

+ [�dd (r, t ) − Sh̄{b · M(t )}]�uni(r, t ), (D4)

where

�dd (r, t ) := S2cdd

⎡
⎣∫

d3r′

⎧⎨
⎩

∑
ν,ν ′=x,y,z

Mν (t )Qν,ν ′ (r − r′)Mν ′ (t )

⎫⎬
⎭∣∣�uni(r′, t )

∣∣2

⎤
⎦ (D5)

is the dipole-dipole mean-field potential [42] following from the definition of bdd below Eq. (3) in the main text.
Due to Mx(t ) = sin θ (t ) cos φ(t ), My(t ) = sin θ (t ) sin φ(t ), and Mz(t ) = cos θ (t ), from Eqs. (A4) and (A6), we have

∑
ν,ν ′=x,y,z

Mν (t )Qν,ν ′ (η)Mν ′ (t ) = − 1

η3

√
6π

5

[{
Y 2

2 (eη)e−2iφ(t ) + Y −2
2 (eη)e2iφ(t )

}
sin2 θ (t )

−{
Y 1

2 (eη)e−iφ(t ) − Y −1
2 (eη)eiφ(t )

}
sin {2θ (t )}] + 1

η3

√
6π

5
Y 0

2 (eη)

√
2

3
{3 sin2 θ (t ) − 2}, (D6)

where Y m
l (eη) are the usual spherical harmonics.
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By using Eq. (A2), an alternative form of Eq. (D6) can be obtained:

∑
ν,ν ′=x,y,z

Mν (t )Qν,ν ′ (η)Mν ′ (t ) =
∑

ν,ν ′=x,y,z

η2δν,ν ′ − 3ηνην ′

η5
Mν (t )Mν ′ (t ) = η2|M(t )|2 − 3{η · M(t )}2

η5

= η2 − 3{η · M(t )}2

η5
. (D7)

Thus, �dd (r, t ) can be written as

�dd (r, t ) = S2cdd

[∫
d3r′ |r − r′|2 − 3{(r − r′) · M(t )}2

|r − r′|5 |�uni(r′, t )|2
]

= S2cdd

[∫
d3r̄′ |r̄ − r̄′|2 − 3{(r̄ − r̄′) · M(t )}2

|r̄ − r̄′|5 |�uni(r̄′, t )|2
]

= −3

2
S2cdd sin2 θ (t )

∫
d3η̄ |�uni(η̄ + r̄, t )|2 1

η̄5

[
η̄2 − η̄2

z − 2{η̄x sin φ(t ) − η̄y cos φ(t )}2
]

− 3S2cdd sin {2θ (t )}
∫

d3η̄ |�uni(η̄ + r̄, t )|2 η̄z

η̄5
{η̄x cos φ(t ) + η̄y sin φ(t )}

+ 1

2
S2cdd{1 − 3 cos2 θ (t )}

∫
d3η̄ |�uni(η̄ + r̄, t )|2 1

η̄5

(
3η̄2

z − η̄2
)
, (D8)

where r̄ := r/L with L a given length scale (so that r̃ is a dimensionless vector). For example, in the quasi-1D setup with trap
potential being Eq. (4), L = l⊥. Note that, in the special case where M(t ) = Mz(t )ez, the form of Eq. (D8) becomes identical to
Eq. (6) in Ref. [41].

Since we concentrate on quasi-1D gases, with trap potential given by Eq. (4) in the main text, we explicitly compute the form
of �dd (r, t ) for the quasi-1D setup. By writing

|�uni(r, t )|2 = e−ρ2/l2
⊥

π l2
⊥

|�(z, t )|2, (D9)

and integrating out x and y directions, one can get the quasi-1D dipole-dipole interaction mean-field potential �dd (z, t ) as follows
[which is in Eq. (38)]:

�dd (z, t ) = cdd

2l2
⊥

S2
{
1 − 3M2

z (t )
}{∫ ∞

−∞
dz̄ |�(z + z̄l⊥, t )|2G(|z̄|) − 4

3
|�(z, t )|2

}
. (D10)

Now, let us consider a box trap in the quasi-1D case, i.e., V (z) = 0 for |z| � Lz and V (z) = ∞ for |z| > Lz where V (z) is in
Eq. (4). Then we may write

|�(z, t )|2 =
[ N

2Lz
for |z| � Lz

0 for |z| > Lz,
(D11)

since V (z) = 0 for −Lz � z � Lz. Thus, �dd (z, t ) can be written as

�dd (z, t ) =
⎡
⎣�̄dd (t )

{ ∫ (Lz−z)/l⊥
−(Lz+z)/l⊥

dz̄ G(|z̄|) − 4
3

}
for |z| � Lz

�̄dd (t )
∫ (Lz−z)/l⊥
−(Lz+z)/l⊥

dz̄ G(|z̄|) for |z| > Lz,
(D12)

where �̄dd (t ) := Ncdd S2{1 − 3M2
z (t )}/(2Lzl2

⊥). �dd (z, t ) is discontinuous at z = ±Lz because of the sudden change of the
density at the boundary (z = ±Lz) due to the box-trap potential.

Defining the scaled density-density mean-field potential �̄dd (z) := �dd (z, t )/�̄dd (t ), we obtain Fig. 6 for two different axial
extensions, Lz/l⊥ = 10 and 30. As Fig. 6 clearly illustrates, in a box-trapped quasi-1D gas, �dd (z, t ) becomes approximately
constant for |z| < Lc and Lc → Lz for Lz/l⊥ 
 1. Depending on the value of M(t ), �dd (r, t ) will introduce either a repulsive or
an attractive force. This force will, however, exist only near the boundary for a box trap, where it can lead to a slight modification
of the density of atoms. Its relative influence decreases with increasing extension of the trapped gas along the z axis, and can
therefore be consistently neglected in the approximation of constant particle-density.

However, to assess whether significant magnetostriction occurs, one has to consider, in addition to �dd , the trap potential Vtr

and the “quasi”-density-density interaction mean-field potential �0 defined as

�0(r, t ) :=
{

c0 + S2
S∑

k=1

c2k

∑
ν1,ν2,...,νk=x,y,z

M2
ν1,ν2,...,νk

(t )

}
|�uni(r, t )|2. (D13)

013315-15



SHINN, BRAUN, AND FISCHER PHYSICAL REVIEW A 102, 013315 (2020)

−20 −10 10 20

−0.4
−0.2

0.2
0.4
0.6
0.8
1.0

−60 −40 −20 20 40 60

−0.4
−0.2

0.2
0.4
0.6
0.8
1.0

FIG. 6. Scaled dipole-dipole mean-field potential �̄dd (z) as a function of z for a quasi-1D box trap. Left: Lz/l⊥ = 10. Right: Lz/l⊥ = 30.

We can coin �0(r, t ) a quasi-density-density interaction mean-field potential because only c0 is a density-density interaction
coefficient (c2k are interaction coefficients parametrizing the spin-spin interactions for a spin-S gas where k is an integer with
1 � k � S. For example, c2 is the spin-spin interaction coefficient of a spin-1 gas). In our quasi-1D case, this �0(r, t ) potential
is �0(z, t ), where

�0(z, t ) :=
{

c0

2π l2
⊥

+ S2
S∑

k=1

c2k

2π l2
⊥

∑
ν1,ν2,...,νk=x,y,z

M2
ν1,ν2,...,νk

(t )

}
|�(z, t )|2. (D14)

In the main text, we assume that c0 
 S2 ∑S
k=1 c2k

∑
ν1,ν2,...,νk=x,y,z M2

ν1,ν2,...,νk
(t ). For spin-1 23Na or 87Rb, S = 1 and c0 �

100|c2| [32,35], so this is an appropriate assumption (note that |M(t )| = 1). The values of the c2k are not yet established for 166Er.
We therefore tacitly assume in the main text, when calculating concrete numerical examples for 166Er, that the above condition
also still holds, despite the prefactor S2 enhancing the importance of spin-spin interactions in �0(z, t ). When this assumption is
not applicable, one is required to take into account the time dependence of �0(z, t ) due to M(t ) together with magnetostriction
due to �dd (z, t ), which will change the system size Lz as a function of t . This will in turn change the integration domain and
quasi-1D density n(z, t ) = |�(z, t )|2 in Eq. (19), and incur also a changed time dependence of �′

dd (t ), and the solution of the
coupled system of Eqs. (B10) and (D4) needs to be found self-consistently.

For a harmonic trap, due to the resulting inhomogeneity of |�(z, t )|2, �dd (z, t ) will have more significant spatial dependence
than its box-trap counterpart shown in Fig. 6. Here, we note that Ref. [41] has already shown (for a spin-polarized gas, c2k

couplings not included) that magnetostriction occurs in a harmonic trap. The effect of magnetostriction is generally expected to
be larger in a harmonic trap when compared to a box trap with similar geometrical and dynamical parameters for large relative
system size Lz/l⊥ 
 1, at least under the above condition that the S2c2k/c0 are sufficiently small.
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