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Pseudogap regime of a strongly interacting two-dimensional Fermi gas with and without
confinement-induced effective range of interactions
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We investigate theoretically the many-body pairing of a strongly correlated two-dimensional Fermi gas with
and without negative confinement-induced effective range. Using a strong-coupling effective field theory in
the normal state, we show that the specific heat at constant volume can be used as a characteristic indicator
of the crossover from the normal Fermi liquid to the pseudogap state in two dimensions. We calculate the
pseudogap formation temperature through the specific heat at constant volume, examining the role of a negative
confinement-induced effective range on many-body pairing above the superfluid transition. We compare our
results with and without effective range to the recent experimental measurement performed with radio-frequency
spectroscopy in Murthy ez al. [P. A. Murthy, M. Neidig, R. Klemt, L. Bayha, 1. Boettcher, T. Enss, M. Holten,
G. Ziirn, P. M. Preiss, and S. Jochim, Science 359, 452 (2018)]. Although a good qualitative agreement is found,
we are not able to discriminate the effect of the confinement-induced effect range in the experimental data.
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I. INTRODUCTION

The role of many-body pairing in Fermi systems above
the critical superfluid temperature—the so-called pseudogap
pairing—is a complex and intriguing problem. It has been
long recognized that the pseudogap pairing is important in un-
derpinning superconductivity in high-temperature supercon-
ductors [1-3], however due to quantum fluctuations such pair-
ing is difficult to understand [4,5]. The advancement of exper-
imental techniques in trapping and control of interactions in
ultracold Fermi gases makes them an ideal platform to study
high-temperature many-body pairing across the crossover
from a Bose-Einstein condensate (BEC) to a Bardeen-Cooper-
Schrieffer (BCS) superfluid [6]. Two-dimensional (2D) ultra-
cold Fermi gases are of particular interest due to the increas-
ingly important role of quantum fluctuations in low dimen-
sions and it is expected that the interaction and temperature
regime where pseudogap pairing dominates, known as the
pseudogap regime, is much more pronounced [5,7].

Probing the pseudogap regime is difficult as there is no
conclusive phase transition across the BEC-BCS crossover.
The most widely used theoretical definitions of the pseudogap
formation temperature are when a minimum enters the density
of states (DOS) or there is a “backbend” in the spectral
function [4,5,8—11]. However, there is no uniquely defined
transition and these methods can lead to competing formation
temperatures. For example, in two dimensions the suppression
entering the DOS near the Fermi surface leads to a limit
in the weakly interacting BCS regime where pairing and
condensation occur at different temperatures. Hence, one has
to take a more significant suppression in the DOS to define a
consistent and meaningful pseudogap formation temperature
[12]. Another technique to observe the effects of many-body
pairing is to calculate the equation of state (EOS) and ther-
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modynamic properties [13]. It has been observed that the spin
susceptibility and specific heat at constant volume contain in-
formation about the pairing in a three-dimensional interacting
Fermi gas and a characteristic transition temperature can be
defined [14]. In this paper we will determine the pseudogap
regime using the specific heat at constant volume in two
dimensions and compare to the pseudogap regime predicted
from the suppression in the DOS (see, e.g., Ref. [12]).

On the experimental side, the advancement of trapping
techniques over the last few years has seen a set of important
measurements on 2D interacting Fermi gases [15—18]. There
was much debate about the pairing regime found in these
experiments [12,19,20], where it was argued that the regime
probed was not many-body pairing, but two-body pairing.
In order for many-body pairing to exist the Fermi gas must
have a defined Fermi surface and pairing comes from the
many-body nature of the system, which is seen to be true for
a chemical potential u > 0. However, it has also been argued
by Ref. [20] that the criterion of a positive chemical potential
is too strict and that many-body pairing can exist for a wider
interaction and temperature range. Recent experimental work
by Murthy et al. in Ref. [21] has seemingly observed the
high-temperature pairing in 2D Fermi gases for a wide range
of interaction strengths and temperatures, although they did
not determine a phase diagram.

All previous theoretical methods used to study the pseu-
dogap regime in two dimensions (i.e., x-y plane) have relied
upon a single channel model of fermions with a contact
interaction. It has been found that this model works very
well in explaining experimental data for both below the
Berezinskii-Kosterlitz-Thouless (BKT) transition [22-26] and
the EOS in the normal state [12,19,20,27-30]. However,
recent measurements on the breathing mode and quantum
anomaly of 2D Fermi gases [31-33] have found a significant
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deviation from the state-of-the-art theoretical prediction us-
ing the single-channel model [34,35]. This difference could
not be explained through a temperature dependence of the
experimental data alone [36], and including higher-order ex-
citations along the z axis of the quasi-2D system is crucial
in capturing the reduced breathing mode anomaly [37,38].
Theoretical studies focused on the importance of the quasi-
2D nature of scattering and the increased role of confined
fermions being able to occupy higher excited single-particle
states along the z direction, even when the trapping is ex-
tremely tight [38—41]. Including dressed molecules within a
two-channel model has been found to effectively describe this
situation [38,42], where the molecular state encapsulates the
higher excited states and characterizes a confinement-induced
effective range of interactions. This highlights the impor-
tance of understanding the pseudogap regime by using the
two-channel model.

The purpose of this paper is to understand the role played
by the confinement-induced effective range on many-body
pairing within the two-channel model. Using a field the-
oretic method to include pairing fluctuations, we calculate
the pseudogap formation temperature from the specific heat
at constant volume, T [14]. We compare this characteristic
temperature to the pseudogap temperature determined through
a suppression in the DOS at the Fermi surface. We find that
when using the definition of the pseudogap temperature, 7%,
as a dip in the DOS of 25% of the value at the left fringe,
there is a good agreement between 7* and T in the weakly
interacting regime. We then investigate the role played by the
confinement-induced effective range on the pseudogap forma-
tion temperature of 7 and see that the effective range shifts
the pseudogap window towards weaker binding energies.
Finally, we compare our results to the recent radio-frequency
(rf) spectroscopy measurements of the pseudogap regime by
Murthy et al. in Ref. [21], which is the most promising way
to experimentally map out the pseudogap regime. For this
purpose, we also calculate rf spectra for a trapped system from
the analytically continued Green’s function, and examine
the role of the confinement-induced effective range. A good
qualitative agreement is found between the experimental data
and the theoretical pseudogap regime defined by 7. However,
we find that the inclusion of the confinement-induced effective
range does not improve the agreement.

The rest of our paper is set out as follows. In Sec. II,
we introduce the two-channel model Hamiltonian and outline
the many-body 7-matrix theory. In Sec. III, we calculate the
specific heat at constant volume for a 2D interacting Fermi
gas, and using the properties of the specific heat we determine
the pseudogap regime and compare it to the pseudogap regime
found from the DOS. In Sec. IV, we compare our results
to the recent experimental measurements, by calculating the
rf spectra and the pseudogap temperature. And finally, in
Sec. V, we summarize our findings. For simplicity we set
A = 1 throughout.

II. HAMILTONIAN

We start our calculation of the many-body Green’s function
within a two-channel model of the 2D interacting Fermi gas
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FIG. 1. The Feynman diagrams for (a) the fermion self-energy,
(b) the molecular self-energy, and (c) the vertex function within the
ladder approximation.

in the normal state, described by the Hamiltonian [43—46]:
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where H.c. is the Hermitian conjugate, c, are the annihilation
operators of atoms with spin ¢ =1, | and mass M in the open
channel, and bq are the annihilation operators of molecules
in the closed channel. The kinetic energy of the Fermi atoms
measured from the chemical potential u is & = ex — U,
where e = k?/(2M). The threshold energy of the diatomic
molecule is v and the Feshbach coupling is g,. As we have
used a momentum-independent Feshbach coupling constant,
which is unphysical at the high energy, there is an ultraviolet
divergence. This divergence can be removed by renormalizing
v, as we discuss in detail in the Appendix. v and gy, are related
to the physical observables of the binding energy ¢z and the
effective range of interactions R; < 0 via

1

V= —¢&g+ 2 _— 2
B gb§k 2ex + ¢5 (2)
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Many-body T -matrix theory

We consider the effect of pair fluctuations on the normal-
state properties of a strongly correlated Fermi system through
the non-self-consistent 7 -matrix approximation. The interact-
ing thermal Green’s function of fermions at temperature 7 is
given by [9,45,47]

1
Gk, iwy) = -

—, “)
lwy — (Ek - /’L) - Ea(kv la)m)

where we sum all of the ladder-type diagrams to obtain the
self-energy [see Fig. 1(a)]:

To=ksT Y GVq =k, iv, — iwn)I(q. ivy).  (5)

q,iv,

Here, the fermionic and bosonic Matsubara frequencies are,
respectively, w,, = 2m + 1)mwkgT and v, = 2nwkgT for inte-
gers m and n, and the free Green’s function is G (k, iw,,) =
(iwm — &)~'. The vertex function I'(q,iv,), which is an
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effective bosonic propagator, can be written through Fig. 1(c):
I, iva) = Ugy' (g, iv,) + TI(g, ivy), (6)
with the effective interaction Uy = gszo (q, iv,) and the pair

propagator I1(q, iv,):

M =kT Y GV(q -k, iv, — iw)G (K, i)
K,iw,,
_ Z 1= f(Esx) = f(E9x)

2ex — 21+ €q/2 — vy

)

K, iy,

Here, the free Green’s function of a molecular boson is
Dy(q, iv,) = l/.[ivn.— 6(113] WiFh .dispersion e(lf = 69/2 —v+
2. As shown in Fig. 1(b), similar to the fermionic Green’s
function, the interacting Green’s function of the molecular

boson also includes a self-energy correction:

1
D(q, i n) = s
(q Y ) ivn - Gq/2 —V+ 2/”“ - Em(q, ivn)

®)

where X, (q, iv,) is given by
T = —gI1(q, ivy). ©)

At a given temperature, binding energy, and effective range
we tune the chemical potential to satisfy the particle number
equation:

N = N, + 2N,
=2ksT Y G(k, iwy) — 2ksT Y _ D(q. iv,). (10)
K, i, q,iv,

To make the equations dimensionless, we define the Fermi
units kg = 2zn)'/?, ep = k%/(ZM), and Tr = eg/kp, where
n = N/V = k}/2n is the total density and V is the area (or the
volume in two dimensions). We then converge the chemical
potential u/ep at a given reduced temperature 7 /7r, binding
energy ep /¢, and effective range kZR;.

The closed set of Egs. (4)—(9) can be solved directly with
a numerical sum over the Matsubara frequencies, as done
in Ref. [47]; however, within this methodology it is difficult
to numerically continue the thermal Green’s function to the
real axis, which is needed for obtaining the spectral function
and the DOS. Alternatively, we can analytically continue the
Matsubara frequencies to the real axis first, allowing us to
directly calculate the analytically continued Green’s function
[20,48,49]. The thermal Green’s function then becomes

1

Gk, 0" =
Ty ) S s

Y

where wt = w +i0". Using contour integration the self-
energy function takes the form [50]

2.k, ")
= (;Tq)zi—e[b(e)G(O)(k —q, € —wHImI(q, ¢*)
— f(OIMGOk, eIk + q, € + 0 1)), (12)

where f(z) = [exp(Bz) + 11" and b(z) = [exp(Bz) — 117
are the Fermi and Bose distributions, respectively, with 8 =

1/(kpT ). We then find the imaginary part of the analytically
continued self-energy,

dq de b
gt 2 PO+ (e = )]

x ImI(q, €) InG?(q — k, € —w), (13)

Im [Xq(k, )] = /

and we calculate the real part of the self-energy from the
Kramers-Kronig relation:

Im[ %, (k, 0)]

o —w

1 [o.¢]
Re[2,(k, w)] = —73/ do' (14)
T —00
The DOS is calculated by analytically continuing the
fermionic Green’s function and integrating over the momenta:

1
p(@) =—=> ImG(k, iw, > o +i0")
T k

= ZA(k, o). 15)
k

It is possible to relate the above many-body 7T -matrix
theory to the Nozieres—Schmitt-Rink (NSR) [36,51] approach
by truncating the self-energy to the first order, i.e.,

G(k, lwm) = G()(k, iwm)
+ G()(k, ia)m)za(kv lwm)GO(kv ia)m)- (16)

This is equivalent to writing the thermodynamic potential for
a two-channel model:

Q=)+ - > In[l+gDeIl(q.ivy)]. (17)

q,iv,

where Q;O) =2 In(e P + 1) is the free fermionic ther-

modynamic potential and Qg)) = Zq 1n(e_ﬁ€=ll3 — 1) is the free

bosonic thermodynamic potential. Although the pressure EOS
and thermodynamic properties can be calculated from the den-
sity equation of state in Eq. (10) via the Gibbs-Duhem relation
[12,28], we use the NSR approach for the calculation of the
specific heat at constant volume as this is considerably sim-
pler: it is more feasible to calculate numerically the derivatives
with respect to the chemical potential and interaction strength.
We expect that there is a small correction to the specific
heat at constant volume when the self-energy becomes more
significant and the approximation of Eq. (16) weakens.

Through the thermodynamic potential we can calculate the
thermodynamic properties of the system, starting with the
pressure EOS P = Q/V, the energy E = —TS + Q2 + uN,
and the entropy S = —(9€2/97T'),, [46]. The specific heat at
constant volume is given by

cy = <§> , (18)
T )y x

For the specific heat at constant volume it is simplest to cal-
culate the derivative of the energy with respect to temperature
numerically:

_E[n(T +6), T +38]—E[WT —96),T — 4]
B 28

where we set § = 0.017¢ [14].

Cy

. (19)
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FIG. 2. (a) The chemical potential in units of the Fermi energy
for binding energies ¢g/er = 0.01 (black dotted), 0.1 (purple dot-
dashed), 0.3 (blue dashed), and 0.75 (red solid) and (b) the specific
heat at constant volume in units of Cy; = Nkg as a function of reduced
temperature for the same binding energies. The ideal Fermi gas
specific heat predicted by Eq. (20) is shown as the symbols.

We note that since the superfluid transition temperature
predicted by the Thouless criterion is precisely zero in two
dimensions [1,52] we do not consider the finite-temperature
transition in this paper. It is also important to note the
limitations and benefits of the non-self-consistent 7-matrix
scheme. This T-matrix scheme is useful as it is possible
to analytically continue the Green’s function and directly
obtain spectral functions: we do not rely on a numerically
unsound procedure. The non-self-consistent 7 -matrix approx-
imation is well defined and works well in the high-temperature
regime where the interaction strength effectively becomes
weaker, in the tightly bound limit where the binding energy
€g > e¢p and molecules are well formed, or in the weakly
interacting limit where the binding energy is exponentially
small. However, when the interactions between performed
molecules are strong, such as in the strongly correlated regime
and at sufficiently low temperatures, the chemical potential
approaches the binding energy and we expect the non-self-
consistent 7 -matrix theory to give incorrect results [29]. In
this paper we avoid this problem as we focus on the relatively
high-temperature regime (i.e., at temperatures larger than a
characteristic BKT temperature of ~0.17F).

III. RESULTS
A. Specific heat

We first consider the broad resonance limit and let g, —
00, 1.€., k%RS = 0, in order to understand the general properties
of the specific heat at constant volume. Figure 2(a) shows the
reduced chemical potential in units of the Fermi energy as a
function of temperature, 7 /7Tz. We see that the temperature

1.2
T/Tr = 0.37 —
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19}
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FIG. 3. The density of states is plotted as a function of frequency
in units of py = m/m for an interaction strength of ez/er = 0.3 and
a range of temperatures.

dependence of the chemical potential for each binding energy
is nontrivial, and as we go towards the strongly correlated
and low-temperature regime we see the chemical potential
has a maximum value, indicating the tendency of a transition
towards the superfluid state.

In Fig. 2(b) we plot the specific heat at constant volume
in units of Cy = Nkg, as a function of temperature from the
weakly attractive BCS side to the strongly correlated regime.
We see that for the weakest binding energy, ez /ep = 0.01, the
specific heat is reduced to the ideal Fermi gas specific heat at
constant volume:

cl = zL%z(—e’s“) _ L%l(—eﬁ"). 20)

Lij(—ef#)  Lig(—ef)

In the high-temperature limit (i.e., T > TF), the specific heat
for all interactions is approaching Cy = Nkg. In the relatively
high-temperature regime (i.e., T ~ 0.3Tr), the specific heat
is enhanced compared to the ideal gas result, and typically ex-
hibits a peak structure. As we move from the weakly attractive
regime to the strongly coupled regime, the enhancement or
peak first increases and then decreases. As we shall discuss in
greater detail below, this enhancement connects to the many-
body pseudogap pairing. Before doing so, let us briefly review
the DOS, which provides a conventional characterization of
the pseudogap regime.

B. Density of states

Indeed, it has been discussed in a range of works that in
both two and three dimensions the DOS can be used to find
the pseudogap formation temperature [5]. In Fig. 3 we plot
the DOS at the interaction strength ez/ep = 0.3 for a range
of temperatures, normalized by the ideal density of states,
po =m/m, and showing the evolution of the suppression,
or dip, near zero frequency with respect to the chemical
potential. It is readily seen that, as the temperature reduces,
the suppression in the density of states increases. In this paper
we choose to take the pseudogap formation temperature 7'*
when there is a significant dip near the Fermi surface [12],
that is, when the lowest value near w/ep >~ 0 is 25% lower
than the left peak value. In this way, we can approach the BKT
transition temperature in the weakly interacting regime, and as

013313-4



PSEUDOGAP REGIME OF A STRONGLY INTERACTING ...

PHYSICAL REVIEW A 102, 013313 (2020)

3.0
— (’7\,'
(a) T/Tr = 0.3 .
5 o
© .
e}
wn
=
-
>
)
LOF (b) 7/T% = 0.3 "
s
5 e
S 08 ;
= .
/
= 0.5 7
~ .
9 L
S 02— — 2Np
—-= Niluc
0.0 L R | L R |
0.6 1 { — T.: GPF
(c) / -7
3 1 —
0af NF /S e nI)E0
ELT / ':. ll ..... T
=~ / ’ Il
&~ / o PG s MB
0.2 F K:"“
o
st
SF
OO Lol Lol o nld
1072 1071 10° 10"
€B/€F

FIG. 4. (a) The specific heat at constant volume in units of Cy =
Nkg as a function of binding energy e5/er. The Fermi and Bose ideal
limits are shown as square and circular symbols, respectively. (b) The
fluctuation contribution to the number equation, Ny, = —9QNsr/0U
(red dot-dashed), and twice the number Njp of stable molecules (blue
solid). (c) Phase diagram of the 2D Fermi gas plotted as a function
of binding energy and reduced temperature. Crossover to many-body
pairing (PG) from the the normal Fermi gas (NF) found from Cy is
given by T (red dot-dashed). T* (black dashed) is the pseudogap
formation temperature found from the density of states. 7, (blue
solid) defines the BKT transition to a superfluid (SF) and is given
by the Gaussian pair fluctuation theory in Ref. [25]. The temperature
T, where u(T;) =0 (purple dashed) is the crossover temperature
towards a two-body dominated regime.

the temperature is lowered the system will move directly from
a normal Fermi liquid to a superfluid.

C. Phase diagram

To understand the enhancement of the specific heat at
constant volume in the relatively high-temperature regime we
plot in Fig. 4(a) Cy as a function of binding energy at a fixed
temperature 7 /Tr = 0.3. We see there is a clear enhancement
of Cy peaked at binding energy e¢p/erp =~ 0.3, indicating that
in this regime there are high-temperature many-body Cooper
pairs forming. The specific heat smoothly evolves from an
ideal Fermi gas Cl; on the weakly attractive BCS side to
an ideal Bose gas C5 of mass 2M and density N/2 on the
strongly attractive BEC side. Here, the ideal Bose gas specific

heat at constant volume takes the same form as in Eq. (20)
[53]; however, the chemical potential is determined using the
number equation for an equivalent Bose system with mass 2M
and density N/2.

To see how these many-body pairs arise, we plot in
Fig. 4(b) the fluctuation contribution to the total number
density, Nyyc = —0Qnsr/du, as a function of the binding
energy (red dot-dashed line), where

1 * do
Qnsr = - Xq:/_w W&‘L w), 2D

and §(q, @) = —ImIn[—T"~!(q, @ 4+ i0")]. The contribution
of Ny, to the total density can be thought of as renormalized
Cooper-pair fluctuation and can be broken into contributions
from metastable pairs and scattered states [43,54]. In particu-
lar, if there is no Fermi surface and the chemical potential is
negative, i.e., u < 0, it is possible to divide the fluctuation
contribution into twice the number of stable molecules Np
(blue solid line) and of scattered states Ny (not shown in the
figure) [14,43]. We plot in Fig. 4(b) twice the number of stable
molecules Np for binding energies greater than eg/er > 0.5,
where Ny can be calculated from the bound-state contribution
[55]. For binding energies below this value the chemical
potential is positive and the stable molecule formulation is
unphysical. Thus, it is clear that the contribution of pairs
below binding energies eg/er ~ 0.5 should be from many-
body pairing and gives rise to the enhancement of the specific
heat at constant volume Cy .

Following the idea of Ref. [14] we take the minimal value
of Cy (T /Tr) as a characteristic transition temperature, T, be-
tween the normal Fermi gas and a many-body paired system,
i.e., the pseudogap regime. This value signifies the deviation
from the ideal Cy in the weakly attractive regime, and breaks
down as we approach strongly attractive interactions, and can
be seen as the minimum value in Fig. 2, for temperatures
above which the chemical potential is unphysically tending
towards the binding energy. This is not a true transition
temperature to the pseudogap regime but a characteristic
transition.

We plot a phase diagram in Fig. 4(c) showing the crossover
temperature to the pseudogap regime defined by T (red dot-
dashed) and T* (black dotted), and the BKT transition temper-
ature T, to a superfluid found by the Gaussian pair fluctuation
theory in Ref. [25] (blue solid). We show also the crossover
line to a regime dominated by two-body physics by the curve
(1) = 0 (purple dashed). This line bounds the pseudogap
regime as we increase the binding energy. All together, the
three lines of the characteristic temperatures, T, T, and 1>,
enclose a pseudogap regime. We note that the calculation of
u(T,) = 0 is stopped for temperatures below T /Tr = 0.2 due
to the breakdown of the NSR and 7-matrix schemes.

D. Effective range dependence

We now move to consider the confinement-induced effec-
tive range dependence of the density of state, specific heat at
constant volume, and pseudogap formation temperature. We
first show the density of states in Fig. 5 normalized by the
ideal density of states py = m/m, for two temperatures (a)
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FIG. 5. The density of states is plotted as a function of frequency
in units of py = m/m for an interaction strength of ep/ep = 0.3,
temperatures (a) 7 /T = 0.42 and (b) T /Tr = 0.5, and for negative
effective ranges kiR, = 0 to —1.5.

T/Tr = 0.42 and (b) T /Tr = 0.5, at fixed interaction strength
ep/er = 0.3, and negative effective ranges kI%RS =0to —1.5.
As the negative effective range increases in absolute value
we see the suppression near zero frequency with respect to
the chemical potential lower for both temperatures. This is
indicating that for large |kZR;| the transition to the pseudogap
will occur at higher temperatures.

To clearly understand the role of effective range on the
pseudogap we show Cy in Fig. 6 as a function of binding
energy, p/cr, for negative effective ranges k2R, = 0 to —3
and temperatures (a) T/Tx = 0.3, (b) T/Tr = 0.5, and (c)
T/Tz = 1.0.

The behavior of Cy as a function of increasing effective
range in absolute value is nontrivial: we find that the enhance-
ment in the middle interaction regime (around eg/er == 0.3)
dampens for each temperature, as the negative effective range
increases in absolute value. This is most likely due to the sys-
tem more readily forming bound molecules with increasing
effective range in absolute value. For increasing temperature
the peak value is also decreasing, and this is to be expected,
as for higher temperatures the role of many-body pairing
decreases. We also see that the peak value shifts to larger
binding energies at high temperatures as the effective range
increases in absolute value, due to a nontrivial competition
of pair formation with increasing effective range in absolute
value and high temperatures. Furthermore, in the weakly
attractive (eg/er < 0.1) and tightly bound (eg/er > 5) limits,
the specific heat at constant volume more slowly approaches
the ideal gas limits, as kpR; — —o0.

Following the same method to define a pseudogap tran-
sition temperature T as in Fig. 4, we calculate the effective
range dependence of the pseudogap formation and report this

Cv [units of Co]

Cv [units of Co]

15F

1.2

1.0

Cv [units of Co]

0.8

(c)T/Tr =1.0
05 o 09000004

|
1072 107t 10° 10t

EB/EF

FIG. 6. The specific heat at constant volume in units of Cy =
Nkg as a function of interaction strength ¢,/er for negative ef-
fective ranges: kl%Rj = 0 (black dotted), kﬁRs = —0.5 (purple dot-
dashed), k2R, = —1.0 (blue dashed), kR, = —1.5 (red solid), and
k%Rs = —3.0 (green dot-dot-dashed), for temperatures (a) 7 /Tz =
0.3,(b) T/Tr = 0.5,and (c) T /T = 1.0.

main result of our paper in Fig. 7. The effective ranges are
k%R‘Y = 0 (black dot-dashed), kI%RS = —0.5 (purple dashed),
kI%R‘Y = —1.0 (blue dotted), and kI%RS = —2 (red solid). We
also plot the crossover temperature 7, to a molecule domi-
nated system defined by ©(7>) = 0 using different symbols
but the same color for each effective range. The effective
range shifts the pseudogap region to weaker binding energies.
This is due to the fact that the system more readily forms
molecular states with increasing effective range in absolute
value, which is seen in Fig. 6(a) as the peak value shifts to
weaker binding energies with increasing effective range in
absolute value. The interaction window where the pseudogap
regime exists remains approximately the same size; however,
for the smallest effective range (k%RS = —2) in the figure,
the pseudogap formation temperature is still large for weak
interactions. We can see this effect in Fig. 6(a), where for
increasing effective range in absolute value and decreasing
binding energy Cy is more slowly approaching the ideal gas
result.

IV. COMPARISON TO THE EXPERIMENT

section we outline how
calculations to the

In this
two-channel

to compare our
recent experimental
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FIG. 7. The pseudogap formation temperature 7 found from
the specific heat for negative effective ranges k2R, = 0 (black dot-
dashed), k2R, = —0.5 (purple dashed), k2R, = —1.0 (blue dotted),
and kZR, = —2 (red solid). We also show the characteristic temper-
ature 75 defined by u(7;) = 0 using different symbols. At the same
effective range, the color is the same for lines (7') and symbols (73).

observations of Murthy et al. in Ref. [21], with and without
the confinement-induced effective range. For this purpose, we
include the effect of an inhomogeneous trap through the local
density approximation, u(r) = g — %szrz, where p, is
the global chemical potential, w is the trap frequency, and
r is the distance from the center of the trap. We denote the
dimensionless radii as ¥ = r/RrF, R%F = 2kpTr/ (mw?) is the
Thomas-Fermi radius for a zero-temperature noninteracting
trapped Fermi gas, and the trap Fermi energy Er = (2N)'w.
We find the global chemical potential by enforcing that the
total number of atoms satisfies N = f drn(r) for a central
interaction strength and reduced temperature, where

dk
n(r) = 2/ Wda)A(k, r, w)ng(w), 22)

the Fermi distribution is ng(w)=1/(1 +¢#*), and
A, r,w) = (=1/7)ImGK, r,w +i0") is the spectral
function found from the trap dependent Green’s function.
The inhomogeneous trap means we have trap dependent
temperature 7 /Tr(r) and interaction In[kg(r)asp].

The experiment in Ref. [21] measures the local spectral
response of a trapped 2D Fermi gas through rf spectroscopy.
Rf spectroscopy can give information about the properties
of the system, by applying a short rf pulse to flip the spin
states from an initial strongly interacting system into a weakly
interacting final state and then by measuring the number of
transferred atoms. This can then be repeated for a range of
detunings of the rf pulse and information about the single-
particle properties can be measured. In order to compare
the spectra found from the experiment, we calculate the trap
dependent rf spectra. When there is no final-state interaction
we can take the rf response to be [20,48]

dk
Li(w, 1) = 2/ mf(gk,r — AWK, &kr — ), (23)

where &, = ex — u(r). As a self-consistent check to our
calculation of the rf spectra, we can calculate the number

(a) ep/ep(r) ~ 0.5
T/Tp(r) =1.0

I¢ (arb. units)

(b) eg/er(r) ~ 1.8
T/Tr(r) =0.7

0.2

0.1F

I¢ (arb. units)

0.0

w/eF

FIG. 8. Comparison of the local spectra from the 7 matrix (solid
lines), with a finite negative effective range (dashed line), and ex-
perimental results of Ref. [21] (symbols). We plot the spectra (in
arbitrary units) for (a) local temperature 7'/Tr = 1.0 and binding en-
ergy eg/er = 0.5 and (b) local temperature 7 /7r = 0.7 and binding
energy eg/ep >~ 1.8.

density, i.e.,

N = / " i / drl(w, ). 24)

To compare our two-channel results to the experimental
local 1f spectra we need to fix a realistic confinement-induced
effective range. This can be done as follows. Using the exper-
imentally measured values of the binding energy and Fermi
energy we define the ratio ez/ep to obtain the dimensionless
effective range for a given interaction. We require that the two-
body T matrix Tog(E™) and the quasi-2D scattering amplitude
share the same pole (the same binding energy ¢p) [41]. It is
readily seen that the binding energy ez = x>/M is related to
the effective range R, by

_ 21n (kay)

R 3

(25)
K
where the 2D scattering length a; is defined in the Appendix.
Using the defined binding energy the dimensionless effective
range R,/ af and central effective range kl%Rs are then found.
In Fig. 8 we plot the rf spectroscopy found from the
T-matrix approximation and from Figs. 3(c) and 3(d) of
Ref. [21]. We have taken the experimental values of central
binding energies ¢p = 1.37 kHz in Fig. 8(a) and 9.31 kHz
in Fig. 8(b), and Fermi energies ¢ = 6.56 and 7.61 kHz,
which correspond to Feshbach resonances of 670 and 690 G
at two fixed radii r as in the experiment corresponding to
the measured local trap temperatures of 7 /7 = 1.0 and
0.7, respectively. This defines a confinement-induced effec-
tive range of Rs/af ~ —0.2 and —1.2, respectively. Fix-
ing the local temperature we determine the local chemical
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FIG. 9. Comparison of the local spectra from the shifted 7 ma-
trix (solid lines), with a finite negative effective range (dashed line),
and experimental results of Ref. [21] (symbols). We plot the shifted
spectra (in arbitrary units) for (a) local temperature 7 /7Tr = 1.0 and
binding energy ep/er =~ 0.5 and (b) local temperature 7 /7z = 0.7
and binding energy ep/er = 1.8. The green dashed lines are the
threshold energy and black dotted lines are the free energy, both
determined experimentally.

potential, Fermi momenta k%(r) ~ 0.44 and 0.71, and thus
binding energies ep/ep(r) ~ 0.5 and 1.8, for each Feshbach
resonance, respectively. Although there is a realistic effec-
tive range in the experiment, for comparison we also show
the theoretical predictions without effective range using red
solid lines.

Quite generally, there are two peaks in the spectra. The
right peak, referred to as the pairing peak, comes from the
signal of Cooper pairs. The left peak, referred to as the free
peak, is contributed from free, unpaired atoms. The difference
between the experimental and theoretical spectra is partially
due to the residual final-state effects, which is present in the
experiment but is not captured by our theory. We see the
difference between theoretical and experimental spectra is
larger for stronger binding energy, i.e., in Fig. 8(b). In order to
compare theoretical and experimental spectra for determining
the ratio between the threshold and free energies and the
pseudogap regime we normalize our spectra to have the same
peak value for the pairing peak, and shift the peak to have its
maximum at the same frequency, as plotted in Fig. 9.

First, the results at smaller binding energy in Fig. 9(a)
match quite well for the whole shifted spectra when there
is no finite effective range. Using the same fitting method
in Ref. [21] to determine the threshold energy, which is the
energy required to break a pair, we find that the threshold
and free-peak energies are similar to the experimental values.
These experimental values are plotted in Fig. 9(a) using the
vertical lines. The ratio of the difference of these energies
to the binding energy indicates that we are in the pseudogap

regime for this interaction strength and local temperature.
When including the finite negative effective range, the agree-
ment between theory and experiment becomes worse and the
free peak shifts to negative values of the rf frequency. This
redshift is due to the chemical potential being slightly lower
and the system more easily forming molecular pairs.

For the strongly attractive regime in Fig. 9(b), we see the
shifted spectra match well for the pairing peak, but not for
the free peak, which is strongly renormalized by the chemical
potential. The threshold energy is then quite similar: there
is closer agreement between the theoretical threshold energy
with the finite effective range and the experimental threshold
energy. If we take the ratio of the difference of the theoret-
ically determined free and threshold energies to the binding
energy we would find that for this interaction and temperature
we are also in the pseudogap regime, which we would not
expect. This is most likely due to the global chemical potential
being negative for large interaction strengths, making the free
peak shift to negative frequencies [56]. It is well known that
for a large negative chemical potential the Fermi surface is
breaking down and two-body bound pairs can form for any
binding energy and we are actually not in the pseudogap
regime. In this regime the BCS pairing picture gives a ficti-
tious pairing gap as the chemical potential is the gap [5]. In the
experiment in order to measure the free peak they introduce
a population imbalance, which creates a broader free peak
structure, we do not consider this imbalance in this paper,
as in the experiment it is only used as a tool to measure the
pairing. Experimentally the free peak is then centered around
zero rf frequency.

The comparison of our theoretical results of the rf spectra
with and without effective range to the experimental data
suggests that we can hardly follow the experimental procedure
to reliably determine the pseudogap regime, by using the
theoretically simulated rf spectra. This is partly due to the
fact that for rf spectra the many-body 7T matrix becomes less
accurate in the strongly correlated regime where e ~ ¢g. The
comparison between theory and experiment is further compli-
cated by the fact that, in the current treatment, our theory fails
to account for the final-state effect. Thus, at this stage it seems
more reliable for us to theoretically determine the pseudogap
regime using the specific heat at constant volume.

In Fig. 10, we replot the phase diagram for the pseudogap
regime found from the specific heat at constant volume at zero
effective range and compare it to the experimental result [see,
e.g., Fig. 4(b) in Ref. [21]]. Here, we do not consider the
effective range, since the effect of the effective range does not
unambiguously show up in the rf spectra as we have just dis-
cussed. From the figure, we see that the experimental result at
T ~ 0.5Tr agrees well with the predicted pseudogap regime.
Experimentally the confinement-induced effective range kl%R‘y
changes as a function of the binding energy and trap tem-
perature, so it is difficult to have a defined effective range
for the entire crossover regime. We would expect that not
considering a finite negative effective range to be reasonable
in the weakly interacting regime and as the binding energy
increases we would expect the negative confinement-induced
effective range to become more important and shift the upper
and lower bounds of the pseudogap transition towards smaller
binding energies.
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FIG. 10. Pseudogap transition temperature phase diagram plot-
ted as a function of binding energy and reduced temperature. The
red dot-dashed curve is the specific-heat prediction, purple dashed
is the curve where the chemical potential becomes negative, and
the blue solid curve is the BKT transition temperature from the
GPF calculation, which are in units of the homogeneous Fermi
temperature and energy.

V. CONCLUSIONS

In summary, we have explored the pseudogap regime of
a strongly interacting Fermi gas confined to two dimensions
with and without a negative confinement-induced effective
range. Using the specific heat at constant volume as a probe
for high-temperature many-body pairing we have found that in
two dimensions it can be used to determine a good character-
istic pseudogap formation temperature when compared to the
traditional method of defining the pseudogap regime through
a suppression in the density of states. We have seen that, as
the effective range increases in absolute value, the pseudogap
regime shifts to weaker binding energies as the system more
preferentially forms pairs.

By comparing our calculations to the recent experiment
of Ref. [21], we have obtained good qualitative agreement.
Plotting directly the measured in-trap radio-frequency spec-
tra, we have shown our results match well the experimental
data in the pseudogap regime, and in the strongly corre-
lated regime the differences can be understood. We have
also shown that at high temperatures the many-body pair-
ing regime experimentally defined through radio-frequency
measurements fits well with the pseudogap regime theoreti-
cally determined from the specific heat at constant volume.
However, under the current experimental conditions, it seems
difficult to clearly discriminate the effect of the confinement-
induced effect range in the radio-frequency spectra and on the
pseudogap window, largely due to the insufficient theoreti-
cal accuracy for the radio-frequency spectra and insufficient
experimental resolution.

ACKNOWLEDGMENTS

Our research was supported by Australian Research
Council Discovery Projects No. DP140100637 and No.
FT140100003 (X.-J.L.) and No. FT130100815 and No.
DP170104008 (H.H.).

APPENDIX: TWO-BODY SCATTERING

Here, we solve the two-particle problem and renormalize
the threshold detuning v. For this purpose, we seek to write the
detuning v and the channel coupling g, in terms of physical
observables, by comparing the two-body 7 matrix to the
quasi-2D scattering amplitude. The two-body T matrix in
vacuum is (ET = k*/M + i0T)

1
T (EY) = Ui (EN+ ) s (A1)
P

where €, = i2p?/(2M) and the effective interaction in the
presence of the channel coupling is given by

8

Ug(ET) = =22,
eff( ) E+t _ v

(A2)

Using a large momentum cutoff A — oo in the integral, we
find that

2M_ M A2_ 2
ngl(E”L):—k /82b U—i-E(ln[ kzk}—i-in). (A3)

In the limit of k— 0, we would have Twp(E™")=
(/M) fqap (k). Thus, we consider the low-energy expansion
of the quasi-2D scattering amplitude in [57,58]:

4

A4
V2ma./asp + w(kzag/Z)’ .

Joan(k — 0) =

where a, = \/1/(Mw,) is the harmonic oscillator length, a3p
is the three-dimensional s-wave scattering length, and the
function @ (x) has the form @w(x — 0) >~ —In(2wx/B) +
2x1In2 + iz for B = 0.9049. This leads to

Top(ET) = 4ﬂ(—2 In[ka,] — Rk + i), (AS)
T

where a; = a,/7 /Bexp(—+/7/2a;/asp) is the 2D s-wave
scattering length and the detuning and Feshbach coupling

satisfy

Arh* 1
M? g

We remove the cutoff A by considering the pole of the two-
body T matrix Tog(E), E = Ep, finding that

1 om0

ay = —esnM |

Ry = (A6)

1

V=EB+8%ZH~ (A7)
— 2ex — Ep

The binding energy can be set by ez = —Ep = k>/M where
we have set k — ik. The effective interaction strength is then

1 M?R (

1 €
=_Z — iun——"+2u+83>.
Uetr ™ 2¢x + € 47

2
(A8)

013313-9



MULKERIN, LIU, AND HU

PHYSICAL REVIEW A 102, 013313 (2020)

[1] V. M. Loktev, R. M. Quick, and S. G. Sharapov, Phase fluctua-
tions and pseudogap phenomena, Phys. Rep. 349, 1 (2001).

[2] Q. Chen, J. Stajic, S. Tan, and K. Levin, BCS-BEC crossover:
From high temperature superconductors to ultracold superflu-
ids, Phys. Rep. 412, 1 (2005).

[3] J. Stajic, Making sense of the cuprate pseudogap, Science 357,
561 (2017).

[4] C.-C. Chien, H. Guo, Y. He, and K. Levin, Comparative study
of BCS-BEC crossover theories above T.: The nature of the
pseudogap in ultracold atomic Fermi gases, Phys. Rev. A 81,
023622 (2010).

[5] E. J. Mueller, Review of pseudogaps in strongly interacting
fermi gases, Rep. Prog. Phys. 80, 104401 (2017).

[6] J. P. Gaebler, J. T. Stewart, T. E. Drake, D. S. Jin, A. Perali, P.
Pieri, and G. C. Strinati, Observation of pseudogap behaviour
in a strongly interacting Fermi gas, Nat. Phys. 6, 569 (2010).

[7] Pdivi Tormé, Physics of ultracold Fermi gases revealed by
spectroscopies, Phys. Scr. 91, 043006 (2016).

[8] R. Haussmann, M. Punk, and W. Zwerger, Spectral functions
and rf response of ultracold fermionic atoms, Phys. Rev. A 80,
063612 (2009).

[9] S. Tsuchiya, R. Watanabe, and Y. Ohashi, Single-particle prop-
erties and pseudogap effects in the BCS-BEC crossover regime
of an ultracold Fermi gas above T, Phys. Rev. A 80, 033613
(2009).

[10] H. Hu, X.-J. Liu, P. D. Drummond, and H. Dong, Pseudogap
Pairing in Ultracold Fermi Atoms, Phys. Rev. Lett. 104, 240407
(2010).

[11] A. Perali, F. Palestini, P. Pieri, G. C. Strinati, J. T. Stewart, J. P.
Gaebler, T. E. Drake, and D. S. Jin, Evolution of the Normal
State of a Strongly Interacting Fermi Gas from a Pseudogap
Phase to a Molecular Bose Gas, Phys. Rev. Lett. 106, 060402
(2011).

[12] M. Bauer, M. M. Parish, and T. Enss, Universal Equation of
State and Pseudogap in the Two-Dimensional Fermi Gas, Phys.
Rev. Lett. 112, 135302 (2014).

[13] J. Kinast, A. Turlapov, J. E. Thomas, Q. Chen, J. Stajic, and
K. Levin, Heat capacity of a strongly interacting Fermi gas,
Science 307, 1296 (2005).

[14] P. van Wyk, H. Tajima, R. Hanai, and Y. Ohashi, Specific heat
and effects of pairing fluctuations in the BCS-BEC-crossover
regime of an ultracold Fermi gas, Phys. Rev. A 93, 013621
(2016).

[15] K. Martiyanov, V. Makhalov, and A. Turlapov, Observation of
a Two-Dimensional Fermi Gas of Atoms, Phys. Rev. Lett. 105,
030404 (2010).

[16] M. Feld, B. Frohlich, E. Vogt, M. Koschorreck, and M. Kohl,
Observation of a pairing pseudogap in a two-dimensional Fermi
gas, Nature (London) 480, 75 (2011).

[17] B. Frohlich, M. Feld, E. Vogt, M. Koschorreck, W. Zwerger,
and M. Kohl, Radio-Frequency Spectroscopy of a Strongly
Interacting Two-Dimensional Fermi Gas, Phys. Rev. Lett. 106,
105301 (2011).

[18] Y. Zhang, W. Ong, 1. Arakelyan, and J. E. Thomas, Polaron-
To-Polaron Transitions in the Radio-Frequency Spectrum of
a Quasi-Two-Dimensional Fermi Gas, Phys. Rev. Lett. 108,
235302 (2012).

[19] R. Watanabe, S. Tsuchiya, and Y. Ohashi, Low-dimensional
pairing fluctuations and pseudogapped photoemission spectrum

in a trapped two-dimensional Fermi gas, Phys. Rev. A 88,
013637 (2013).

[20] F. Marsiglio, P. Pieri, A. Perali, F. Palestini, and G. C. Strinati,
Pairing effects in the normal phase of a two-dimensional Fermi
gas, Phys. Rev. B 91, 054509 (2015).

[21] P. A. Murthy, M. Neidig, R. Klemt, L. Bayha, 1. Boettcher, T.
Enss, M. Holten, G. Ziirn, P. M. Preiss, and S. Jochim, High-
temperature pairing in a strongly interacting two-dimensional
Fermi gas, Science 359, 452 (2018).

[22] G. Bertaina and S. Giorgini, BCS-BEC Crossover in a Two-
Dimensional Fermi Gas, Phys. Rev. Lett. 106, 110403 (2011).

[23] L. He, H. Lii, G. Cao, H. Hu, and X.-J. Liu, Quantum fluc-
tuations in the BCS-BEC crossover of two-dimensional Fermi
gases, Phys. Rev. A 92, 023620 (2015).

[24] L. M. Schonenberg, P. C. Verpoort, and G. J. Conduit, Effective-
range dependence of two-dimensional Fermi gases, Phys. Rev.
A 96, 023619 (2017).

[25] B. C. Mulkerin, L. He, P. Dyke, C. J. Vale, X.-J. Liu, and H. Hu,
Superfluid density and critical velocity near the Berezinskii-
Kosterlitz-Thouless transition in a two-dimensional strongly
interacting Fermi gas, Phys. Rev. A 96, 053608 (2017).

[26] Y.-Y. He, H. Shi, and S. Zhang, Reaching the Continuum Limit
in Finite-Temperature Ab Initio Field-Theory Computations in
Many-Fermion Systems, Phys. Rev. Lett. 123, 136402 (2019).

[27] S. N. Klimin, J. Tempere, and J. T. Devreese, Pseudogap and
preformed pairs in the imbalanced Fermi gas in two dimensions,
New J. Phys. 14, 103044 (2012).

[28] B. C. Mulkerin, K. Fenech, P. Dyke, C. J. Vale, X.-J. Liu,
and H. Hu, Comparison of strong-coupling theories for a two-
dimensional Fermi gas, Phys. Rev. A 92, 063636 (2015).

[29] M. Matsumoto and Y. Ohashi, Pseudogap phenomena in a
two-dimensional ultracold Fermi gas near the Berezinskii-
Kosterlitz-Thouless transition, J. Phys. Conf. Ser. 568, 012012
(2014).

[30] E. R. Anderson and J. E. Drut, Pressure, Compressibility, and
Contact of the Two-Dimensional Attractive Fermi Gas, Phys.
Rev. Lett. 115, 115301 (2015).

[31] M. Holten, L. Bayha, A. C. Klein, P. A. Murthy, P. M. Preiss,
and S. Jochim, Anomalous Breaking of Scale Invariance in
a Two-Dimensional Fermi Gas, Phys. Rev. Lett. 121, 120401
(2018).

[32] T. Peppler, P. Dyke, M. Zamorano, 1. Herrera, S. Hoinka, and
C.J. Vale, Quantum Anomaly and 2D-3D Crossover in Strongly
Interacting Fermi Gases, Phys. Rev. Lett. 121, 120402 (2018).

[33] P. A. Murthy, N. Defenu, L. Bayha, M. Holten, P. M. Preiss,
T. Enss, and S. Jochim, Quantum scale anomaly and spatial
coherence in a 2D Fermi superfluid, Science 365, 268 (2019).

[34] J. Hofmann, Quantum Anomaly, Universal Relations, and
Breathing Mode of a Two-Dimensional Fermi Gas, Phys. Rev.
Lett. 108, 185303 (2012).

[35] C. Gao and Z. Yu, Breathing mode of two-dimensional atomic
Fermi gases in harmonic traps, Phys. Rev. A 86, 043609 (2012).

[36] B. C. Mulkerin, X.-J. Liu, and H. Hu, Collective modes of a
two-dimensional Fermi gas at finite temperature, Phys. Rev. A
97, 053612 (2018).

[37] U. Toniolo, B. C. Mulkerin, X.-J. Liu, and H. Hu, Breathing-
mode frequency of a strongly interacting Fermi gas across the
two- to three-dimensional crossover, Phys. Rev. A 97, 063622
(2018).

013313-10


https://doi.org/10.1016/S0370-1573(00)00114-9
https://doi.org/10.1016/j.physrep.2005.02.005
https://doi.org/10.1126/science.357.6351.561-e
https://doi.org/10.1103/PhysRevA.81.023622
https://doi.org/10.1088/1361-6633/aa7e53
https://doi.org/10.1038/nphys1709
https://doi.org/10.1088/0031-8949/91/4/043006
https://doi.org/10.1103/PhysRevA.80.063612
https://doi.org/10.1103/PhysRevA.80.033613
https://doi.org/10.1103/PhysRevLett.104.240407
https://doi.org/10.1103/PhysRevLett.106.060402
https://doi.org/10.1103/PhysRevLett.112.135302
https://doi.org/10.1126/science.1109220
https://doi.org/10.1103/PhysRevA.93.013621
https://doi.org/10.1103/PhysRevLett.105.030404
https://doi.org/10.1038/nature10627
https://doi.org/10.1103/PhysRevLett.106.105301
https://doi.org/10.1103/PhysRevLett.108.235302
https://doi.org/10.1103/PhysRevA.88.013637
https://doi.org/10.1103/PhysRevB.91.054509
https://doi.org/10.1126/science.aan5950
https://doi.org/10.1103/PhysRevLett.106.110403
https://doi.org/10.1103/PhysRevA.92.023620
https://doi.org/10.1103/PhysRevA.96.023619
https://doi.org/10.1103/PhysRevA.96.053608
https://doi.org/10.1103/PhysRevLett.123.136402
https://doi.org/10.1088/1367-2630/14/10/103044
https://doi.org/10.1103/PhysRevA.92.063636
https://doi.org/10.1088/1742-6596/568/1/012012
https://doi.org/10.1103/PhysRevLett.115.115301
https://doi.org/10.1103/PhysRevLett.121.120401
https://doi.org/10.1103/PhysRevLett.121.120402
https://doi.org/10.1126/science.aau4402
https://doi.org/10.1103/PhysRevLett.108.185303
https://doi.org/10.1103/PhysRevA.86.043609
https://doi.org/10.1103/PhysRevA.97.053612
https://doi.org/10.1103/PhysRevA.97.063622

PSEUDOGAP REGIME OF A STRONGLY INTERACTING ...

PHYSICAL REVIEW A 102, 013313 (2020)

[38] H. Hu, B. C. Mulkerin, U. Toniolo, L. He, and X.-J. Liu, Re-
duced Quantum Anomaly in a Quasi-Two-Dimensional Fermi
Superfluid: Significance of the Confinement-Induced Effective
Range of Interactions, Phys. Rev. Lett. 122, 070401 (2019).

[39] J. P. Kestner and L.-M. Duan, Effective low-dimensional hamil-
tonian for strongly interacting atoms in a transverse trap, Phys.
Rev. A 76, 063610 (2007).

[40] A. M. Fischer and M. M. Parish, BCS-BEC crossover in a quasi-
two-dimensional Fermi gas, Phys. Rev. A 88, 023612 (2013).

[41] F. Wu, J. Hu, L. He, X.-J. Liu, and H. Hu, Effective theory for
ultracold strongly interacting fermionic atoms in two dimen-
sions, Phys. Rev. A 101, 043607 (2020).

[42] J. Levinsen and M. M. Parish, Bound States in a Quasi-Two-
Dimensional Fermi Gas, Phys. Rev. Lett. 110, 055304 (2013).

[43] Y. Ohashi and A. Griffin, BCS-BEC Crossover in a Gas of
Fermi Atoms with a Feshbach Resonance, Phys. Rev. Lett. 89,
130402 (2002).

[44] V. Gurarie and L. Radzihovsky, Resonantly paired fermionic
superfluids, Ann. Phys. (NY) 322, 2 (2007), january Special
Issue 2007.

[45] H. Tajima, Precursor of superfluidity in a strongly interacting
Fermi gas with negative effective range, Phys. Rev. A 97,
043613 (2018).

[46] B. C. Mulkerin, H. Hu, and X.-J. Liu, Role of the confinement-
induced effective range in the thermodynamics of a strongly
correlated Fermi gas in two dimensions, Phys. Rev. A 101,
013605 (2020).

[47] X.-J. Liu and H. Hu, Self-consistent theory of atomic Fermi
gases with a Feshbach resonance at the superfluid transition,
Phys. Rev. A 72, 063613 (2005).

[48] V. Pietild, Pairing and radio-frequency spectroscopy in
two-dimensional Fermi gases, Phys. Rev. A 86, 023608
(2012).

[49] M. Veillette, E. G. Moon, A. Lamacraft, L. Radzihovsky, S.
Sachdev, and D. E. Sheehy, Radio-frequency spectroscopy of a
strongly imbalanced Feshbach-resonant Fermi gas, Phys. Rev.
A 78, 033614 (2008).

[50] D. Rohe and W. Metzner, Pair-fluctuation-induced pseudogap
in the normal phase of the two-dimensional attractive Hubbard
model at weak coupling, Phys. Rev. B 63, 224509 (2001).

[51] P. Nozieres and S. Schmitt-Rink, Bose condensation in an
attractive fermion gas: From weak to strong coupling supercon-
ductivity, J. Low Temp. Phys. 59, 195 (1985).

[52] P. C. Hohenberg, Existence of long-range order in one and two
dimensions, Phys. Rev. 158, 383 (1967).

[53] R. M. May, Quantum statistics of ideal gases in two dimensions,
Phys. Rev. 135, A1515 (1964).

[54] P. Massignan, G. M. Bruun, and H. T. C. Stoof, Spin polarons
and molecules in strongly interacting atomic Fermi gases, Phys.
Rev. A 78, 031602(R) (2008).

[55] See the Appendix of Ref. [14] for details on the calculation
of NB.

[56] M. Barth and J. Hofmann, Pairing effects in the nondegenerate
limit of the two-dimensional Fermi gas, Phys. Rev. A 89,
013614 (2014).

[57] D. S. Petrov and G. V. Shlyapnikov, Interatomic collisions
in a tightly confined Bose gas, Phys. Rev. A 64, 012706
(2001).

[58] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

013313-11


https://doi.org/10.1103/PhysRevLett.122.070401
https://doi.org/10.1103/PhysRevA.76.063610
https://doi.org/10.1103/PhysRevA.88.023612
https://doi.org/10.1103/PhysRevA.101.043607
https://doi.org/10.1103/PhysRevLett.110.055304
https://doi.org/10.1103/PhysRevLett.89.130402
https://doi.org/10.1016/j.aop.2006.10.009
https://doi.org/10.1103/PhysRevA.97.043613
https://doi.org/10.1103/PhysRevA.101.013605
https://doi.org/10.1103/PhysRevA.72.063613
https://doi.org/10.1103/PhysRevA.86.023608
https://doi.org/10.1103/PhysRevA.78.033614
https://doi.org/10.1103/PhysRevB.63.224509
https://doi.org/10.1007/BF00683774
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.135.A1515
https://doi.org/10.1103/PhysRevA.78.031602
https://doi.org/10.1103/PhysRevA.89.013614
https://doi.org/10.1103/PhysRevA.64.012706
https://doi.org/10.1103/RevModPhys.80.885

