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Cooperative cooling in a one-dimensional chain of optically bound cold atoms
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We discuss theoretically the optical binding of one-dimensional chains of cold atoms shone by a transverse
pump, where particles self-organize to a distance close to an optical wavelength. As the number of particles
is increased, the trapping potential increases logarithmically as the contributions from all atoms add up
constructively. We identify a cooperative cooling mechanism, due to the mutual exchange of photons between
atoms, which can beat the spontaneous emission for chains that are long enough. Surprisingly, the cooling is
optimal very close to the resonance. This peculiar cooling mechanism thus gives new insights into the cooperative
physics of low-dimensional cold atom systems.
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I. INTRODUCTION

After the pioneering work by Ashkin on optical forces for
microsized particles [1,2], the manipulation of small objects
using light beams has been applied successfully to a wide
range of systems, from atoms [3,4] to biological systems [5].
In this context, the role of the interparticle optical forces
was soon noted [6]. These forces can be either attractive
or repulsive, depending on the specific distance between the
scatterers, which suggests it can act as a mechanism for
self-organization of the matter. Several years later, the self-
organization of dielectric particles in suspension in a fluid was
reported, with a pronounced preference for the particles to be
separated by an integer number of optical wavelengths [7].
Coined optical binding (OB) at the time, it has since known
various developments [8].

OB can be realized using two main configurations: In the
transverse one, the scatterers are spread in a plane orthogonal
to the direction of propagation of the pump, and are submitted
to a rather homogeneous phase and intensity profile [9]. In
the longitudinal configuration, the pump propagates in the
direction of the aligned scatterers [10]. In all cases, the cou-
pling between the scatterers becomes increasingly complex
as their number increases, due to the propagation effects
within the system. To circumvent these effects and generate
longer bound chains, it has been proposed to resort to Bessel
beams [11,12].

OB relies on the trapping optical force overcoming the
stochastic effect due to spontaneous emission. The trapping
component is generally analyzed in terms of potentials, con-
sidering that each particle is trapped in a potential generated
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by the other scatterers. Finding stable configurations is then a
self-consistent problem as moving a single scatterer affects the
global stability of the system [9,13,14]. More generally, while
a pair of scatterers tends to self-organize at a distance equal
to an integer number of optical wavelengths, larger systems
suffer from diffraction effects which alter this spacing, but
also the system stability [15]. Finally, despite the fact that the
binding force scales poorly with decreasing scatterer size [16],
OB has recently attracted a lot of attention for nanoparticles,
as it appears as a potential mechanism for self-structuring at
the nanoscale [17].

In this context, only recently was the possibility of binding
optically cold atoms [18] discussed. Indeed, the binding force
is comparatively stronger for particles of size comparable to
the optical wavelengths [16], and the smallest objects such as
atoms present unstable configurations as the heating due to
the random recoil overcomes the binding potential [19]. Nev-
ertheless, differently from dielectrics, cold atoms present an
atomic resonance, which leads to an extra cooling mechanism
for pairs of atoms in an OB configuration [18,19]. Although
this extra damping is not sufficient to reach stability for pairs
of cold atoms without an additional stabilization mechanism
such as molasses, it represents a further step toward this goal.

In this theoretical work, we report on a cooperative cooling
mechanism in a one-dimensional chain of cold atoms. The
long-range nature of the light-mediated interaction manifests
not only in the deepening of the OB potential, but also in
the enhancement of the cooling mechanism for resonant scat-
terers. Differently from other cooling mechanisms, including
the cooling of a pair (N = 2) of optically bound atoms, the
cooling for larger systems (N � 3) is most efficient at or very
close to the atomic resonance, and in the one-dimensional
(1D) chain under study, it grows logarithmically with the
system size. This self-generated cooling makes stable OB
possible for chains of a few dozens of cold atoms. Our result
shows that cooperative effects in low-dimensional cold-atom
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FIG. 1. Scheme of the one-dimensional cloud of atoms trapped
by four laser beams, the self-organization as a chain occurring under
the effect of mutual optical forces. The strongest coupling between
neighbors is achieved when the mutual distance is close to the optical
wavelength λ. The four laser beams drawn form a 2D optical lattice
in the transverse directions and aim to emulate a one-dimensional
system: They are ideally far from resonance. Differently, the near-
resonant pump which generates the OB is also transverse, so it should
be operated on a different transition.

systems may be particularly useful for self-organization pro-
cesses.

II. OPTICAL BINDING IN A CHAIN OF COLD ATOMS

A. Modeling the atomic chain dynamics

The dynamics of the optical binding involves monitoring
the coupled evolution of both the vacuum modes and the
atoms internal and external degrees of freedom. In order to
reach an efficient description of the system, we focus on the
atom dynamics, by tracing over the degrees of freedom of the
light and studying the coupled dipole dynamics [20–22]. Con-
sidering we are dealing with two-level atoms, the dynamics of
their dipoles, hereafter labeled β j and treated classically, is
given by

dβ j

dt
=

(
i� − �

2

)
β j − i�(r j ) − �

2

∑
l �= j

G jlβl , (1)

where � is the linewidth of the atomic transition, � the Rabi
frequency of the driving field, and � = ω − ωa the detuning
of the pump field from the atomic transition frequency ωa.
We consider a setup of transverse one-dimensional OB, where
the atoms are trapped in one dimension by a two-dimensional
(2D) optical lattice created by four plane-wave beams in
the orthogonal plane (see Fig. 1). Such a scheme allows to
reduce the cold atom dynamics to one dimension and has been
explored in various experiments [23–25].

It corresponds to a pump with a homogeneous phase
along the chain: �(r) = �0. The light-mediated interaction
between the dipole is given by the kernel Gjl = exp(ik|r j −
rl |)/(ik|r j − rl |), where r j refers to the position of the atom
center of mass and k = 2π/λ the light wave number. This
kernel can be seen as referring to scalar dipoles (scalar light
approximation), or to vectorial dipoles oriented at a magic an-
gle such that near-field terms cancel (i.e., a pump polarization

which makes an angle θ = arcsin (1/
√

3) from the chain
axis). In the linear-optics regime considered throughout this
work, this dynamics can be obtained either from a quantum
description of the light-matter interaction [20] or from a
representation of the atoms as classical oscillators [26,27].

Regarding the atom center of mass, their dynamics is
driven only by the field from the other dipoles, since the
trapping beams do not induce any force along the z axis:

m
d2r j

dt2
= −h̄(β∗

j ∇r j � j + c.c.)

= −h̄�
∑
l �= j

Im(β∗
j βl∇r j G jl ), (2)

with � j (r j ) = �0 − i(�/2)
∑

l �= j G jlβl the effective Rabi
frequency at position r j , m the atom mass, and h̄ the reduced
Planck constant. In this equation, stochastic effects associated
with spontaneous emission have been eliminated—see Sec.IV
for a more detailed discussion.

B. Adiabatic approximation

Systems of dielectrics previously considered for OB do not
possess a resonance like atoms; it is equivalent to considering
that the internal degrees of freedom, here the β js, are always at
equilibrium. Performing such an adiabatic approximation, i.e.,
considering that the dipole relaxation time �−1 is negligible
compared to the time needed for an atom center of mass to
perform an oscillation in the binding potential, corresponds
to taking the left-hand term in Eq. (1) equal to zero. This
allows one to rewrite the dipole as β j = α� j , with α =
1/(� + i�/2) the normalized atom polarizability. Defining
� j = |� j |eiϕ j , the center-of-mass dynamics in turn rewrites
as

m
d2r j

dt2
= −h̄(α∗�∗

j∇r j � j + c.c.)

= h̄�

�2 + �2/4
|� j |2∇r j ϕ j − h̄�

�2 + �2/4
∇r j |� j |2,

(3)

where the first right-hand term corresponds to the radiation
pressure force, and the second to the dipolar force.

Despite we are dealing with an open system, for a pair of
atoms (N = 2) and after a short transient, the dipoles syn-
chronize and the adiabatic approximation can be mapped to a
conservative dynamics, derived from a potential energy [19].
This conveniently allows one to monitor the evolution of the
effective energy of the system. Differently, for a many-atom
chain (N � 3) the absence of synchronization translates into
different dipole amplitudes, which in turn prevents defining a
potential energy for the system: The mutual radiation pressure
terms [i.e., the phase gradient term in Eq. (3)] cannot be
expressed as deriving from a potential. Nevertheless, simu-
lations of the kinetic energy with and without the adiabatic
approximation show that performing this approximation leads
to a conservative dynamics: On the time scales over which
the system otherwise cools or heats, no significant long-term
evolution of the kinetic energy is observed for the adiabatic
dynamics (see Fig. 2).
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FIG. 2. Evolution of the normalized kinetic energy for a chain of
N = 15 atoms with an initial interparticle distance λ, and pumped
with a laser detuned by � ≈ −0.2�. The darker black curve refers
to the evolution with the full dipole dynamics, Eqs. (1) and (2), the
lighter curve was obtained from the adiabatic dynamics [canceling
the left-hand term in Eq. (1)], and the red lines refer to the envelope
obtained by averaging over a short time. The two kinetic energies
have been normalized by the maximum of both curves.

C. Local potential at equilibrium

In this work, the system is prepared out of equilibrium as
follows: A chain of atoms separated by λ is generated; the
atom positions corresponding to the minima of the optical
potential are then obtained by letting the system relax in the
presence of an artificial friction force −ξ (dr j/dt ) applied
to all atoms. These minima correspond to a separation of
the atoms slightly different from λ, and must be found as
a self-consistent problem where all scatterers mutually in-
teract [14]: The friction allows one to reach the equilibrium
in an efficient way. We have checked that the equilibrium
positions are not affected by the value of ξ , which we have
set to 0.02m� throughout this work. Then, the two atoms
at the extremity of the chain are shifted away by 3% of
the distance to their nearest neighbor. The dynamics is then
initiated with the atoms in these positions, without any initial
velocity.

In this review, we have simulated Eqs. (1) and (2) using
�0 = 0.1� and ωrec = 0.045�, where ωrec = h̄k2/2m is the
recoil frequency. This value of ωrec is low enough to neglect
the shift induced by the scattering on the light frequency,
yet large enough to observe the cooling over dozens of os-
cillations (lower ratios ωrec lead to larger time scales for the
cooling Ref. [19]).

The OB potential for each atom strongly depends on the
system size. Indeed, due to the long-range nature of the
dipole-dipole interaction, all atoms contribute to the instanta-
neous potential Uj for atom j, which is deduced from Eq. (2)
as

Uj = h̄�
∑
l �= j

Im(Gjlβ
∗
j βl ). (4)

FIG. 3. (a) Potential energy landscape for chains of N = 5, 9
and 13 atoms at equilibrium, for a normalized detuning �/� =
−0.06, −0.13 and −0.18, respectively. The potential is computed
using Eq. (4), considering all atoms apart from the closest one, as it
generates a local singularity. (b) Optical potential (in absolute value)
for the edge atoms of a chain of length N , as a function of N , and for
a detuning that optimizes the cooling. The green line corresponds to
a logarithmic fit.

Let us discuss the potential generated by atoms once they
have reached the minimum of the optical potential (since, in
practice, the OB potential is a dynamical quantity). As can
be observed in Fig. 3(a), the optical potential for each atom
becomes deeper as the chain size increases. This effect can be
understood from the 1/r decay of the electric field. If, for sim-
plicity, we assume that each atomic dipole is mainly driven by
the laser field, β j = �0/(� + i�/2), then the optical potential
reads

Uj = h̄�
�2

0

�2 + �2/4

∑
l �= j

Im(Gjl ). (5)
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Assuming that all the atoms are separated by λ (i.e., r j =
jλẑ), the potential simplifies into

Uj = U0

∑
l �= j

1

|l − j| = CjU0, (6)

with U0 = −h̄(�/2π )�2
0/(�2 + �2/4) the potential mini-

mum for a pair of atoms, and Cj = ∑
l �= j 1/|l − j| the coop-

erativity parameter for atom j. Thus, in a long chain, an atom
in the middle of the center is submitted to a potential that is
the coherent sum of the contributions of all atoms, the overall
potential scaling as

∼U0

N/2∑
j=−N/2, j �=0

1/| j| ∼ 2U0 ln(N/2).

An atom at the chain border is submitted to a smaller poten-
tial, U1 = UN ∼ U0 ln N . This explains the scaling observed
in Fig. 3(a), which clearly favors larger chains in terms of
stability.

In Fig. 3(b), the logarithmic growth of the potential can
be observed, for chains up to N = 60 atoms. A fit of the
numerically computed potential minimum for the atoms at
the extremes of the chain gives the following approximated
expression:

Umin ≈ −0.8h̄�

(
�0

�

)2

ln N. (7)

A slight decrease in the potential depth is observed for
the largest system sizes, which can be explained from the
finite optical thickness which separates remote atoms in long
chains. Indeed, the exchange of photons between two remote
atoms is screened by the in-between atoms, which modify
both the amplitude and phase of the wave. As a result, the
coherent sum (6) is no longer valid. Longer chains obviously
suffer stronger screening effects, which represents a limit to
the length of optically bound chains. In order to overcome
such effect and bind efficiently long chains of scatterers, it
has, for example, been proposed to shrink the coherence of the
incident field to reduce the number of coherently interacting
dipoles, or to spatially modulate the phase of the incident
field [15].

III. COOPERATIVE COOLING

As mentioned earlier, an important difference of cold
atoms as compared to dielectrics spheres is the presence of
a resonance: It makes the atomic dipoles have a finite-time
response to the local electric field. As a consequence, the
system may either present a long-term cooling or heating
trend [18,19], beyond the adiabatic dynamics described above.
This is illustrated in Fig. 2, where the evolution of the kinetic
energy of the atomic chain presents a slow decay when the
dipole dynamics is accounted for. The oscillations observed
occur at a frequency provided by the trapping potential, which
can be estimated from Eq. (6):

ω2
j = ωrec�

π

�2
0

�2 + 4�2

∑
l �= j

1

|l − j| . (8)

FIG. 4. (a) Maximum cooling rate γc as a function of the particle
number N . (b) Detuning �c of maximum cooling rate, as a function
of N . (c) Cooling rate γc/� as a function of the normalized detuning
�/� of the pump light and for different particle numbers.

where ωrec = h̄k2/2m is the recoil frequency. This frequency
contains the cooperativity parameter Cj = ∑

l �= j 1/|l − j|,
which scales as ln N .

The cooling observed in Fig. 2, obtained from the envelope
of the kinetic energy E , is exponential in time, so we deduce
a cooling rate γc by an exponential fit. The dependence of this
rate on the particle number N is presented in Fig. 4, for the
detuning �c that optimizes this rate (see discussion below).
However, we first remark that the cooling rate γc scales with
ln N [see Fig. 4(a)], leading to an increased cooling rate for
larger systems. This cooperative enhancement of the cooling,
and the detuning �c that optimizes this rate, are given by the
following expressions, obtained by numerical fit:

γc ≈ ωrec

(
�0

�

)2

[0.4 ln N − 0.3], (9)

�c

�
≈ 0.14 − 0.12 ln N. (10)

We remind that in the present setup there is no external

damping force such as fluid friction for scatterers maintained
in fluids [7]. Furthermore, in the case of transverse OB, the
pump laser confines the particles only along the chain, and
have no direct role on the dynamics along that direction: Only
interparticle optical forces contribute here.

In Fig. 4(c) we observe a maximum cooling rate very close
to resonance, nevertheless the steady state is also determined
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FIG. 5. Cooling rate γc/�, scattering cross section σ , and inverse
temperature 1/T for a chain of N = 7 atoms and as a function of the
detuning of the pump light �.

by the spontaneous emission rate, which is also maximum
at resonance. Indeed resonant light corresponds to a maxi-
mum scattering cross section σ (�) = σ0/(1 + 4�2/�2), with
σ0 = 4π/k2 the resonant scattering atom cross section. The
equilibrium temperature resulting from the cooling and the
stochastic heating is obtained using a Langevin equation, and
scales as T ∝ σ (�)/γc(�) (see Sec. IV). As can be observed
in Fig. 5, despite the increased spontaneous emission, the
equilibrium temperature is predicted to be lowest very close
to resonance. The cooling thus appears to rely on the radiation
pressure force rather than on the dipolar one.

This makes the cooling mechanism for large (N � 3) op-
tically bound atomic chains quite different from other cool-
ing mechanisms. In the case of an optically bound pair of
atoms [18,19], the scaling on the cooling rate was similar to
the one obtained for Doppler cooling: Cooling is achieved
for negative detuning, ideally for � ≈ −�/2, whereas posi-
tive detuning is associated with heating [see Fig. 4(c)]. For
N � 3 atoms in an OB configuration, the cooling not only
appears most efficient very close to resonance, and even scales
differently from the N = 2 case: It reaches a maximum ∼20
times higher for N = 3 than the maximum reached for a pair
of atoms. Only for larger numbers does the optimal pump
frequency start to deviate from the atomic resonance [�c ≈
�/4 for N = 20; see Fig. 4(c)]. The present situation is at odds
from the cooling by diffuse light reported for atoms trapped in
a reflecting cylinder [28–30], where the cooling was achieved
in a fully disordered system, and was optimal off resonance
(� ≈ −3�).

A hint on the origin of this peculiar behavior, as compared
to a pair of atoms, can be found in the evolution of the atomic
dipoles. Indeed a close analysis of the dynamics shows that for
N � 3, differently than for N = 2, the dipoles do not evolve
synchronously (see Fig. 6). One observes that the dipoles
present substantial differences in their oscillations, both in
terms of amplitude and oscillations maxima.

This lack of synchronization of the dipoles has strong
consequences on the macroscopic dynamics, as revealed by

FIG. 6. Evolution of the dipole amplitude β j over time, for a
chain of N = 10 atoms. Simulation realized for a detuning � =
−0.3� and a pump strength � = 0.1�. The atomic chain was here
initialized with atoms separated by λ, with a tilt of 0.03λ toward pos-
itive z of four atoms ( j = 1, 3, 8, 10): This breaking of symmetry
allows one to visualize the distinct dynamics of the 10 dipoles.

comparing the full dynamics of Eqs. (1) and (2) to a synchro-
nized ansatz, obtained by substituting in Eq. (2) the values of
the dipole amplitudes β j by their average β = (1/N )

∑
j β j .

As shown in Fig. 7(a), close to resonance the synchronized
dynamics presents a heating trend, whereas the full coupled
dynamics exhibits a damping of the kinetic energy over time.
The systematic comparison presented in Fig. 7(b) confirms
that using the synchronized ansatz, a chain of N = 3 atoms
displays the features of Doppler cooling (we checked that
larger chains present a similar behavior, up to a shift in the
detuning that optimizes the cooling): Cooling is achieved
only for negative detuning, and is maximal for � ≈ −�/2,
whereas resonant light strongly heats the system. Differently,
the N � 3 coupled dipole dynamics obtained from Eqs. (1)
and (2) exhibits a cooling which is maximum at resonance, but
also significantly larger than for the synchronized case. Un-
fortunately, the asynchronous nature of this dynamics makes
it very challenging to analyze it in more details, as one would
need to deal with N internal and N external coupled degrees
of freedom. Hence, despite the apparent complexity that the
system dynamics presents, it is quite remarkable that this lack
of synchronization results in a cooling rate much larger than
the one encountered for synchronous dipoles.

IV. IMPACT OF THE SPONTANEOUS EMISSION
AND VELOCITY CAPTURE RANGE

Let us now discuss in more detail the effect of heating due
to spontaneous emission on the trapping. Considering that this
process is dominated by the trapping beam �0, the rate of
kinetic energy induced by spontaneous emission is

(
δE

δt

)
SE

= h̄ωr�

3

�2
0

�2 + 4�2
, (11)
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FIG. 7. (a) Dynamics of the kinetic energy for N = 3 atoms,
comparing the full dipole dynamics of Eqs. (1) and (2) with the
synchronized obtained from the synchronization ansatz. Simulations
realized with the detuning of optimal cooling for the exact case, � ≈
0.01�. (b) Cooling or heating rate γc/� for N = 3 atoms, for the
full dynamics (“exact”) and imposing synchronized dipoles (“sync”),
and for N = 2 (the two dipoles spontaneously synchronize). The
cooling or heating rate has been calculated using the evolution of
the envelope of the kinetic energy until it reaches the 90%/110% of
its initial value.

where the factor 1/3 comes from the fact that the atomic
recoil is distributed over the three spatial directions. Due to
its oscillating nature [see Fig. 3(a)], the potential minimum
is the opposite of its maximum (as the potential is here
defined to be zero at large distances), so the heating has to
overcome a barrier twice larger than the minimum potential,
�U = 2|Umin|, where Umin is provided by Eq. (7).

Considering the exponential decay of the kinetic energy
over time observed in the simulations, it is reasonable to
include the cooperative cooling as a linear damping force,
which leads to the following equation for the kinetic energy:

dE

dt
= −γcE +

(
δE

δt

)
SE

, (12)

FIG. 8. Steady-state energy Es obtained from the Langevin equa-
tion and potential barrier �U , as a function of the number of particles
and for different pump strength �/�.

where γc is given by Eq. (9). The steady-state energy is thus
given by

Es = 1

γc

(
δE

δt

)
SE

(13)

≈ 0.83

ln N − 0.8

h̄�

1 + 4(�c/�)2
. (14)

Stability is achieved when Es < �U . For instance, for
�0/� = 0.2 stability should be reached for N � 40 (see
Fig. 8). While increasing pump strength suggests that a lower
number of atoms is necessary to reach stability, it actually
challenges the validity of the linear optics approximation [31],
just as in the case of Doppler cooling.

In a similar way, we can estimate the velocity capture range
�v, assuming that the initial kinetic energy must be smaller
than the potential barrier for the atoms to become trapped:
(m/2)(�v)2 < 2|Umin|. Using Eq. (7), we obtain

k�v < 2.4
√

(ωr/�) ln N �0. (15)

For example, for 87Rb atoms on the D2 line (52S1/2 → 52P3/2

transition) one has that ωr/� ∼ 6 × 10−4, allowing one to
attain k�v/� ∼ 0.06

√
ln N (�0/�). This can be compared to

the values for Doppler cooling in optical molasses, k�v/� ∼
1, and for Sisyphus cooling, k�v/� ∼ √

ωr/�0(�0/�) [32]:
The present cooperative cooling mechanism thus shares a
scaling closer to Sisyphus cooling although, as discussed
earlier, it is more efficient close to resonance. Finally, we point
out that since the potential is self-generated by the atoms,
this value is a simple estimation of the order of magnitude of
the capture velocity, and a detailed study of the microscopic
dynamics is necessary to obtain a precise value.

V. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have here shown that one-dimensional
chains of cold atoms present a cooling mechanism which
grows logarithmically with the system size. It relies on the
presence of a resonance, and is thus absent from dielectric
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scatterers. Differently from other cooling mechanisms of cold
atoms, the atomic chains are here most efficiently cooled very
close to resonance, despite the strong spontaneous emission.
A promising consequence is that chains of a few dozens of
cold atoms could become stable thanks to this internal mech-
anism, without an additional stabilizing mechanism such as
optical molasses. Such a self-organization mechanism could
be probed, for example, using techniques inspired from Bragg
scattering [33].

This cooperative cooling mechanism, here discussed in the
context of a purely one-dimensional system, may be even
more promising for two-dimensional systems. Indeed, the 1/r
term of the dipole-dipole interaction leads to a scaling as ln N
in one dimension, but in two-dimensional systems the same
argument will lead to a scaling as

√
N . Indeed, in a 2D lattice

of atoms of edge
√

N , the cooperativity parameter for an atom

at site (i, j) scales as
∑√

N
l,m=1 1/

√
(l − i)2 + (m − j)2 ∼ √

N .
The OB forces are then expected to overcome in a more
efficient way the fluctuations due to spontaneous emission,
making two-dimensional self-generated lattices even more
robust. One may also consider manipulating the balance
between the OB potential and the spontaneous emission by
taking advantage of the more complex internal structure of
the atoms, using an electromagnetically induced transparency
configuration [34,35].

Finally, the self-cooling effect observed in our chain of
atoms, connected by the exchanged photons scattered off the
transverse driving fields, presents some analogies to collective
cavity cooling in a high-finesse optical resonator [36]. These
cavity self-organization effects have been suggested and stud-
ied theoretically by different groups in the 2000s [37,38] and
experimentally by Black et al. [39] and, later, by Brennecke
et al. [40]. Similarly, the atoms self-organize and cool into a

self-generated potential with λ spacing, built from the field
scattered from a transverse drive. The main difference with
free space scattering is that the cavity pre-selects a single
mode of the electromagnetic field, in addition to strongly
recycling the photons in some cases. More recently, it was
suggested [41] that a single, strongly populated mode can
spontaneously emerge also in free space from cooperative
scattering by the atoms, which presents some analogies with
the synchronization issue observed in the present work. An
important difference of our work is that addressing all vacuum
modes leads to a more complex system, for which the analogy
with a single-mode approach remains to be demonstrated. Fur-
thermore, we have observed that the adiabatic approximation,
which could be used to simplify drastically the system by sup-
pressing the fast time scale, has important consequences on
the long-term stability of the atomic chain. In this context, the
present work can be considered another step toward bridging
the gap between free space and cavity-based self-organization
of cold atoms.
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