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Anisotropic long-range interaction investigated with cold atoms
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In two dimensions, a system of self-gravitating particles collapses and forms a singularity in finite time below
a critical temperature 7,.. We investigate experimentally a quasi-two-dimensional cloud of cold neutral atoms in
interaction with two pairs of perpendicular counterpropagating quasiresonant laser beams, in order to look for a
signature of this ideal phase transition: indeed, the radiation pressure forces exerted by the laser beams can be
viewed as an anisotropic, and nonpotential, generalization of two-dimensional self-gravity. We first show that our
experiment operates in a parameter range which should be suitable to observe the collapse transition. However,
the experiment unveils only a moderate compression instead of a phase transition between the two phases. A
three-dimensional numerical simulation shows that both the finite small thickness of the cloud, which induces a
competition between the effective gravity force and the repulsive force due to multiple scattering, and the atomic
losses due to heating in the third dimension contribute to smearing the transition.
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I. INTRODUCTION

When particles interact with a force decaying at a large
distance like ¢, where « is less than the space dimension, the
force is long range, and the system displays some intriguing
features both at and out of equilibrium [1]. However, these
systems, especially those involving attractive forces, are often
not easily accessible experimentally.

Since near resonant laser beams induce effective long-
range interactions in cold atomic clouds [2,3], it has been
suggested that they could be original experimental testbeds
for long-range interactions. There are two types of effective
long-range forces. First, Dalibard [4] identified the so-called
“shadow effect” in cold atomic clouds trapped by coun-
terpropagating laser beams. Here, absorption of the near-
resonant laser beams, as they propagate inside the cloud,
creates an intensity imbalance between the two counterprop-
agating beams, resulting in an effective long-range attraction
between atoms. In the small optical depth regime, this force
is similar to one-dimensional (1D) gravity, i.e., the force
between two atoms does not depend on the distance. In
standard three-dimensional (3D) optical molasses, there are
three orthogonal pairs of counterpropagating beams, and the
combined shadow effect looks like three 1D gravitational
interactions directed along each pair of beams. In particular,
although the force is anisotropic and does not derive from a
potential, its divergence is identical to gravity: it may then
trigger a “pseudogravitational collapse” [4]. However, a few
years after the shadow effect was identified, Sesko et al. [3]
showed that multiple scattering of photons inside the clouds
also creates an effective long-range force, but of repulsive
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nature, similar to a Coulomb force in the small optical depth
regime. This repulsive interaction is typically of the same
order of magnitude as the shadow effect, but generally slightly
stronger. Then, the shadow effect merely renormalizes the re-
pulsive force, and its exotic signatures are difficult to pinpoint.
As the repulsive force typically dominates, the cloud rather
behaves as a non-neutral plasma [5-7].

Adding anisotropic traps, one can modify the geometry of
the cloud in order to decrease the strength of the repulsive
force, and ultimately make the shadow effect dominant. For
instance, Chalony et al. [8] have argued theoretically and
demonstrated experimentally that laser induced interactions
in a thin cigar-shaped cloud bear similarity with 1D gravity.
Similarly, Barré et al. [9] have suggested that the shadow
effect could be dominant in a thin pancake-shaped cloud
and, neglecting multiple scattering and the resulting repul-
sive force, argue that a collapse transition may occur if the
attractive force is strong enough. Since the divergence of the
attractive force is identical to the gravity case, such a collapse
would be similar to the one happening for 2D self-gravitating
systems in the canonical ensemble [10], or in the Keller-Segel
model of bacterial chemotaxis [11,12], but with a nonpotential
force.

We report here on an experiment inspired by Ref. [9]: a
cold atomic cloud is loaded in a very flat, pancake-shaped,
optical trap, i.e., with one very stiff direction. It is then
subjected to two perpendicular pairs of counterpropagating
laser beams in the easy plane of the trap. We observe a
fast but moderate compression of the cloud, whereas a 2D
model predicts further compression eventually leading to a
collapse of the atomic cloud. A more realistic description of
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the experiment is proposed by introducing a 3D model which
includes the finite thickness of the cold atom, the associated
repulsive forces due to the multiple scattering, and some atom
losses due to the finite depth of the optical dipole trap.

The paper is organized as follows. Since the shadow effect
in a pancake-shaped cloud bears similarity with 2D gravity,
we review this analogy in Sec. II. We first present the 2D
model of self-gravitating particles, and its phase diagram in
the canonical ensemble, which shows a collapse transition
below a critical temperature. We compare it with the 2D model
of the shadow effect, where the attractive force does not derive
from a potential, as opposed to its true 2D gravity counterpart.
We then identify the parameters for which a collapse should
be observed, based on the simplified 2D analysis. In Sec. III,
we present the experimental setup and the results showing a
finite compression of the cloud due to the attractive force,
but not as strong as predicted by the 2D model in Sec. II.
We highlight the presence of atom losses due to spontaneous
emission heating in the third direction. In Sec. IV, we attempt
to bridge the gap between the simplified 2D model of Sec. II
and the actual experiments of Sec. III, by considering more
realistic 3D models. The first model takes into account the
finite thickness of the cold atomic cloud in the third dimension
and the repulsive Coulomb-like force. We numerically solve
the associated Smoluchowski-Poisson equation, and analyze
how the 2D collapse transition is smeared out by this finite
thickness of the cloud. We also propose a phenomenological
extension of the previous 3D model accounting for the heating
due to spontaneous emission, which provides an estimate of
the typical time to spill the atoms out of the external optical
trap in the third direction, orthogonal to the pancake-shaped
trap. This more realistic model qualitatively reproduces the
experimental results. In the conclusion, we suggest some
possible improvements on the experimental setup in order to
reach larger compression.

II. TWO-DIMENSIONAL MODELS: SELF-GRAVITATING
SYSTEMS, CHEMOTAXIS, AND COLD ATOMS

In order to highlight the universality of the collapse phe-
nomenon for systems interacting with gravitational (or quasi-
gravitational) forces, we first briefly review the well-studied
self-gravitating and chemotaxis systems before introducing
the cold atom system for which a similar behavior is expected.

A. 2D self-gravitating systems

For a two-dimensional system of thermalized, self-
gravitating Brownian particles, the dynamics is described by
the overdamped limit of the Langevin equations (see, for
instance, Ref. [13])

G ri—r; 2kg6
=S LTI [T, (1)
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where r; and m are the position and mass of particle i, G is the
gravitational coupling, n is the viscous friction coefficient, 6
is the temperature, and kg is the Boltzmann constant. The x;
are independent Gaussian white noises satisfying (x;(¢)) = 0
and (x:(1)x; (1) = 8;8(t —1').

We introduce dimensionless variables x; =r;/L;, s =
t/t, and &i(s) = 12yt = ts). Then (&(s)) =0 and
(E:($)&;(s")) = 6;;6(s — &), and Eq. (1) becomes
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Thus the motion is controlled by a single parameter—the
dimensionless temperature 7. We note also that only the ratio
T/L?* appears, so there is still some freedom in the choice
of T and L, which will be used later to rewrite the exter-
nal harmonic trap confinement in a dimensionless way [see
Eq. (12)]. The unusual 2/7 factor is introduced to facilitate
the comparison with the shadow effect in cold atomic clouds
(see Sec. I1 C below).

Associated with the Langevin description of the system
[see Eq. (2)], the time evolution of the density pop(x, s) is
governed at the mean-field level by a Smoluchowski-Poisson
equation

902D
as
where @ is the mean gravitational potential induced by the
particles that satisfies the Poisson equation

AD = 4pyp. )
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It turns out that Eq. (4) has a critical temperature 7, = 1/(2m)
[10]. For T > T, the system receives heat from the thermo-
stat, which is transformed continuously in potential energy,
and the system expands continuously without limit [14,15]. In
a bounded domain, or in the presence of a confining potential
[absent in Eq. (4)], a stable equilibrium is eventually reached.
Conversely for T < T, the heat flows from the system to the
reservoir, and the system shrinks and develops a singularity in
finite time. This low temperature phase can be stabilized by
a short-range repulsive interaction: the collapse transition is
then replaced by a transition with a formation of a dense core
[16].

B. Chemotaxis

In biology, interaction between organisms (bacteria, amoe-
bae, cells) may be driven by chemotaxis [11,12,17-20]. A
simple stochastic version of these models is described by a
Smoluchowski equation for the density of organisms pop as
in Eq. (4), where the mean potential is replaced by (minus) a
density of secreted chemical n(r, ¢). The time evolution of the
chemical is given by a reaction-diffusion equation:

on

— =D.An

ot
where D, is the diffusion constant of the chemical, k its rate
of degradation, and A its rate of production. If the dynamics of
the chemical is fast with respect to the dynamics of the density
p2p, and if the degradation rate can be neglected, Eq. (6) can
be replaced by a Poisson equation similar to Eq. (5), and the
dynamics of the bacterial density is described by the same
system as the 2D self-gravitating particles.

—kn + Apop, (6)
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FIG. 1. Depiction of the beam configuration. The atomic cloud
(gray) is confined in a horizontal pancake-shaped optical trap, ob-
tained with a focused elliptical far-off-resonance beam (cyan arrow
along the X axis). The 2D artificial “pseudogravity” is created using
the four contrapropagating LRI beams (red arrows along the x and
y axes). The cloud is imaged with a resonant probe (blue). All those
beams are propagating in the horizontal plane. Another dipole beam
(green arrow, along the z axis), propagating along the vertical axis,
increases the cloud’s initial density. The linear polarization axis of
each beam is indicated by a rigid bar normal to the arrows.

C. Cold atoms as a quasi-2D self-gravitating system

We now consider a cold atom cloud confined in a pancake-
shaped strongly anisotropic harmonic trap; see Fig. 1. The ver-
tical size L, is supposed to be so small that the system can be
reduced to a quasi-2D system in the xy plane. Two orthogonal
pairs of counterpropagating laser beams, near resonance but
red detuned with respect to an atomic transition, form a 2D
optical molasses in the xy plane: We shall refer to them as the
long-range interaction (LRI) beams. For such a geometry, it
is suggested in [9] that the interactions inside the cloud are
dominated by the shadow effect. Indeed, the vertical dimen-
sion offers a route for scattered photons to escape the cloud
before being reabsorbed. This effect is reinforced choosing the
laser polarization within the xy plane. Thus our model neglects
multiple scattering and its associated repulsive force. Then the
attractive shadow effect, albeit being nonconservative, bears
similarities with gravity. The system may exhibit an extended-
collapsed phase transition at a critical temperature, similar
to the thermalized self-gravitating systems and chemotactic
models.

The near-resonant lasers are along the ¥ and j axes with
the same optical frequency wy. Their interaction with atoms
is characterized by an on-resonance saturation parameter sy =
I/1;, with I the laser intensity per beam and I; the satu-
ration intensity. They address a closed two-level transition
of linewidth I' with a detuning § = (w; — wy)/T" < 0. The
radiation pressure component of the light-atom interaction for
a low optical depth and a low saturation parameter can be
written [8]

T (B0 = 5012 + [,(6) — by()§
F3D(l') = hk ) S0 1+ 432 s

)

where the optical depth at position r = (x, y, z) seen by the
laser coming from —oo is given by

N O'oN X
a+482) )

i—’; the on-resonance absorption cross section, k the
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with oy =

wave number, and N the atom number. b,(r), corresponding
to the contrapropagating laser beam, is obtalned modlfylng the

integration range in Eq. (8) to [x, +00). b ,(r) and b (r) have
similar definitions, swapping the role of x and y. We assume
the equilibrium in the transverse direction to be reached
quickly, so the normahzed density is written p(x,y,z,t) =

P (x, 3, )2 L} %e ZTZ , where L, is the transverse size of
the cloud, assumed to be small and constant. Inserting into
Egs. (7) and (8), and averaging over the transverse direction

with weight (2rL?)~!/?e *Z, one obtains an expression for
the effective force in 2D:
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The friction force due to Doppler cooling associated with
the LRI beams is given by Fqy = —mnv, where the friction
coefficient 7 is given as in Ref. [21] in the low saturation limit
by

Iik? s
m (1 +452)
The friction is typically strong enough to warrant an over-
damped description of the atomic cloud (see Ref. [21] for a
detailed discussion).

We introduce the two parameters T = n/w’ and L =
VC/(mw?), with @ the in-plane harmonic trap frequency
in the xy plane, and the dimensionless variables: s =t/t,
v =r/L, p)p, = oopL?, and F,, =Fp /me?. Then, taking
into account the 2D approximation of the force due to the
shadow effect Eq. (9), the trapping force, and the temperature,
the overdamped equation of motion can be expressed as a
continuity equation (see [22] for a detailed derivation):

n=- an

9P3p
as

where T =

=V {=pipFop ) =1+ TV i}, (12)

kg

2= is the dimensionless temperature, and we get

V' Fyp(r) = —4p)p. (13)

We note that the system of Egs. (12) and (13) has a form
similar to the Smoluchowski-Poisson system of Egs. (4) and
(5). Indeed, the divergence of the interaction force is the same
in both cases, but the long-range force is now anisotropic and
does not derive from a potential. Since Eq. (9) has the form of
a 1D gravitational interaction along each axis, we shall refer
to Egs. (12) and (13) as the “1D+1D” gravitational model.
The additional harmonic force ensures the stability of the
high-temperature phase, as already mentioned in the previous
section.
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FIG. 2. (a) Phase diagram of the 2D collapse transition. Above
the curves, the model predicts a collapsed phase, whereas the ex-
tended phase lies below. We use Eq. (10) with a critical dimen-
sionless temperature of 7, = 0.14 and a temperature of 6 = 1 uK.
(b) The expected compression factor (CF) in the collapsed phase (see
text for more details). The full, dashed, and dotted-dashed curves
correspond to an atom number of N = (3, 2, 1) x 10°, respectively.
Parameters of Eq. (14) are chosen from the experimental setup (see
text). The vertical black line indicates § = —3, the detuning used in
the experiment.

It is shown in Refs. [9,23] that the system of Egs. (12) and
(13) is stable at high temperatures: the diffusion wins over
the attraction and equilibrates the external harmonic confine-
ment. It is also suggested in [9] that the system undergoes a
collapse transition in a finite time for 7" < T, where T, is the
critical temperature of the transition. Numerical simulations
allow us to estimate the transition temperature and give 7. ~
0.13-0.15, to be compared with the 2D gravitational model
for which T, = 1/(2m) >~ 0.159. The critical temperature for
the “1D+1D” gravitational model Egs. (12) and (13) seems to
be slightly lower than for the standard 2D gravitational model
Egs. (4) and (5).

Figure 2(a) shows the phase diagram of the 2D model,
where the plain black, dashed blue, and dotted-dashed red
curves correspond to critical lines for atom numbers of N =
(3,2, 1) x 10°, respectively. Parameters are chosen accord-
ing to the experiment: the gas temperature is 6 = 1 uK and
the trapping frequencies are w = 20 Hz, and w, = 300 Hz
in the horizontal plane, and along the vertical axis, respec-
tively. The critical lines are obtained setting a dimensionless
critical temperature 7, = 0.14. Above the critical line the
system is expected to be in the collapsed phase, and in the
extended phase below it. The vertical line corresponds to a
laser frequency detuning of § = —3 as for the experiment (see
Sec. III). At this detuning, we observe that the phase transition
is predicted for a saturation parameter of sy >~ 0.2, the exact
value depending on the atom number. Those parameters are
easily achieved in the experiment.

We now discuss what should be the experimental signature
of this collapsed regime. The expression Eq. (13) for the at-
tractive long-range interaction force relies on the linearization

of the laser absorption. In particular, it is not valid anymore as
soon as the optical depth reaches values of order one, which
will happen as the cloud contracts. In this case, the shadow
effect becomes weaker near the center of the cloud, and not
long range anymore; we then expect a finite compression of
the cloud with an optical depth saturated to a value of order
one. Setting the peak optical depth to one provides an order of
magnitude of the cloud’s size in the collapsed phase

N (o))

L=— " 14
27L, (1+432) (14

For the sake of simplicity, we have considered here an
isotropic cloud in the xy plane with Gaussian profiles. We
define a compression factor as

CF=L"%/L, (15)

where L = w~'\/kzf/m is the cloud’s size in a harmonic
trap of frequency w at thermal equilibrium, without long-
range force. Expected compression factors in the collapsed
phase correspond to the curves in Fig. 2(b). Importantly, the
compression factor increases as the atom numbers decrease.
Thus, in the experiment, where atom losses are present (see
Sec. III C), the collapsed phase is expected to be characterized
by an increasing compression factor together with a saturated
optical depth, as time increases (and atoms are lost). When
too many atoms are lost, the system should finally leave the
collapsed phase and its size increases.

We note in Fig. 2(b) that CF can be smaller than one (see
region where |§| is small). It means that the cloud in the
harmonic trap has an optical depth larger than one without
long-range force. In this situation, the LRI lasers are not
expected to play a significant role. Therefore, in this region,
Eq. (14) is no longer valid and CF must be replaced by one.

III. EXPERIMENT

A. Cloud preparation

The atomic system consists in a laser cooled atomic
cloud of ®8Sr [24-27]. The detailed two-stages cooling in a
magneto-optical trap (MOT) is presented in Ref. [28]. The last
stage of the cooling scheme as well as the 2D artificial gravity
are obtained with red-detuned lasers addressing the 'Sy — 3P,
intercombination line of natural linewidth I' = 27 x 7.5 kHz
at A = 689 nm.

After the final cooling stage, atoms are transferred into
a single beam horizontal optical dipole trap (ODT) at 925
nm linearly polarized along Z. The quantization axis is taken
along the ODT beam polarization, i.e., along the vertical
axis. The wavelength and polarization of the ODT beam
are chosen such that the transitions m =0 — m’ = £1 of
the intercombination are in the so-called magic wavelength
configuration [29]. More precisely, the ODT-induced light
shift of those Zeeman substates is identical. Hence, once the
LRI beams are on, the presence of the ODT does not lead
to extra spatially dependent radiation pressure forces that
might compete with the shadow force under investigation.
The polarizations of the LRI lasers lie in the xy plane (see
Fig. 1) and thus address the transitions m = 0 — m’ = %1 as
expected. In addition, the earth magnetic field is compensated
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FIG. 3. Schematic of the imaging system and fluorescence imag-
ing. The blue dotted arrow shows the direction of propagation of
the resonant 461 nm probe. Right panels: the false color fluores-
cence images are obtained for saturating (upper) and nonsaturating
(lower) probes. The counts of the nonsaturated fluorescence image is
multiplied by two for readability. si, corresponds to the saturation
parameter of the probe.

below the mG level, so that the Zeeman frequency shift of the
atomic states can be disregarded [30].

The ODT beam is focused along its vertical transverse
dimension to realize the strong aspect ratio between the
weak confinement in the horizontal plane and the stronger
confinement in the vertical dimension. We get the beam waists
of wy =138 um and w, = 14 um along the axes ¥ and
2, respectively, whereas the Rayleigh length—along X —is
360 um (see Fig. 1). The ODT power is 0.95 W, leading
to a trap depth of about 25 K and trapping frequencies of
11.5 Hz, 30 Hz, and 300 Hz along the X, Y, and 2 axes,
respectively. We load typically 3 x 10° atoms at a temperature
of 1 uK, leading to cloud sizes, at equilibrium and without the
LRI beams, around Ly = 140 um, Ly = 50 um, and L, =
5 pm. The temperature remains almost constant in the xy
plane. In addition, a dimple trap beam at 852 nm propagating
along 7 allows for further trapping in the horizontal plane. The
dimple beam has a waist of 80 um and power 180 mW at
the level of the cloud. The role of the dimple trap consists
in reducing the size of the atomic cloud, helping to reach the
stationary regime of artificial gravity experiment in a shorter
time. The dimple beam is switched off when the LRI beams
are turned on.

The intensity of each LRI beam is balanced independently
using half wave plates and polarizing beam splitters. Intensity
balance is realized when the cloud’s center stays at a fixed
position all along the experiment.

The experiment is done by varying sy in the range of 0.2
to 2 and, for each sy, the duration of the LRI beams (before
imaging) is varied up to 100 ms.

B. Imaging scheme

The analysis of the atomic cloud is performed thanks to
a fluorescence imaging system having its optical axis along
the vertical axis (see Fig. 3). The probe laser is tuned on
resonance with the dipole allowed transition at 461 nm, for

O-I 1 1 1 1 1 1 1 1 1 1 1 1 1 Fa—|

0 1 1.5 2
So

FIG. 4. (Left) Atom 1/e lifetime in the presence of 2D gravity
beams for § = —3 and N, ~ 3 x 10° from data exponential fit (red
diamond) and analytical expression of Eq. (18) (solid line).

optimal signal-to-noise ratio. The probe beam makes a 30°
angle with the % axis. Due to the low optical depth of the
cloud along the Z direction, the integrated fluorescence signal
is proportional to the atom number. The coefficient of propor-
tionality is extracted thanks to a preliminary joint absorption
and fluorescence imaging measurement. The atomic cloud is
fully characterized using three fluorescence images. A first
one, at high saturation intensity, is taken after turning off
the LRI beams. This image allows us to extract the cloud
size in the horizontal plane. Since the saturation is high,
the absorption of the probe is weak, which gives a precise
(i.e., a relative statistical error below 10%) estimation of the
atom number (see a sample image in the right upper panel in
Fig. 3). A second image, at low saturation, is also taken after
extinction of the LRI beams. In this case, absorption of the
probe is clearly visible (see a sample image in the right lower
panel in Fig. 3), allowing for optical depth measurements.
With those two images, we perform a full characterization of
the sizes and optical depths of the atomic cloud.

Importantly, the measured optical depths correspond to
the 461 nm transition and thus need to be transposed to the
689 nm transition of interest. Since the latter transition is
narrower, Doppler broadening shall be considered [28]. To
do so, we measured the temperature of the cloud using a
third image at high saturation taken at long time (typically
300 ms) after turning off the LRI beams. In this case, the
cloud has reached thermalization in the ODT, so the horizontal
temperatures can be extracted from the cloud sizes L}h (i=
X, Y) and the trapping frequencies. Moreover, comparing the
cloud size before and after thermalization time gives access to

th
1
CFi(fexp) Litog)’ (16)
which is the compression factor experienced by the cloud due
to the 2D gravity effective interaction. Here, fex, corresponds
to the duration of the 2D gravity experiment.

C. Atom losses

In Fig. 4, we plot the lifetime of the cold atomic cloud in
the ODT as a function of the saturation parameter sy of the
long-range force laser beams. Without the LRI beams, the
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lifetime is above 20 s. The strong reduction of the cloud
lifetime, when the LRI beams are on, is due to atoms spilling
out of the trap along the uncooled vertical direction. When
compression occurs in the xy plane due to long-range 1D+1D
forces, the temperature is expected to remain approximately
constant in plane because of the optical molasses, but to
increase along the vertical direction Z. As atoms gain me-
chanical energy, they overcome inevitably the trap depth U
at some point and are removed from the system. We provide
now a simple model quantifying this effect. We consider the
escape process as a single particle problem and discard the
spatial distribution of atoms in the trap. At the beginning of
the gravitational experiment, atoms are thermalized, and their
temperature is much less than the trap temperature Uy/kp.
Hence we take the initial atom energy to be zero and consider
its increase due to spontaneous emission. We assume each
scattering event increases the kinetic energy of an atom in
the vertical direction by E,, of the order of the photon recoil
energy. Since n = % ~ 110 is large, each atom will undergo
many scattering events before leaving the cloud, and this
approximation should be reasonable. The effective scattering
rate is given by (see, for instance, Ref. [31])

12 r S0
=5
The prefactor comes from the radiation pattern and number
of LRI beams. Since the photon scattering rate & is constant,
the number Ng(t) of scattering events follows a Poissonian
distribution with parameter £7, and the energy of an atom is
E(t) = E,Ng(t). At time ¢, the fraction of atoms remaining
in the trap is then given by P(Ns(¢) < n) = F (&t, n), where
F (X, n) is the cumulative distribution function of a Poisson
variable with parameter A. The characteristic 1/e lifetime
corresponding to N(t;,,) = N(t = 0)/e can be obtained using
Stirling’s formula for the incomplete gamma function; one
gets

a7

fje > 18
e ™ g (18)
Figure 4 gives a very good agreement between the exper-
iment and the model of Eq. (18) when evaluating the charac-
teristic 1/e lifetime of atoms within the trap. This quantitative
evidence suggests that indeed single atom heating and spilling
along the vertical direction is at the origin of the atom losses.

D. Experimental results

The temporal evolution of the optical depth and compres-
sion factor along X and ¥ (the ODT proper axes) for various
saturation parameters are given in Fig. 5. According to the
2D model (see Sec. II C and Fig. 2), the system should be in
the collapsed phase, at least for the large values of the satu-
ration parameter. However, we did not observe the expected
signatures of the collapsed phase which are an increase of the
compression factor and a saturation of the optical depth to a
value around one. Indeed, after a short time of 5-10 ms we
observe a compression of the cloud of about 60% in the ¥
direction and a more moderate compression of about 30% in
the X direction. As expected, those compression factors are
higher for larger saturation parameters, but the compression

50
t (ms)

FIG. 5. Optical depths at detuning § = —3 (left column) and
compression factors (right column) along X and ¥ for a temperature
0 ~ 1 uK, and an initial atom number Ny ~ 3 x 10°.

factor rapidly falls to a value close to one. The optical depth
(left column) is initially rather large, which might explain
the initial moderate compression. However, we observe a
monotonous decrease of the optical depth without any sign of
saturation. We observe that the decrease of the optical depth
is more pronounced at large saturation in agreement with a
larger atomic loss rate (see Fig. 4). The compression factors
larger than one at# = 0 originate from the vertical dimple trap
beam as shown by the green arrow on Fig. 1. This beam is
turned off at r = 0.

IV. THREE-DIMENSIONAL MODEL

In the previous section, the experimental results show a
moderate compression of the atomic cloud, but no signature of
a collapsed phase as predicted by the 2D model of Sec. IT A.
In order to be closer to the experimental reality, we generalize
this model in 3D, including the finite thickness of the cloud in
the vertical direction, and the Coulomb-like repulsion induced
by multiple scattering.

A. Description of the model

For a 3D model, the particle dynamics is now driven
by three forces depending on the particle position, Fy =
Fyp + Fr + Fy, and by Fy, the friction force associated with
Doppler cooling.

F»p is the attractive force due to the LRI beams, Fr is the
harmonic trapping force, and Fy; is the repulsive force coming
from multiple scattering, which cannot be discarded in a three-
dimensional geometry. The expression of the attractive force
is

f dx,sgn(x - -x/)p(-x,7 Y, Z)
Fop(r) = =C'| [dy'sgn(y —y)p(x,y, 2) |, (19)
0
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where

¢ =M, _Noo (20)

2 (144572

Here, the LRI beams lead to the same force as derived in 2D.
To mimick the experiment, we consider an anisotropic trap,

with its principal axes along the unit vectors X, ¥, and 2 (X, ¥

are not aligned with the LRI beams; see Fig. 1). The associated

force at a position R = XX 4+ YV + zZ is

Fr(R) = —m[wz XX + o3 YY + 0?22]. @1

The friction force F4q has the same expression as in the 2D
model. Finally, the repulsive force coming from multiple
scattering is given by [3]

r—r
Fu(r) = D/d3r/mp(x/,y/,z/), (22)
where
hk Noyog

D= (23)

2 07 1452
and oy, is the reabsorption cross section of scattered photons.
We assume an isotropic fluorescence pattern and multiple
scattering limited to a single reabsorption event. The latter
is well justified in the low optical depth regime. The for-
mer overestimates the multiple scattering contribution with
respect to the experiment where the LRI beam polarization
is in the horizontal plane, leading to a radiation pattern more
pronounced (by a factor of two) along the vertical direction.

To make the comparison between the strength of the at-
tractive and repulsive forces easier, we write the equations in
a slightly different way than in Sec. I A. We introduce the
length scale L

2hk, I
L K (24)
and the timescale
r=(25). (25)

where w is a characteristic trap frequency in the xy plane
(the actual frequency is not the same along the X and Y
axes). Then the Smoluchowski equation can be expressed in a
dimensionless form

ap
i V- [=pFo +TVp], (26)
where the dimensionless temperature 7 is now given by
kg6 kg6
T=—r= - : 27)
mw?l? (2 /mwhk Tog)?/?

and the dimensionless forces can be written as

ye ([ dx'sgn(x —x)p(x',y, z)
F =—-—— ’
w(r) =7 (f dy'sgn(y — y)p(x, ', 2)

¢ r—r
F = — d3 (S /1 /7 ! ’
M(T) 4:1,/ r |r_r,|3,0(x y,2)

Fr(R) = —[(‘”—X)ZXX + (ﬂ)zyf + (ﬁ)zzz}. (28)

w w w

The parameters ¢ and y are given by

Nso 00
c=————, y=—. (29)

(1 + 45%)2 OR
Note that, in the low saturation regime, the scattering of
reemission is elastic (no change of photon frequency), mean-
ing that y = 1, reaching its maximal value. If saturation of
the transition occurs, the scattering becomes inelastic and
part of the fluorescence spectrum is brought at the transition
resonance [32], increasing og. Following [33], we estimate
y ~ 0.98 for a saturation parameter sy = 1 per beam. This is

the value we have used in the simulations.

B. Numerical simulations

We have performed two types of simulations of Egs. (26)
and (28): (i) with a fixed number of atoms; (ii) including atom
losses in an effective manner: interaction forces then have an
exponentially decreasing strength c(t) = coe™/"/<; we have
taken t/, as given by the curve in Eq. (18).

A proper numerical integration of the Smoluchowski-
Poisson equation, given by Eq. (26), is a challenging task. The
repulsive force is computed via a standard Poisson solver for
the Coulomb-like potential. For the attractive force, we note
that, although it does not globally derive from a potential,
the x and y components of the force taken separately do. We
then use the finite-volume method presented in [34], which is
well suited to obtain solutions at long times for such potential
forces, and we couple it with a splitting procedure: we first
compute a time step with only the x component of the attrac-
tive force, then a time step with only its y component, and
repeat. A further numerical difficulty is related to the spatial
scale difference between the xy plane and the transverse z
direction.

Because the compression observed in experiment is a
transient phenomenon, we focus our study of the 3D models
on the time evolution in order to compare more efficiently
the numerical results to our experiment. We first consider
the time evolution of the compression factors for the two 3D
models (see Fig. 6). The values of the simulation parameters
are chosen in agreement with the experimental ones. The
dashed curves correspond to a constant atom number, and
the plain curves include an exponential decay of the atom
number, with 71/, chosen as in Eq. (18), for three different
values of the saturation parameter sy = 0.2, 1, 2. The initial
number of atoms is Ny = 3 x 10°, the detuning is 5 = -3,
and temperature is & = 1 uK. The planar anisotropy of the
trap is set by the ratio w,/./wxwy = 15, and the ratio of the
trap frequencies in the xy plane is wy/wx = 2.6. Since the
initial density distribution p(¢ = 0) is chosen as an isotropic
Gaussian in the xy plane, with thermal width corresponding
to wy, the initial value of the compression factor along the X
axis is CFx (r = 0) = 2.6.

Comparing simulation results on Fig. 6 to the experimen-
tal ones in Fig. 5, we note a qualitative agreement: when
the saturation parameter is not too small, the compression
factor increases at short time, reaches a maximum for ¢t ~
5-20 ms, and then decreases. However, simulations predict
larger compression factors than those observed. The discrep-
ancy between the model and the experiment may come from
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FIG. 6. Time evolution of the compression factors along the two
directions X (up) and Y (bottom), obtained by direct simulation of
the two 3D models: the dashed curves correspond to the model with
a constant number of atoms and the full curves to the model including
effective atom losses. The angle between the axes £ and X is set to
30° (to be compared to 23° in the experiment). The corresponding
dimensionless temperature of the 2D model for sy = 1 is ~0.06, i.e.,
in the predicted collapsed phase according to Sec. IT A.

the assumptions made in the 3D model: the long range of
the shadow force is associated with the linearization of the
Lambert law, leading to a stronger compression force. At
longer time (>20 ms), atom losses drive the system towards a
trivial stationary state, without compression.

When the number of atoms is kept constant (dashed curves
in Fig. 6), we observe the same behavior at short time,
i.e., when the atom losses are not significant. At long time
(220 ms), the system settles in this case in a stationary com-
pressed state. Comparing with the 2D model, we conclude that
the 3D effects play a significant role to explain the relatively
small observed values of the compression.

We now investigate the role of the trap aspect ratio
w.//oxwy; to do so, we keep constant the initial optical
depth in the plane z = 0, which amounts to keeping constant
the rescaled temperature 7 in the associated 2D model, well
inside the “collapse region.” Figure 7 displays the compres-
sion factor versus the trap aspect ratio. We expect that the
behavior of the system becomes closer to the prediction of the
2D model when this aspect ratio tends to infinity. However,
the 3D model predicts that the size of the system saturates to
a finite value, in contrast to the infinite compression predicted
by the collapsed phase of the 2D model.

] [ ] [ ] H
35¢ [
3 L
o
S
=
g 2.5% x *
*
2 L
8 4 2 1 0.*5
(wz//wxwy)/15

FIG. 7. Maximum transient compression factors along the two
trap directions (red squares) X and (blue stars) ¥ as a function of the
normalized trap ratio for so = 1. w./,/wxwy = 15 corresponds to the
experimental value, indicated by the vertical dashed line. Simulation
results correspond to the model where the number of atoms is
constant. The shift between the compression factors between the
X direction and the Y direction is due to the trap anisotropy in the
horizontal plane.

To illustrate the time evolution, Fig. 8 shows several snap-
shots of the atomic spatial distribution in the z = 0 plane at
three different times: r = 0, r = t,, = 6 ms corresponding to
the maximum compression along X, and at the final time
t = 100 ms of the simulation. We first focus on the upper
row which corresponds to the case of constant atom number.
We observe a fast compression of the cloud as also indicated
by the compression factor in Fig. 7; the cloud at t = 1, has
a long-range star shape similar to the one observed in the
2D simulations in [9] and the cyan dash-dotted contour line
helps to visualize this shape. At + = 100 ms, the system has
essentially reached a stationary state, but it displays unex-
pected spatial patterns: the cloud has split into two parts
along one bisector of the LRI lasers, where the attractive
long-range force is the weakest. This rich dynamic results
from a competition between the geometry-driven attractive
and repulsive long-range interaction. A detailed study of this
phenomenon is beyond the scope of paper. We focus now
on the lower row of Fig. 8, corresponding to the case with
atom losses. As already discussed, the effect of interactions
becomes negligible at large times, a decompression occurs,
and the cloud’s shape corresponds to the expected shape in
the harmonic trap at thermal equilibrium.

V. CONCLUSION

We have studied the interaction of a quasi-two-dimensional
ultracold atom cloud with two orthogonal quasiresonant coun-
terpropagating pairs of lasers. For low optical depth, each
pair of laser mimics one-dimensional artificial gravitylike
long-range force. We have reached experimentally the regime
where a two-dimensional analysis predicts a collapse of the
cloud, but we have observed only a moderate compres-
sion. To understand this discrepancy, we have introduced
a three-dimensional model which provides a more realistic
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FIG. 8. Simulated spatial distributions of atoms in the plane z = 0 at r = 0 (left), at t = 6 ms (middle) corresponding to the maximum
of the compression factor along X, and at r = 100 ms (right). so = 1. Upper panels (top green dotted arrow) correspond to the model with
a constant number of atoms and lower panels (bottom red dotted arrow) to the model with an exponential decrease of the atom number. We
also draw the principal axes of the trap (white dashed) and the first bisector angle between LRI lasers (red continuous). Contour lines, for
intermediate time, highlight the star shape of the cloud as predicted by the 2D model (see [9]). a.u. stands for arbitrary units.

description of the cold atom cloud, and in particular includes
the repulsive long-range force coming from photon reab-
sorption: our results show that although repulsive long-range
force is partly suppressed by the pancake-shape geometry as
expected, it is non-negligible when the compression occurs. If
we include atom losses along the uncooled vertical dimension,
the model is in qualitative agreement with the experiment. We
conjecture some of the remaining discrepancies may be due
to the low optical depth approximation which is implemented
in the theoretical approaches. Nevertheless, the satisfactory
behavior of our three-dimensional numerical model makes it

a useful tool to investigate new regimes of the atomic cloud
and design new experiments: in particular, it predicts a rich
spatiotemporal behavior related to the peculiarities of the
interplay between shadow attractive and repulsive scattering
effects. Its experimental investigation would require increas-
ing the atom lifetime in the trap; this could be obtained for
example by increasing the trap depth or by adding two extra
counterpropagating vertical cooling laser beams. The pres-
ence of extra vertical beams will increase the scattering rate
in the horizontal plane, but we still expect that the attractive
shadow interaction dominates for large aspect ratio.
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