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Generating a nonequilibrium stationary state from a ground-state condensate
through an almost adiabatic cycle
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It is shown, through a mean-field description, that the ground state of weakly interacting Bose particles in a
quasi-one-dimensional box trap can be converted into an excited stationary state by an almost adiabatic cyclic
operation that involves a quench: A sharp impurity potential is applied, and its strength is varied during the cycle,
which induces a nonequilibrium stationary state exhibiting the inversion of population. This process is robust in
the sense that the resultant stationary state is almost independent of the details of the cycle, such as the position
of the impurity, as long as the cycle is far enough from critical regions. The case of the failure of the population
inversion due to the strong interparticle interactions is also examined.
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I. INTRODUCTION

According to the principle of the equilibrium thermody-
namics, a quasistatic adiabatic cycle is trivial, in the sense that
the initial and final states are identical [1]. Once we slightly
relieve the quasistatic adiabatic condition or the thermody-
namic condition, however, a cyclic operation may transform
a stationary state into another one. A promising system to
realize such stationary state transformations in a many-body,
nearly thermodynamic setting is cold atoms. This is because
it is possible to manipulate the system with its quantum
coherence intact, as it can be well isolated from environmental
degrees of freedom.

An example [2] can be found in the Lieb-Liniger model
[3,4], which describes Bose particles confined in a one-
dimensional ring. A stationary state of the Lieb-Liniger model
is delivered to another stationary state through a cyclic oper-
ation where the strength of interparticle interaction is adia-
batically increased except at a point: Once the interparticle
interaction becomes infinitely repulsive to make the Tonks-
Girardeau regime [5], the interparticle interaction strength
is flipped to infinitely attractive to form the super-Tonks-
Girardeau regime [6,7]. During the cyclic operation, the sta-
tionary state is smoothly deformed even at the strength flip-
ping point, where normalizable stationary states are ensured
to be kept unchanged.

The state transformations in the Lieb-Liniger model are an
example of exotic quantum holonomy in adiabatic cycles of
microscopic, nonthermal systems: Although one may expect
that an adiabatic cycle brings no change in stationary states
up to a phase factor, it may transform a stationary state into
another, for example, in Floquet systems through the winding
of quasienergy [8–10] and Hamiltonian systems with level
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crossings [11,12]. A concept similar to, but distinct from,
the exotic quantum holonomy, Wilczek-Zee holonomy, where
an adiabatic cycle offers a transformation of degenerated
stationary states [13–15], is also utilized to control quantum
states [16–18].

We note that the adiabatic state transformation in the Lieb-
Liniger model [2] heavily depends on the particularity of the
model. The number of particles is required to be specified
precisely. Also, the theoretical argument in Ref. [2] depends
essentially on the solvability of the system. Hence it seems
difficult to extend this result to other quantum many-body
systems.

In this paper, we examine an adiabatic state transfor-
mation in a quantum many-body system through a mean-
field description to mitigate this difficulty. Applying an al-
most adiabatic cycle that involves a quench of the strength
of a sharp impurity potential to the bosons in the ground
state, we obtain an excited stationary state, which is called
a population-inverted state. Namely, the bosons, under the
mean-field description, occupy a single-particle excited state.
The population inversion has been utilized to achieve negative
temperature [19]. In studies of the collective excitation of
Bose-Einstein condensates, it has been recognized that such
excited stationary states present dark solitons, and thus they
have been extensively examined. An adiabatic method that
involves internal atomic states was proposed to produce the
dark solutions in Ref. [20]. Later, another adiabatic method
that involves a sweep of an additional potential well was stud-
ied [21,22]. The latter method was extended to Fermi gases
[23] and two-dimensional rotating condensates to produce
vortices [24].

In this work, our starting point is the analysis of cyclic
operations for noninteracting Bose particles [25,26]. Apart
from the point where the adiabatic path is closed or open, a
notable difference of the present approach from the previous
proposals mentioned above is that it is free from narrow
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avoided crossings without referring to the multiple internal
atomic states [20–22]. The Bose particles are confined in a
quasi-one-dimensional box trap [27–30]. We define a cycle
using a sharp impurity potential, which can be realized by
a laser beam [21,31]. Sharp potentials have been utilized to
manipulate superfluids [31–33] and dark solitons [34,35]. In
order to incorporate the interparticle interaction, we suppose
that the system is described by the time-dependent Gross-
Pitaevskii equation. We show that the interparticle interaction
can significantly modify the almost adiabatic processes due
to the appearance of bifurcations in the solution of time-
independent Gross-Pitaevskii equation such as the swallowtail
structure [22,36–40].

The plan of this paper is the following. In Sec. II, we
introduce a cyclic operation that involves a flip of the potential
strength which is analogous to the cyclic operation intro-
duced in Ref. [25] for noninteracting systems. In Sec. III, we
numerically examine the cyclic operation in the repulsively
interacting Bose particles using the Gross-Pitaevskii equation,
where it is shown that the strong nonlinearity disturbs the pop-
ulation inversion. In Sec. IV, a theoretical interpretation for
the numerical result is shown. Section V concludes this paper
with a summary and outlook. The Appendix offers details of
the linear stability analysis (the Bogoliubov analysis) at the
quench point.

II. CYCLE FOR NONINTERACTING PARTICLES

We look at a cyclic operation for particles confined in a
quasi-one-dimensional boxed trap with an impurity potential.
We illustrate how this cycle works for noninteracting particles
[25], which offers a basis for examining the case of interacting
bosons.

We assume that a particle is described by the one-
dimensional time-dependent Schrödinger equation

ih̄
∂

∂t
�(x, t ) = − h̄2

2M

∂2

∂x2
�(x, t ) (1)

under the boundary condition �(0, t ) = �(L, t ) = 0, where
M is the mass of the particle and L is the size of the box trap.
In the following, we assume h̄ = 1, M = 1/2, and L = 2π .

After the system is prepared to be in a stationary state, i.e.,
an eigenstate of the Hamiltonian, a sharp impurity potential
is placed at x = X to realize cyclic operations, where the
strength v is varied. We assume that the impurity potential
Vi(x; v) is described by the Dirac delta function:

Vi(x; v) = vδ(x − X ). (2)

During the cycle, the system is described by the time-
dependent Schrödinger equation

ih̄
∂

∂t
�(x, t ) =

{
− h̄2

2M

∂2

∂x2
+ Vi(x; v(t ))

}
�(x, t ), (3)

where the time-dependent parameter v(t ) is specified in the
following.

There are two building blocks of the cyclic operation:
One is the smooth and monotonic variations of parameter
Cs(v′, v′′), which denotes the variation of v from v′ to v′′ while
keeping the value of X constant. To realize the adiabatic time
evolution Cs(v′, v′′), the time dependence of the parameter

O t

v

T

2TCs(0, v1)

Cd(v1, v2)

Cs(v2, 0)

v1

v2

FIG. 1. An example, shown in Eq. (6), of the time dependence of
v(t ), the strength of the impurity potential [Eq. (2)], along the closed
path C(X ), which consists of Cs(0, v1), Cd(v1, v2), and Cs(v2, 0).
Throughout the cycle, the position X of the impurity potential is
fixed. The cycle is supposed to be adiabatic (i.e., T is large enough),
except at t = T , where v(t ) is quenched from v1 to v2. In the limit
v1 → ∞ and v2 → −∞, the quench operation smoothly connects
the eigenstates. In numerical experiments, we assume that the abso-
lute values of v1 and v2 are large, but finite.

v(t ) is, for example,

v(t ) = t ′′ − t

t ′′ − t ′ v
′ + t − t ′

t ′′ − t ′ v
′, (4)

where t ′ and t ′′ are the initial and final times, respectively, and
t ′′ − t ′ needs to be large enough. The other is the discontinu-
ous operation Cd(v′, v′′) in which the value of v is changed
from v′ to v′′, which resembles the process that is utilized
to create the super-Tonks-Girardeau gas from the Tonks-
Girardeau gas [7]. The time dependence of the parameter v(t )
for the operation Cd(v′, v′′) is, for example,

v(t ) =
{
v′ for t � td,
v′′ for t > td,

(5)

where the operation Cd(v′, v′′) is carried out at t = td. The
details of these operations, e.g., the parameters t ′, t ′′, and t =
td, need to be chosen appropriately to compose a cycle from
the building blocks, as shown below.

We define the almost adiabatic cyclic operation C(X ) (see
Fig. 1), which involves a quench of the impurity potential
placed at X . This cycle is a succession of three operations,
Cs(0,∞), Cd(∞,−∞), and Cs(−∞, 0). This can be approxi-
mately realized by a succession of three operations, Cs(0, v1),
Cd(v1, v2), and Cs(v2, 0), where the absolute values of v1 > 0
and v2 < 0 are supposed to be large enough. To realize the
almost adiabatic evolution, the time dependence of v(t ) is, for
example,

v(t ) =
{

t
T v1 for 0 � t � T,
2T −t

T v2 for T < t � 2T,
(6)

where T needs to be large enough to ensure nonadiabatic
transitions are small enough.

We show that an initial eigenstate �n(x) can be trans-
formed to another eigenstate after the completion of a cycle.
Here we assume that the parameters are varied adiabatically
during the smooth operations. Hence the system is governed
by the adiabatic theorem [41]. Since the relevant eigenen-
ergy and eigenfunction are continuous during the quench,
the parametric dependence of eigenenergies tells us the final
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FIG. 2. Parametric evolution of eigenenergies along C(X =
0.42L), which connects the nth and (n + 1)th eigenenergies. The
horizontal axis is linear in tan−1 v. We define Ec ≡ (2π h̄/L)2/(2M )
to depict the eigenenergies.

eigenstate for the almost adiabatic cycle C(X ). We depict an
example of the parametric evolution of eigenenergies in Fig. 2.

After the completion of the almost adiabatic cycle C(X ),
the final state is �n+1(x), as long as X does not coincide with
the node of the initial wave function �n(x). This is because the
eigenenergies are increased monotonically during Cs(0,∞)
and Cs(−∞, 0) as v is increased monotonically [25,42] and
are continuous at the quench process Cd(∞,−∞) [25].

Let us extend the above argument to the noninteracting
Bose particles. Suppose that all particles occupy the single-
particle ground state �1(x). After the completion of the al-
most adiabatic operation C(X ), all particles occupy the first
excited state �2(x). Namely, a population-inverted state can
be created from the ground state through the almost adiabatic
operation C(X ).

Although the almost adiabatic cycle C(X ) induces exotic
changes as shown above, the cycle involves several idealiza-
tions. In particular, we need to take into account the effect of
interparticle interaction. In the following sections, we scruti-
nize the almost adiabatic cyclic operation C(X ) for interacting
Bose particles.

III. CYCLE FOR AN INTERACTING BOSE SYSTEM

We here examine the almost adiabatic cycle C(X ) in a
many-body setting. We assume that Bose particles are con-
fined in the quasi-one-dimensional box and the interparticle
interaction is repulsive. First, we examine the parametric evo-
lution of stationary states along the cycle, which suggests that
the population inversion is, indeed, possible if the interparticle
interaction is weak. Also, it is shown that the population
inversion breaks down when the interparticle interaction is
strong enough. Second, we numerically integrate the time-
evolution equation to confirm the picture obtained through
the parametric evolution of the stationary states. We provide a
theoretical explanation based on a perturbation theory to these
observations in the next section.

We assume that the Bose particles are described by the
time-dependent one-dimensional Gross-Pitaevskii equation

i
∂

∂t
�(x, t ) = − ∂2

∂x2
�(x, t ) + g|�(x, t )|2�(x, t ), (7)

FIG. 3. Parametric evolution of the ground and first excited
eigenenergies (chemical potentials) along C(X = 0.42L). The hor-
izontal axis is linear in tan−1 v. (a) The eigenenergies form smooth
and monotonic curves at g = 1, which are similar to the case g = 0.
(b) A tiny loop around |v| = ∞ appears in the ground energy curve
at g = 2. (c) The loop of the ground energy grows at g = 3, while
the derivative of the first excited energy seems to be discontinuous
at |v| = ∞. (d) There are two noticeable loops at g = 4. Blue dotted
lines are the eigenenergies estimated by the two-mode approximation
(see Sec. IV) of the ground branch at |v| = ∞. Ec is defined in the
caption of Fig. 2.

where h̄ = 1, M = 1/2, and L = 2π are assumed and g � 0
represents the strength of the effective interparticle interac-
tion. We impose the boundary condition �(0, t ) = �(L, t ) =
0 and the normalization condition

∫ L
0 |�(x, t )|2dx = 1. Let

En(g) and �n(x; g) (n = 1, 2, . . .) denote the nth eigenenergy
(chemical potential) and the corresponding stationary state
for Eq. (7). We suppose that the system is initially in the
nth stationary state �n(x; g). During the cycle, we impose
the sharp impurity potential [Eq. (2)] to Eq. (7) and vary its
strength v slowly except at the quench point.

To find the stationary states of the system where the posi-
tion X and strength v of the impurity potential [Eq. (2)] are
“frozen,” we examine the time-independent Gross-Pitaevskii
equation with the impurity potential(

− ∂2

∂x2
+ g|�(x)|2 + Vi(x; v)

)
�(x) = E�(x). (8)

Examples of parametric evolution of the nth eigenenergy
along the cycle C(X ) are shown in Fig. 3. Correspond-
ing parametric evolution of stationary states is shown in
Figs. 4 and 5.

When the interparticle interaction g is small enough,
the almost adiabatic cyclic operation induces the population
inversion. The parametric evolution of eigenenergy along
the cycle connects the initial eigenenergy E1(g) with E2(g)
[see Fig. 3(a)]. The connection is equivalent to the case of
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(a) (b)

(c) (d)

FIG. 4. Parametric evolution of stationary state �(x) of weakly
interacting Bose particles along the cycle C(X = 0.42L) and g = 1.
The corresponding points in (g, E ) plane is shown in Fig. 3(a)
(points A–D). (a) �(x) is the ground state initially (i.e., v = 0, point
A); (b) and (c) correspond to the cases immediately before (point B)
and after (point C) the quench. (d) The final state is the first excited
state (point D). The phase of �(x) is chosen so that �(x) is positive
on the right-hand side of the sharp impurity. The dashed vertical lines
indicate the position X of the impurity potential [Eq. (2)].

noninteracting particles (see Fig. 2). This allows us to infer
the parametric evolution of the eigenfunction whose initial
condition is the ground state �1(x; g) of Eq. (7), i.e., at g = 0
[see Fig. 4(a)]. While the stationary state is nodeless when
the strength of the sharp impurity potential v is positive and
finite, the state becomes localized on a side of the impurity as
v become larger [Fig. 4(b)]. Immediately before the quench,
i.e., v = ∞, the localization is completed [43]. The state
is unchanged during the flip of the potential strength from
v = ∞ to v = −∞ [25]. As v is slightly increased from −∞,
the stationary state extends to the other side of the impurity to
produce a node [Fig. 4(c)]. The resultant stationary state has a
single node while v is finite [Fig. 4(d)]. This is the reason why
the destination of the stationary state at the end of the cycle is
the first excited state �2(x; g).

On the other hand, when the interparticle interaction is
large, discrepancies from the linear case become significant.
In particular, as is seen in Figs. 3(c) and 3(d), the parametric
evolution of a stationary energy involves a loop structure that
emanates from the quench point |v| = ∞ in C(X ). We note
that loop structures are often observed in studies of time-
independent Gross-Pitaevskii equation [22,36–39].

The corresponding parametric evolution of the stationary
state along the loop is explained in the following. The sta-
tionary states shown in Fig. 5 correspond to the points A–G
in Fig. 3(d). In the vicinity of the quench, the wave function
extends to both sides of the sharp impurity potential, which
is a distinctive feature of the case with stronger interparticle
interaction (point B+). Across the quench point the wave
function smoothly connects to the lower branch of the loop
to acquire two nodes (point B−). As v increases, the lower
branch arrives at the extremum point (point C) to connect the
uppermost branch, where the wave function localizes on a side

FIG. 5. Parametric evolution of stationary state �(x) along an
eigenenergy loop associated with the cycle C(X = 0.42L) at g = 4,
which corresponds to the case shown in Fig. 3(d). The loop connects
the initial point A and the final point G of the cycle C(X ). Around
the quench points B and D, the sign of v is indicated by the subscript
±. The dashed vertical lines indicate the position X of the impurity
potential [Eq. (2)].

of the impurity potential, where the stationary state mimics
the one in the linear system. As v decreases to follow the
uppermost branch, the stationary state becomes localized on
a side of the impurity (point D−). At the quench point in the
uppermost branch, the localization is completed. Across the
quench, the number of nodes of the stationary state decreases
from 2 (D−) to 1 (D+). Then the uppermost branch arrives
at another extremum point (point E), where the stationary
state delocalizes again to connect the final branch at point F,
which smoothly connects the first excited state �2(x; g) (see
point G).
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We expect that the loop structure disturbs the adiabatic
evolution, as reported in Refs. [36,37], and thus hinders the
population inversion. This is because the stationary state is
transformed into a nonstationary state when the adiabatic
time evolution has to depart from the parametric evolution by
having a loop.

To clarify whether the adiabatic time evolution along C(X )
really occurs, we numerically examine the linear stability of
the stationary states in C(X ) by diagonalizing the Bogoliubov
equation [44,45] corresponding to the stationary solutions.
Also, an analytical study of the linear stability for the quench
point is shown in the Appendix.

When the interparticle interaction is small [see Figs. 3(a)
and 4], we find that the stationary states are linearly stable
along C(X ). Hence we may expect the adiabatic time evolu-
tion to remain intact for the weakly interacting case.

Meanwhile, when the interparticle interaction is large
enough to form the loop structure shown in Figs. 3(d) and
5, we find that the stationary state is linearly stable within the
intervals from v = 0 through v = ±∞, i.e., from A to B and
from G to F in Fig. 3(d), and the uppermost branch of the
loop (from C to E). On the other hand, the stationary state is
linearly unstable in the lower part of the loop (i.e., from B to
C and E to F).

The result of the linear stability analysis for stronger in-
terparticle interaction suggests that the adiabatic time evolu-
tion whose initial condition is the ground state �1 remains
intact until the quench point, i.e., within the interval A to B.
After the system passes the quench point, the adiabatic time
evolution breaks down during the interval B to C due to the
linear instability. We note that the emergence of the unstable
stationary state in the lower branch of the loop structure in
the Brillouin zone is reported in Refs. [46,47]. We also note
that this is a distinctive point from the instabilities in the
conventional studies [36,37] of adiabatic time evolution along
the loop structure, where the linearly unstable region appears
only in the uppermost part of the loop structure. After point C,
the adiabatic time evolution is impossible since the stationary
solution cannot be adiabatically extended anymore [36,37].

We test the scenario above through numerical integration
of the time-dependent Gross-Pitaevskii equation along the
almost adiabatic cycle C(X ). We show our numerical result
for various values of X in Fig. 6, where the initial condition
is prepared to be in the ground state �1(x; g) of Eq. (7). We
numerically evaluate the fidelity of the population inversion
|〈�2(g)|�〉|2, where � is a state after the completion of
the cycle. Since the final states may not be stationary, we
depict the time average of the fidelity probability after the
completion of the cycles.

From Fig. 6, we conclude that the population inversion fails
if the value of g exceeds a critical value gc, which depends on
the position of the impurity potential X . Moreover, when we
restrict ourselves to the case 0 < X < L/2, gc becomes larger
as X become smaller.

We make a remark on the integration of the time-dependent
Gross-Pitaevskii equation along C(X ), where we introduce
an approximation for the quench of the impurity potential.
We keep v, the strength of the impurity potential, finite.
Namely, v is increased from zero to vmax with a finite velocity
dv/dt during the first process Cs(0, vmax). At the quench,

FIG. 6. Population inversion probability from the ground state
through C(X ). Vertical dashed lines indicate the critical point pre-
dicted by the two-mode approximation (see Sec. IV).

v is suddenly changed from vmax to −vmax. Then, during
Cs(−vmax, 0), the value of v is increased from −vmax to zero
with nonzero velocity dv/dt . Although this induces a tiny
nonadiabatic error during the quench, as seen in Fig. 6, the
error is far less important than the nonlinear effect.

IV. TWO-MODE APPROXIMATION AT THE
QUENCH POINT

We discuss our numerical results in the previous section
with an approximate theory. In particular, we would like
to clarify the reason why the population inversion breaks
down as the strength of the interparticle interaction becomes
stronger (Fig. 6). A key ingredient must be the emergence of
the loop structure in the (g, E ) plane (Fig. 3). To identify the
loop structure, we examine the quench point |v| = ∞ because
a loop emanates from a point at |v| = ∞ in the (g, E ) plane.
This analysis allows us to infer the loop structure, as long as
the loop is small enough.

In the following, we utilize a two-mode approximation.
Namely, we assume that the stationary wave function �(x)
is a superposition of two eigenfunctions ψ j (x) ( j = 0, 1) of
the noninteracting system. Since the infinitely strong impurity
divides the box completely [43], as suggested in Fig. 3, we
utilize the unperturbed eigenfunction ψ j (x) that is localized
on the left or right side of the impurity.

For example, to examine the stationary states that are
associated with the ground state at the initial point of the
cycle, we assume that ψ0(x) and ψ1(x) describe the ground
state of a single particle confined within the right and left
boxes, respectively, i.e.,

ψ0(x) =
{

0 for 0 � x � X,√
2

L−X sin π (x−X )
L−X for X � x � L,

(9)

ψ1(x) =
{√

2
X sin πx

X for 0 � x � X,

0 for X � x � L,
(10)
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whose eigenenergies are E0 = Eg/r′2 and E1 = Eg/r2, re-
spectively, where r = X/L, r′ = (L − X )/L, and Eg =
h̄2π2/(2ML2).

In the following, we assume 0 < X < L/2, which implies
E0 < E1; that is, the ground state ψ0(x) in the presence of
the infinitely strong impurity localizes on the right side of the
impurity.

From the two-mode assumption that �(x, t ) =
�0(t )ψ0(x) + �1(t )ψ1(x) satisfies the time-dependent
Gross-Pitaevskii equation, we obtain the time-evolution
equation for the amplitudes � j (t ) ( j = 0, 1):

i
d

dt
� j (t ) = Ej� j (t ) + g

∫ L

0
ψ∗

j (x)|�(x, t )|2�(x, t )dx.

(11)
Because ψ0(x) and ψ1(x) have no overlap in position space,
i.e., ψ0(x)ψ1(x) = 0 holds, and are real, we obtain

i
d

dt
� j = Ej� j + g

∫ L

0
dx{ψ j (x)}4|� j |2� j . (12)

Hence the nonlinear Schrödinger equation for � j is

i
d

dt
� j = (Ej + gc j |� j |2)� j, (13)

where c0 ≡ 3g/{2(L − X )} and c1 ≡ 3g/(2X ). We also im-
pose the normalization condition |�0|2 + |�1|2 = 1.

The stationary solutions of Eq. (13) are classified into two
groups. First, there are two localized solutions (�0, �1) =
(1, 0) and (0,1), whose eigenenergies are

E0(g) = E0 + gc0, E1(g) = E1 + gc1, (14)

respectively.
Second, the other two solutions �± are[

�±,0

�±,1

]
=

[ √
r′ − (E0 − E1)(2Lrr′)/(3g)

±√
r + (E0 − E1)(2Lrr′)/(3g)

]
, (15)

which are delocalized on both sides of the impurity. The
corresponding eigenenergies are doubly degenerate,

E±(g) = r′E0 + rE1 + 3g

2L
. (16)

We explain the condition that the stationary states (15) are
physical, i.e., 0 � |�0|2, |�1|2 � 1 hold. First, we introduce
the critical points

g0 = 2(L − X )

3
(E1 − E0), (17)

g1 = −2X

3
(E1 − E0), (18)

where |� j |2 = 1 holds if g = g j ( j = 0, 1). Since we assume
X < L/2, the physical condition for the stationary solution
(15) is summarized as g � g0 or g � g1. Also, as we restrict
ourselves to the case in which the interparticle interaction is
repulsive, i.e., g � 0, the delocalized solutions (15) exist only
when g � g0.

From the linear stability analysis (Bogoliubov analysis) of
Eq. (13), whose details are shown in the Appendix, we find
that the localized solutions (�0, �1) = (1, 0) and (0,1) are
stable. On the other hand, the delocalized solutions (15) are
marginally stable.

With the two-mode approximation at |v| = ∞, we recapit-
ulate the parametric evolution of stationary states and eigenen-
ergies along C(X ). We assume that the system is initially in
the ground state �1(x; g).

First, we revisit the case in which the interparticle in-
teraction is weak enough, i.e., g is smaller than the critical
value g0. The stationary state is localized at |v| = ∞, which
is consistent with Fig. 4. The corresponding estimation of
eigenenergy at |v| = ∞ is given by Eq. (14), which is indi-
cated in Fig. 3. Also, the stationary state at |v| = ∞ is stable,
according to the linear stability analysis. Hence the stationary
state must be stable during C(X ), which is also consistent
with the numerical result that C(X ) induces the population
inversion for smaller g (Fig. 6).

Second, when the strength of the interparticle interaction
g exceeds the critical value g0, the localized and delocalized
stationary solutions coexist at the quench point: the degenerate
eigenenergies of the delocalized solutions E±(g) [Eq. (16)]
are lower than that of the localized solution [Eq. (14)], as
shown in Fig. 3. The delocalized nodeless solution �+ (Fig. 5,
points B±) is connected to the initial ground state �1 through
Cs(0,∞), the former half of the whole cycle. After �+
evolves along the loop, the stationary solution arrives at the
localized solution (�0, �1) = (1, 0) at |v| = ∞ (see Fig. 5,
points D±). After the completion of the loop, the stationary
solution becomes another delocalized solution �− with a node
(Fig. 5, point F). The latter half of the cycle Cs(−∞, 0)
smoothly connects �− to the first excited state �2. In this
sense, the parametric evolution of the stationary solution
smoothly deforms the ground state into the first excited state.
Meanwhile, the adiabatic population inversion is hindered by
the presence of the loop structure due to the instability of the
stationary state at the lower branch of the loop, as explained
in the previous section.

In Fig. 6, we indicate the critical interparticle interaction
strength g0, which is estimated by the two-mode approxima-
tion for each value of X by vertical lines. Hence we conclude
that the two-mode approximation qualitatively describes the
breakdown of the population inversion.

We depict how the eigenenergies at the quench point
depend on the position X of the sharp impurity in Fig. 7 using
the two-mode approximation. This helps us to understand the
cycle C(X ) for a given value of g. For example, at X = 0.42L,
the ground branch connected to a loop whose section at v =
|∞| has two delocalized and one localized stationary states,
which predicts the breakdown of the population inversion to
the first excited state. Also, the first (second) excited state
at the initial point of the cycle is connected to a localized
stationary state, which suggests that the population inversion
to the second (third) excited state may be possible.

V. SUMMARY AND OUTLOOK

We have shown that the adiabatic cyclic operation with
a quench C(X ) induces the population inversion of Bose
particles described by the Gross-Pitaevskii equation confined
in a quasi-one-dimensional box if the Bose particles are
initially prepared to be in the ground state and the strength g
of the interparticle interaction is weak enough. An estimation
of the critical value of g where the population inversion is
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FIG. 7. X dependence of stationary energies at the quench |v| =
∞ and g = 2 under the two-mode approximation. The solid (dashed)
lines correspond to the stable stationary states localized on the
right (left) side of the infinitely strong impurity. The dotted lines
correspond to the delocalized stationary states that are marginally
stable. Ec is defined in the caption of Fig. 2.

broken is also shown. We find that these results are consistent
with our numerical investigation through the time-dependent
Gross-Pitaevskii equation.

We note that the time evolution generated by the almost
adiabatic operation C(X ) can confine the system within a
family of stationary states in the weak-interaction regime.
Namely, the adiabatic time evolution can be realized in spite
of the presence of the flip of the potential strength at the
quench point. This “adiabatic” cycle converts the ground
state of Bose particles into a nonequilibrium stationary state.
The present study offers an example of the subtle difference
between the adiabatic processes in thermodynamic systems
and nonthermal, mechanical systems.

We believe that the present result offers an experimen-
tally feasible method to produce a nonequilibrium station-
ary state. Application of the acceleration of the adiabatic
scheme to the present procedure (e.g., Refs. [48,49]) should
also be interesting. We note that the preparation of conden-
sates in a quasi-one-dimensional box trap was experimentally
achieved in Ref. [27], which motives theoretical studies,
e.g., on solitonic excitations [30]. We also remark that the
box trap may be useful to investigate quantum information
processing through, e.g., the Szilard engine in the quantum
regime [50,51]. To extend these works to many-body set-
tings, our analysis of the infinitely strong impurity should be
applicable.

Note added. Recently, the state transformation due to an
almost adiabatic cycle for the Lieb-Liniger system [2] was
extended to the one-dimensional dipolar Bose gas to create
its long-lived excited states [52].
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APPENDIX: LINEAR STABILITY ANALYSIS FOR THE
TWO-MODE SYSTEM (13) AT THE QUENCH POINT

We explain the linear stability analysis (Bogoliubov anal-
ysis) of the stationary states at the quench point in C(X ).
To carry this out, the nonlinear Schrödinger equation (13)
under the two-mode approximation is cast into a nonlinear
Bloch equation [Eq. (A3) below]. The components of the
Bloch vector S = (Sx, Sy, Sz ) are the expectation values of
Pauli matrices σ j for a normalized state (�0, �1), e.g., Sz =
|�0|2 − |�1|2.

To find the time-evolution equation of S, we first obtain
a matrix form of Eq. (13). The system is described by an
effective nonlinear Hamiltonian H2 = �+I + �−σz, where I
is the identity matrix and

�±(S) ≡ 1

2

{(
E0 + gc0

1 + Sz

2

)
±

(
E1 + gc1

1 − Sz

2

)}
.

(A1)
Hence S experiences the effective magnetic field

B(S) ≡ �−(S)ez, (A2)

where ez ≡ (0, 0, 1). Namely, S obeys the nonlinear Bloch
equation

d

dt
S = S × B(S). (A3)

A stationary state of Eq. (13) corresponds to a stationary
solution S∗ of Eq. (A3), where S∗ × B(S∗) = 0 holds.

We proceed to the linear stability analysis for a stationary
solution S∗ to examine a slightly perturbed Bloch vector S =
S∗ + δS. We expand δS, using an orthogonal system e0 ≡ S∗,
e1 ≡ ey [= (0, 1, 0)], and e2 ≡ e0 × e1, as

δS = α1e1 + α2e2, (A4)

where small coefficients α j are taken up to first order ( j =
1, 2). The absence of the e0 component in Eq. (A4) is con-
sistent with the normalization condition up to first order. The
linearized equation for α j is

d

dt
α j = e j · {[δB]ez × S∗ + B∗ez × δS}, (A5)

where B∗ ≡ �−(S∗), δB = g(c0 + c1)S∗zα2/4, and S∗ j = S∗ ·
e j ( j = x, y, z), from Eqs. (A2) and (A1). Hence we obtain

d

dt

[
α1

α2

]
= M

[
α1

α2

]
, (A6)

where

M ≡
[

0 −B∗S∗z + gc0+c1
4 S2

∗x
B∗S∗z 0

]
. (A7)

We examine M for each stationary solution S∗. First, we
examine the localized solutions S∗ = ±ez, where

M = ±B∗

[
0 −1
1 0

]
(A8)

and B∗ is nonzero, except at the bifurcation point. Since the
eigenvalues of M are purely imaginary, the perturbation δS
evolves oscillatorily and does not grow exponentially in time.
Hence we conclude that the stationary solutions S∗ = ±ez are
linearly stable.
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Second, we examine the delocalized solution (15), which
implies B∗ = 0. We find

M = g
c0 + c1

4
S2

∗x

[
0 1
0 0

]
, (A9)

which is nonzero, except at the bifurcation point. Namely, M
has a nontrivial Jordan block and cannot be diagonalized. In
terms of dynamical systems, the stability of the delocalized
solutions (15) is marginal. Although the perturbation δS does
not grow exponentially fast, it grows linearly in t .
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