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We unravel the correlation effects of the second-order quantum phase transitions emerging on the ground
state of a harmonically trapped spin-1 Bose gas, upon varying the involved Zeeman terms, as well as its
breathing dynamics triggered by quenching the trapping frequency. It is found that the boundaries of the
associated magnetic phases are altered in the presence of interparticle correlations for both ferromagnetic and
antiferromagnetic spin-spin interactions, an effect which becomes more prominent in the few-body scenario.
Most importantly, we unveil a correlation-induced shrinking of the antiferromagnetic and broken-axisymmetry
phases implying that ground states with bosons polarized in a single spin component are favored. Turning
to the dynamical response of the spinor gas it is shown that its breathing frequency is independent of the
system parameters while correlations lead to the formation of filamentary patterns in the one-body density of
the participating components. The number of filaments is larger for increasing spin-independent interaction
strengths or for smaller particle numbers. Each filament maintains its coherence and exhibits an anticorrelated
behavior while distinct filaments show significant losses of coherence and are two-body correlated. Interestingly,
we demonstrate that for an initial broken-axisymmetry phase an enhanced spin-flip dynamics takes place which
can be tuned either via the linear Zeeman term or the quench amplitude.
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I. INTRODUCTION

Since the first realization of an optically trapped Bose-
Einstein condensate (BEC) of 23Na atoms with spin degrees-
of-freedom [1], spinor BECs have been among the most
actively studied systems within the ultracold realm [2–5]. The
rich phase diagram emerging in these setups [6–9] renders
them particularly important for understanding quantum phase
transitions [10,11]. Indeed, various studies have been devoted
to exploring the properties of the associated magnetic phases
[12–14]. Of interest has also been the examination of the
boundaries between metastable spin domains in a spin-1
Bose gas via measuring the involved tunneling rates [15],
the investigation of the phase diagram for a spin-2 Bose gas
using spin transfer processes [16], as well as the induction
of phase separation phenomena in spin-3 Bose gases [17].
Such spin systems have also been central in the exploration of
topological excitations in the form of skyrmions and merons
[18], monopoles [19] and knots [20], among others.

Another interesting consequence of the inclusion of inter-
nal degrees-of-freedom is the presence of spin-mixing dynam-
ics in these systems due to spin-exchange collisions [21–27].
This process gives rise to coherent and reversible transfer of
atoms between the magnetic sublevels of the system while its
total spin is conserved. Such spin dynamics has been observed
in spin-1 87Rb [28] and 23Na [6], spin-2 87Rb [29,30], as well
as spin-3 52Cr atomic gases [31]. Notable implementations of

the emergent spin dynamics range from interferometry appli-
cations [32,33], entanglement generation [34,35], formation
of spin domains and spin textures [36–39], to the realization of
soliton complexes [37,38,40–42]. Most importantly, the pres-
ence of multiple magnetic phases and spin-mixing dynamics
makes these systems a particularly interesting playground
for studying out-of-equilibrium phenomena induced, e.g., by
quantum quenches [10,43–46].

A unifying aspect of most of the above-mentioned stud-
ies is their reliance on the mean-field (MF) approximation,
resting under the premise of a macroscopic wave function
for each component. Despite the success of this framework
in describing several phenomena [2,6,47], an additional more
recent focus has been on understanding the effect of corre-
lations emerging in these systems [22,44,48,49]. Pioneering
works include the study of universality in the spin dynamics
of spinor 87Rb BECs [50–52] where information regarding the
presence of correlations emanating in these systems has been
experimentally obtained.

Motivated by these experimental efforts, here we unravel
correlation driven phenomena in the ground state properties
and the quench dynamics of one-dimensional (1D) harmon-
ically trapped spin-1 Bose gases. To achieve this we sys-
tematically compare the underlying ground state magnetic
phases between the MF approximation, where interparticle
correlations are neglected, and a many-body (MB) variational
treatment. Another pivotal point that we touch upon within
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our work is how the size of a confined system affects the
transition boundaries between the different magnetic phases.
Moreover, we unravel the imprint of correlations [22,44] in
the breathing dynamics of the spin-1 Bose gas following
a quench of the external harmonic oscillator frequency. To
track the ground state properties and the correlated quantum
dynamics of the bosonic spinor gas we utilize the variational
multilayer multiconfiguration time-dependent Hartree method
for multicomponent systems (ML-MCTDHX) [53–55]. The
latter enables us to address all the relevant interparticle corre-
lations of the spinorial system.

Regarding the ground state phase diagram of the spin-1
Bose gas, we find that there is no noticeable change in the
involved first-order transitions, while the boundaries of the
second-order ones are significantly altered in the presence
of correlations. In other words, interparticle correlations are
non-negligible only for second-order phase transitions where
a superposition of spin states contributes to the ground state of
the system. In particular, the boundaries of the second-order
transitions are considerably shifted for both ferromagnetic
[28] and antiferromagnetic [56] spin-spin interactions. This is
a phenomenon that crucially depends on the finite size of the
system since correlation-induced phenomena become more
pronounced in the few-body case. Remarkably a shrinking of
the antiferromagnetic and broken-axisymmetry phases, which
is explicitly driven by the interparticle correlations, occurs
favoring this way ground states with bosons being polarized
in a single spin component. Furthermore, we recover the
theoretical MF predictions for an adequately large number of
bosons, thus further revealing the crucial role of interparticle
correlations in setups containing a finite particle number
[22,57].

Turning to the breathing dynamics [58–60] of the spinor
gas, following a quench of its trapping frequency, we unveil
that it exhibits almost the same frequency for all participating
components both within the MF and the MB approach as well
as for different initial phases. In sharp contrast to the MF
approximation, it is shown that the inclusion of correlations
leads to the formation of filamentary like patterns [60–62] in
the density profile of each component. These refer here to a
multihump structure building upon the background density
of the Bose gas and become more prominent for smaller
particle numbers or for increasing spin-independent interac-
tion strengths. Importantly, we showcase that each filament
corresponds to a coherent structure while for neighboring
filaments significant losses of coherence occur. Moreover, we
find that two particles within the same filament are anticorre-
lated, whereas particles residing in neighboring filaments are
correlated with one another. Interestingly, for quenches within
the broken-axisymmetry phase, where all spin components are
populated, spin fluctuations [63] are manifested implying a
transfer of particles between the individual components. We
demonstrate that this intercomponent transmission process
can be controlled by tuning either the value of the linear
Zeeman term or the quench amplitude. This modification
of the spin-component populations is a feature enabled in
this setting that is naturally absent in both single- and two-
component condensates (in the latter in the absence of Rabi
coupling).

Our presentation is structured as follows. Section II intro-
duces the relevant theoretical framework and spin operators
while Sec. III describes the employed MB methodology and
its ingredients. In Sec. IV we discuss in detail the correlation
effects in the ground state phase diagram of the spin-1 Bose
gas. Section V presents the correlated breathing dynamics of
the spinor gas after quenching the trap frequency to lower
values. Finally, in Sec. VI we summarize our results and
provide an outlook into future perspectives.

II. SETUP AND SPIN OPERATORS

We consider an ultracold spinor F = 1 (alias spin-1) Bose
gas consisting of N bosons with mass M and being trapped
in a 1D harmonic trap. We aim to investigate the underlying
ground state phase diagram of this system and its emergent
out-of-equilibrium breathing dynamics when interparticle cor-
relations are taken into account and the beyond MF contribu-
tions may become significant. The MB Hamiltonian of such
a system can be written as the sum Ĥ = Ĥ0 + V̂ , where its
noninteracting part Ĥ0 reads

Ĥ0 =
∫

dx
1∑

α,β=−1

ψ̂†
α (x)

[
− h̄2

2M

∂2

∂x2
+ 1

2
Mω2x2

− p( fz )αβ + q
(

f 2
z

)
αβ

]
ψ̂β (x). (1)

Here ψ̂α (x) denotes the bosonic field operator accounting for
the magnetic sublevels with spin-z projection α = {−1, 0, 1}
(alias components) of the F = 1 hyperfine manifold. Also,
ω = 0.1 is the trapping frequency and ( fz )αβ = αδαβ are the
matrix elements of the spin-z Pauli matrix. The quantity ω

here, as is customary in one-dimensional system reductions
[64,65], plays the role of the longitudinal over the transverse
trapping frequencies and is typically ω � 1. Additionally p, q
refer to the corresponding linear and quadratic Zeeman energy
shift parameters, respectively. They can be experimentally
tuned by either adjusting the applied magnetic field [66] or
using a microwave dressing field [10,44]. In particular, the
linear (quadratic) Zeeman energy term is linearly (quadrati-
cally) proportional to the external magnetic field applied along
the z direction, see, e.g., Refs. [4,12] for more details. These
terms essentially lead to an effective detuning of the α = ±1
components with respect to the α = 0 one.

The interacting part V̂ of the Hamiltonian [27] is given by

V̂ = 1

2

∫
dx [c0 : n̂2(x) : +c1 : F̂ 2(x) :], (2)

where the symbol : : denotes the well-known normal order-
ing of the involved operators which essentially leads to the
annihilation operators being placed to the right-hand side of
the creation ones [67–69]. The interaction strength parameters
are expressed as c0 = 4π h̄2(a0+2a2 )

3Ma⊥
and c1 = 4π h̄2(a2−a0 )

3Ma⊥
, where

a0 and a2 refer to the three-dimensional s-wave scattering
lengths of the atoms in the scattering channels characterized
by total spin F = 0 and F = 2, respectively [70], see also
Eq. (3) below. Recall that since we operate in the ultracold
regime s-wave scattering constitutes the dominant interac-
tion process. More specifically, c0 is the spin-independent
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interaction strength whose positive (negative) values account
for repulsive (attractive) interparticle interactions. In contrast,
c1 corresponds to the spin-dependent interaction strength
which is positive (negative) for antiferromagnetic (ferromag-
netic) interactions [2], see also the discussion below. In a
corresponding experiment, c1 can be adjusted by using the

microwave-induced Feshbach resonance technique [71]. Ad-
ditionally, a⊥ = √

h̄/(Mω⊥) is the transversal confinement
length scale and ω⊥ is the corresponding trapping frequency.
The latter can be experimentally tuned with the aid of confine-
ment induced resonances [72,73].

Moreover, the total spin operator reads

F̂ 2 =
∫

dx
∫

dy
1∑

α,β,γ ,δ=−1

∑
i∈{x,y,z}

( fi)αβ ( fi )γ δψ̂
†
α (x)ψ̂β (x)ψ̂†

γ (y)ψ̂δ (y). (3)

The expectation value of this operator provides the total spin of the system. The square of the normal ordered spin density
operator F̂ (x) has the form

: F̂ 2(x) :=
1∑

α,β,γ ,δ=−1

∑
i∈{x,y,z}

( fi )αβ ( fi )γ δψ̂
†
α (x)ψ̂†

γ (x)ψ̂δ (x)ψ̂β (x). (4)

In these expressions, the Pauli-x and y matrix elements are
( fx )αβ = δα,β+1 + δα,β−1 and ( fy)γ δ = −iδγ ,δ+1 + iδγ ,δ−1, re-
spectively. The indices α, β, γ , δ ∈ {−1, 0, 1} refer to the
individual spin components along a particular (x, y, z) spin
direction. The expectation value of this operator refers to the
diagonal of the spatially resolved spin-spin correlator of the
system. On the other hand, the square of the normal ordered
particle density operator n̂(x) is

: n̂2(x) :=
1∑

α,β=−1

ψ̂†
α (x)ψ̂†

β (x)ψ̂β (x)ψ̂α (x), (5)

with the summation being performed over all spin α, β ∈
{−1, 0, 1} components. The expectation value of this operator
corresponds to the diagonal of the spatially resolved two-
particle density of the spinor system integrating out all three
(α = −1, 0, 1) spin components.

In the following, the MB Hamiltonian of the spinor sys-
tem is rescaled in units of h̄ω⊥. Consequently, the cor-
responding length, time, and interaction strengths are ex-
pressed in terms of

√
h̄/(Mω⊥), ω−1

⊥ , and
√

h̄3ω⊥/M, re-
spectively. Importantly, the experimentally relevant values of
c1 = 0.018

√
h̄3ω⊥/M, c0 = 0.5

√
h̄3ω⊥/M, corresponding to

the spin-dependent and spin-independent interaction strengths
between the atoms of 23Na, are taken for exploring an an-
tiferromagnetic (c1 > 0) condensate [38,74]. On the other
hand, for the ferromagnetic (c1 < 0) case we use c1 =
−0.0047

√
h̄3ω⊥/M and c0 = 1

√
h̄3ω⊥/M which correspond

to the spin-dependent and spin-independent coupling con-
stants, respectively, between 87Rb atoms [70,74].

III. MANY-BODY WAVE FUNCTION ANSATZ
AND REDUCTION TO THE MEAN-FIELD

APPROXIMATION

Our approach to calculate the ground state properties
as well as to monitor the nonequilibrium quantum dynam-
ics of the spinor Bose gas relies on the ML-MCTDHX
method [53–55]. It is an ab initio variational method [75]
for solving the time-dependent MB Schrödinger equation
(ih̄∂t − Ĥ )|
(t )〉 = 0 of multicomponent systems with either

bosonic [60,76,77] or fermionic [62,78,79] constituents pos-
sessing also spin degrees-of-freedom [57,61,80]. The advan-
tage of ML-MCTDHX is the expansion of the MB wave
function with respect to a time-dependent and variationally
optimized MB basis set which in turn allows for the optimal
truncation of the relevant Hilbert space of the system. Accord-
ingly, its ansatz is tailored to capture all the important intra-
and intercomponent correlations of systems with mesoscopic
particle numbers in a computationally efficient manner.

More specifically the MB wave function ansatz |
(t )〉 is
expressed as a linear combination of time-dependent perma-
nents |�n(t )〉, with time-dependent weight coefficients A�n(t ).
Namely it reads

|
(t )〉 =
∑

�n
A�n(t )|�n(t )〉. (6)

Each time-dependent permanent, with occupation numbers
�n = (n1, . . . , nD), is expanded in terms of D time-dependent
variationally optimized single-particle spin orbitals (SPSOs),
i.e., � j (x, α; t ), where α = +1, 0,−1 and j = 1, 2, . . . , D.
This expansion allows us to capture the interparticle corre-
lations within and among the individual spin components.

Subsequently, the SPSOs are expressed in a basis spanned
by d distinct time-dependent single-particle functions (SPFs)
{φk (x; t )}. The latter possess information only on the spatial
state of the particle and are independent from the three-
dimensional spin basis, i.e., {| + 1〉, |0〉, | − 1〉} for the F = 1
degree-of-freedom. Therefore, the SPSOs are given by

� j (x, α; t ) =
d∑

k=1

B j
kα

(t )φk (x; t ), (7)

where B j
kα

(t ) refer to the corresponding time-dependent ex-
pansion coefficients. In this way, the correlations between the
spin and spatial degrees-of-freedom are taken into account.
Moreover, each φk (x; t ) is expressed in terms of a discrete
variable representation (DVR). The time evolution of the N-
body spinor wave function governed by the MB Hamiltonian
Ĥ [Eqs. (1) and (2)] reduces to the determination of the
A-vector coefficients, the B j

kα
(t ) expansion coefficients of

the SPSOs, and the SPFs φk (x; t ). These in turn follow the
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variationally obtained ML-MCTDHX equations of motion,
see for details [53,54]. The latter consist of a set of

(N+D−1
D−1

)
ordinary linear differential equations for the A-vector co-
efficients, coupled to D and d nonlinear integrodifferential
equations for the SPSOs and SPFs, respectively.

Another notable feature of ML-MCTDHX is that it enables
us to operate within different correlation levels. As a case
example, in the limiting case of D = 1 and d = 3 account-
ing for the hybridization of the spin and spatial degrees-of-
freedom, it reduces to the time-dependent Gross-Pitaevskii
equation for a three-component spinor system [42,64,65,74].
Indeed, within this limit only a single SPSO is involved and
therefore the MB ansatz boils down to the MF product state,
namely 
(x1, α1, x2, α2, . . . , xN , αN ; t ) = ∏N

i=1 �1(xi, αi, t ).
Note that (x1, x2, . . . , xN ) refer to the spatial coordinates of
the particles characterized by the corresponding spin config-
uration (α1, α2, . . . , αN ). Employing a variational principle
[27] for this latter MF ansatz we can easily retrieve the
well-known coupled system of Gross-Pitaevskii equations of
motion for the different hyperfine states [70,74] described by
the individual spin orbitals �1(x, α; t ) with α = ±1, 0 which
are independent spatial functions. In particular, the α = +1
and the α = −1 components obey

i∂t�1(x,±1; t ) =
(

− 1

2

∂2

∂x2
+ 1

2
ω2x2 ∓ p + q

)
�1(x,±1; t )

+ c0

1∑
α=−1

|�1(x, α; t )|2�1(x,±1; t )

+ c1
(|�1(x,±1; t )|2 + |�1(x, 0; t )|2

− |�1(x,∓1; t )|2)�1(x,±1; t )

+ c1�
2
1(x, 0; t )�∗

1(x,∓1; t ), (8)

while the α = 0 spin state satisfies

i∂t�1(x, 0; t ) =
(

− 1

2

∂2

∂x2
+ 1

2
ω2x2

)
�1(x, 0; t )

+ c0

1∑
α=−1

|�1(x, α; t )|2�1(x, 0; t )

+ c1
(|�1(x,+1; t )|2 + |�1(x,−1; t )|2)

×�1(x, 0; t ) + 2c1�1(x,+1; t )

×�∗
1(x, 0; t )�1(x,−1; t ). (9)

On the other hand, in the case of D = 3Mp, d = Mp, where Mp

is the dimension of the DVR basis, the ML-MCTDHX method
is equivalent to a full configuration interaction approach, com-
monly referred to in the literature as “exact diagonalization.”

For our implementation we have used a sine DVR as
a primitive basis for the SPFs including Mp = 600 grid
points. Note that the sine DVR inherently introduces hard-
wall boundary conditions at its endpoints. In particular, we
have employed hard-wall boundaries at positions x± = ±50
for N = 50 particles, x± = ±35 for N = 20, and x± = ±25
for N = 5. Of course we have ensured while choosing the
location of these boundaries that they do not affect our results
since there are not appreciable densities, e.g., beyond x± =

±20 for N = 50. To study the dynamics, we propagate the
MB wave function by utilizing the appropriate Hamiltonian
within the ML-MCTDHX equations of motion. The accuracy
of the results obtained within the ML-MCTDHX approach has
been confirmed by verifying that the observables of interest
become almost insensitive (within a given level of accuracy)
upon varying the number of used SPSOs D and SPFs d . More
specifically, in the following we employ D = 6, d = 6 for
all cases. For instance, comparing the one-body density of
each component ρ (1)

α (x; t ) for p/(|c1|n) = 0.04, q/(|c1|n) =
−0.44, c0 = 1

√
h̄3ω⊥/M depicted in Fig. 5 between the (D =

6, d = 6) and the (D = 8, d = 8) cases, we have found that
the corresponding relative deviation lies below 4% throughout
the evolution.

IV. GROUND STATE PHASE DIAGRAM OF THE SPIN-1
BOSE GAS

It is known that within the thermodynamic limit N → ∞
and in the MF realm, where the interparticle correlations of the
spin-1 Bose gas are ignored, the interplay between the sign
of the spin-dependent interaction c1 and the strength of the
Zeeman energy terms p, q [see also Eq. (1)] results in a rich
ground state phase diagram [4,5,14,74]. A schematic repre-
sentation of the aforementioned phase diagram, the involved
phases, and the underlying phase transition boundaries when
N → ∞ are depicted in Fig. 1. Indeed for antiferromagnetic
interactions c1 > 0, there are two ferromagnetic phases with
the particles residing either in the α = +1 (F1) or the α =
−1 (F2) component. Moreover, there is an antiferromagnetic
phase (AF), in which the particles populate both the α = +1
and the α = −1 states in a nonequal fashion while the α = 0
component remains completely unoccupied. Also, there is
the polar phase (P) where the particles are entirely in the
α = 0 state. On the other hand, for ferromagnetic interactions,
namely c1 < 0, one additional phase emerges, the so-called
broken-axisymmetry phase (BA) where all three spin states
α = ±1, 0 are occupied.

Importantly, by inspecting Fig. 1 it becomes evident that
for this system there is a multitude of possible quantum
phase transitions for fixed c1 and varying p, q. Tuning the
latter parameters enables us to transit from one phase to the
other. These quantum phase transitions between the different
magnetic phases, can be classified according to their contin-
uous (second-order) or noncontinuous (first-order) character
[81,82]. The first-order transitions are characterized by the
abrupt change of the spin-state (component) α that contributes
to the ground state of the system as the transition point is
crossed. For instance, within the F1 phase all of the particles
occupy the spin state with α = 1 while in the P phase all atoms
populate the spin state with α = 0. Namely when crossing
the curve of the F1 to the P phase transition [see the red
line in Fig. 1(a)] for a larger q the spin state contributing to
the ground state of the system changes without accessing a
superposition spin state of the α = 0 and the α = 1 compo-
nents. In sharp contrast, for second-order phase transitions the
system’s ground state transits from a state characterized by
the occupation of a single spin state to a superposition one
where a second spin state acquires finite population across
the underlying phase boundary. As an example, along the
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(a) (b)

FIG. 1. Schematic representation of the ground state phase diagram of the spin-1 Bose gas for (a) antiferromagnetic c1 > 0 and (b) ferro-
magnetic c1 < 0 spin-dependent interactions and varying linear p and quadratic q Zeeman energy shift parameters in the thermodynamic limit.
Recall that in this latter case the hybridization of the spin and the spatial degrees-of-freedom is neglected. Red solid lines denote the boundaries
of the emergent first-order quantum phase transitions, while the green dashed lines show the boundaries of the second-order quantum phase
transitions. The symbol n refers to the total density of the Bose gas. Depending on the sign of c1 the phase diagram involves two ferromagnetic
phases (F1), (F2), an antiferromagnetic (AF), a polar (P), and a broken axisymmetry (BA) phase.

transition curve from the F2 to the AF phase [see the green
dashed lines in Fig. 1(a)] i.e., by increasing p, the system
initially (F2 phase) occupies the α = −1 component and sub-
sequently (AF phase) resides in a superposition of the α = −1
and the α = 1 components, with a progressively increasing
α = 1 component.

Below we compare the MF and MB ground state of the
spin-1 Bose gas when taking intra- and intercomponent corre-
lations into account and explore the effect of the finite size of
the system on the respective phase diagram. As we shall argue,
significant correlation-induced phenomena are manifested in
the magnetic phases across second-order quantum phase tran-
sitions. We remark that the impact of correlations has also
been investigated through the involved first-order transitions
of the spin-1 Bose gas and it has been found that they only
negligibly affect the corresponding phase boundaries, i.e., the
effects of interparticle correlations are suppressed. Therefore,
in the following, based on the known phase diagram of the
spin-1 Bose gas for N → ∞, see Fig. 1, we examine the im-
pact of correlations [48] across each of the emerging second-
order phase transitions occurring for antiferromagnetic (c1 >

0) (Sec. IV A) and ferromagnetic (c1<0) (Sec. IV B) spin-spin
interactions. Since the participating phases are characterized
by specific constraints in the population of each component,
we employ as explicit measures for their presence the ex-
pectation values of the polar [see Eq. (10) below] and spin-z
[see Eq. (11) below] operators. These observables essentially
quantify different population imbalances between the individ-
ual components and thus their combination allows us to infer
the existence of each magnetic phase upon tuning the linear or
the quadratic Zeeman fields, see details below.

A. Antiferromagnetic ensembles

In particular for antiferromagnetic interactions, i.e., c1>0,
we focus on the second-order quantum phase transitions

which are known to occur in the q < 0 region as well as
for some specific regions of q/(c1n) > 0, see remark [83]
for further details, involving the phases F1, F2, and AF, see
Fig. 1(a). In the following we consider q/(c1n) = −0.5 as a
representative value of the quadratic Zeeman term in order
to realize the above-mentioned phase transitions. However,
we have checked that also for other values of q/(c1n) the
boundaries of the phases, to be presented below, do not
change, e.g., for q/(c1n) = −0.1 and q/(c1n) = −1. As al-
ready explained above, for all of these phases we expect the
α = 0 component to be unoccupied. To explicitly demonstrate
that the spin state with α = 0 is not populated throughout the
above-mentioned transitions we invoke the expectation value
of the polar operator which reads

〈P̂(t )〉 = 〈
(t )|
∑
αβ

∫
dxψ̂†

α (x)P0
αβψ̂β (x)|
(t )〉

= 〈n̂0(t )〉 − (〈n̂1(t )〉 + 〈n̂−1(t )〉). (10)

Here P0
αβ = (1 − 2|α|)δαβ , with α, β ∈ {−1, 0, 1} indexing

the spin components along the spin-z direction and n̂α cor-
responds to the particle number operator of the αth spin state.
This expectation value 〈P̂(t )〉 quantifies the population differ-
ence between the number of atoms in the α = 0 spin state to
that of the ones residing in the α = ±1 components and takes
values in the range [−1, 1]. Note that, below, when referring
to the ground state properties of the spinor system, we present
〈P̂(0)〉 ≡ 〈P̂〉 while for the time evolution, see Sec. V, 〈P̂(t )〉
is calculated. Thus regarding the above-described phases, i.e.,
F1, F2, and AF, it is anticipated that 〈P̂〉 = −1. This behavior
is indeed confirmed both within the MF and in the beyond
MF case as well as for different particle numbers as shown in
Fig. 3(a), and essentially reflects the fact that 〈n̂0〉 = 0.

Most importantly, in order to identify and subsequently
quantify the corresponding phase transitions between the
aforementioned magnetic phases, we further employ as an
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(a) (b) (c) (d)

FIG. 2. Population imbalance 〈F̂z〉 between the α = 1 and the α = −1 components showing the second-order phase transitions in
the ground state of the spin-1 Bose gas. 〈F̂z〉 is provided both within the MF and the MB approach as well as for distinct number of
particles N (see legends). (a) 〈F̂z〉 illustrating the transitions between the F2, AF, and the F1 phases for varying p/(c1n) and constant
q/(c1n) = −0.5 with antiferromagnetic interactions c1 = 0.018

√
h̄3ω⊥/M > 0 while c0 = 0.5

√
h̄3ω⊥/M. 〈F̂z〉 for ferromagnetic interactions

(c1 = −0.0047
√

h̄3ω⊥/M < 0) presenting the transitions among (b) the F2, BA, and P phases for increasing q/(|c1|n) and constant p/(|c1|n) =
−0.4, (c) the F2, BA, P, BA, and F1 phases with q/(|c1|n) = 1.8, and (d) the F2, BA, and F1 phases with q/(|c1|n) = 0.8 for varying p/(|c1|n).
(b)–(d) c0 = 1

√
h̄3ω⊥/M. The insets showcase 〈F̂z〉 in the MF method for N = 500 bosons for the respective parameter values of the main

figures.

order parameter the expectation value of the spin-z operator

〈F̂z(t )〉 = 〈
(t )|
∑
αβ

∫
dxψ̂†

α (x)( fz )αβψ̂β (x)|
(t )〉

= 〈n̂1(t )〉 − 〈n̂−1(t )〉 . (11)

Note that ( fz )αβ = αδαβ denote the matrix elements of the
spin-z Pauli matrix while α, β ∈ {−1, 0, 1}. The expectation
value 〈F̂z〉 ∈ (−1, 1) essentially measures the population im-
balance between the α = 1 and α = −1 components. Accord-
ingly, 〈F̂z〉 = 1 and 〈F̂z〉 = −1 indicate the occurrence of the
F1 and the F2 phase, respectively, while if −1 < 〈F̂z〉 < 1,
then the AF phase is entered.

To be more precise, we focus on the existent second-order
phase transition where the system transforms continuously
from the F2 to the F1 phase via the AF phase as the linear
Zeeman parameter p/(c1n) is increased for a fixed negative
value of the quadratic Zeeman energy shift q/(c1n). Note that
n = ∑

α〈ψ†
α (x = 0)ψα (x = 0)〉 is the maximum value of the

total density at the trap center [84]. The behavior of 〈F̂z〉
for varying p/(c1n) and, e.g., q/(c1n) = −0.5, is presented
in Fig. 2(a) both within the MF and the MB approach for
different particle numbers. As it can be seen, the interval of
p/(c1n) values where the AF state is accessed decreases in
the presence of interparticle correlations. Also, 〈F̂z〉 acquires
larger (smaller) values for p/(c1n) > 0 [p/(c1n) < 0] in the
MB case. Indeed the transition point, e.g., between AF and
F1, is shifted towards p/(c1n) = 0 in the correlated case;
compare, in particular, the MF and MB results for N = 5, 20
and 50 particles in Fig. 2(a). The deviation in the shape of
〈F̂z〉 between the MF and the MB approach as a function of
p/(c1n) is more prominent in the few-body case, e.g., N = 5
in Fig. 2(a), and becomes smaller for a larger particle number,
e.g., N = 50. The latter suggests that when approaching the
thermodynamic limit, i.e., N → ∞, the difference of the MF
to the MB result will be negligible at least for the consid-
ered ratio of spin-dependent over spin-independent interaction
strengths, i.e., c1/c0 = 0.036. Also, within the AF phase 〈F̂z〉
increases almost linearly for a larger p/(c1n) irrespectively of

N . Furthermore, we can deduce that the transition threshold
between the AF and F1 phases (or equivalently among the
AF and the F2 phase) in terms of |p|/(c1n) decreases for
a smaller particle number, see 〈F̂z〉 for N = 5, N = 20, and
N = 50 bosons.

Another interesting observation here is that the phase tran-
sition boundary which is known to occur at p/(c1n) = ±1
[4,5] for N → ∞, it takes place at p/(c1n) < 1 due to the
finite size effects emanating in our system, see for instance
that for N = 5 bosons in Fig. 2(a) the transition occurs at
p/(c1n) = 0.6 in the MF limit. To verify the presence of
finite size effects, we present 〈F̂z〉 for N = 500 bosons within
the MF approximation for varying p/(c1n) in the inset of
Fig. 2(a). Evidently, in this case the transition indeed oc-
curs at p/(c1n) ≈ 1, thus confirming that the transition point
approaches p/(c1n) = 1 as N → ∞. This, together with the
independence of the results on q/(c1n), suggests that the phase
diagram of the left panel of Fig. 1 retains its qualitative form,
yet with the AF state suppressed as we go to smaller N and
more so (as N is lowered) in the MB case in comparison with
the MF one.

B. Ferromagnetic ensembles

Turning to ferromagnetic interactions, i.e., c1 < 0, there
are three distinct second-order quantum phase transitions, see
Fig. 1(b) regarding N → ∞. The involved phases correspond
to the F1, F2, P, and BA phases. Since the P phase consists
of bosons being entirely in the α = 0 component, it holds that
〈P̂〉 = 1 [Fig. 3(b)]. However, in the BA phase all three spin
states are occupied and therefore 〈P̂〉 ∈ (−1, 1).

1. Transition from F2 to the P phase via the BA phase in terms of
the quadratic Zeeman term

Figure 2(b) illustrates 〈F̂z〉 with respect to q/(|c1|n) for a
specific p/(|c1|n) = −0.4. The transition from the F2 (〈F̂z〉 =
−1) to the P (〈F̂z〉 = 0) phase via a monotonous increase of
〈F̂z〉 for larger q/(|c1|n) through the BA phase takes place.
In more detail, the phase transition between the F2 and BA
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(a) (b) (c) (d)

FIG. 3. Population imbalance 〈P̂〉 between the α = 0 and the α = ±1 components for the second-order phase transitions in the ground
state of a spin-1 Bose gas both within and beyond the MF approximation and for different number of particles N (see legend). (a) 〈P̂〉 for the
transition among the F1, AF, and F2 phases for varying p/(c1n) and constant q/(c1n) = −0.5, c1 = 0.018

√
h̄3ω⊥/M > 0, c0 = 0.5

√
h̄3ω⊥/M.

〈P̂〉 for ferromagnetic interactions (c1 = −0.0047
√

h̄3ω⊥/M < 0) and c0 = 1
√

h̄3ω⊥/M demonstrating the transitions between (b) the F2, BA,
and P phases for increasing q/(|c1|n) and fixed p/(|c1|n) = 0.4, (c) the F2, BA, P, BA, and F1 phases, and (d) the F2, BA, and F1 phases for
different p/|(c1|n) and (c) q/(|c1|n) = 1.8, (d) q/(|c1|n) = 0.8. The insets provide 〈P̂〉 in the MF approach for N = 500 bosons with respect
to (b) q/(|c1|n) with fixed p/(|c1|n) = 0, (c) p/(|c1|n) with constant q/(|c1|n) = 1.8.

phases is expected to occur at p = −q for N → ∞ [4,5]. This
fact is explicitly verified within our calculations both at and
beyond the MF approximation as well as for different particle
numbers [Fig. 2(b)]. Furthermore, the transition from the BA
to the P phase exhibits a similar behavior to the one between
the AF and F2 phases discussed in the antiferromagnetic (c1 >

0) case [Fig. 2(a)]. Indeed, the transition point is negatively
shifted to smaller values of q in the MB case, an effect which
is more pronounced in the few-body scenario. Additionally,
〈F̂z〉 within the BA phase exhibits larger values for fixed p, q
when correlations are present. This is more evident especially
for smaller particle numbers, e.g., compare 〈F̂z〉 obtained in
the MF and MB case for N = 5 and N = 50 in Fig. 2(b).
The aforementioned overall phenomenology regarding the
behavior of 〈F̂z〉 in the BA and P phases is also imprinted in
the shape of 〈P̂〉 due to the nonzero occupation of the α = 0
component in these phases, see Fig. 3(b).

Concluding, we note that the transition from the BA to
the P phase is expected to occur at q/(|c1|n) = 2.07 in the
thermodynamic limit [for this value of p/(|c1|n)] [4,5], see
also the behavior of this transition boundary in Fig. 1(b).
This is not observed in our system owing to the presence
of finite size effects. To support this argument, we showcase
in the inset of Fig. 2(b) 〈F̂z〉 for N = 500 particles in MF
limit, i.e., when accounting for the hybridization between the
spatial and spin degrees-of-freedom of the system. It becomes
evident that in the N = 500 case the transition takes place at
q/(|c1|n) ≈ 2.07, thus confirming that the above-mentioned
behavior is indeed a finite size effect. Moreover, within the
MF approximation it is anticipated that the P phase is only
accessed for q/(|c1|n) > 2 while in our case it is already
realized for q/(|c1|n) = 1.8. To understand whether this be-
havior is a consequence of the finite particle number we have
calculated 〈P̂〉 in the MF limit for N = 500 particles and
p/(|c1|n) = 0 for varying q/(|c1|n), see the inset of Fig. 3(b).
It can be easily seen that here the transition point to the P
state is at q/(|c1|n) ≈ 2 which agrees with the theoretical pre-
diction and consequently confirms the presence of finite size
effects.

2. Transitions between the F1, BA, P, and the F2 phases with
varying linear Zeeman field

Next, we proceed by inspecting the properties of the
second-order quantum phase transitions of a ferromagnet-
ically interacting c1 < 0 Bose gas taking place for fixed
q/(|c1|n) = 1.8 and varying p/(|c1|n), see Figs. 2(c) and
3(c). Since in this case several second-order transitions are
in play in the thermodynamic limit [4,5], as also depicted in
Fig. 1(b), below we distinguish between the p > 0 and the
p < 0 scenario. For decreasing p such that always p > 0, the
system transits from the F1 (〈F̂z〉 = 1, 〈P̂〉 = −1) to the BA
[〈F̂z〉 ∈ (−1, 1), 〈P̂〉 ∈ (−1, 1)] phase and subsequently to the
P (〈F̂z〉 = 0, 〈P̂〉 = 1) one. These emergent transitions among
the above-described phases are indeed imprinted in the shape
of 〈F̂z〉 and 〈P̂〉 shown in Figs. 2(c) and 3(c), respectively.
As it can be readily seen, 〈F̂z〉 (〈P̂〉) decreases (increases)
for smaller positive values of p independently of the MF or
the MB case and the considered particle number. However,
〈F̂z〉 (〈P̂〉) is reduced (enhanced) in the MB compared to
MF scenario while the transition point to the P phase gets
positively shifted in the MB case, a result which is more
prominent for decreasing atom number, e.g., see N = 5 and
N = 20 in Fig. 2(c) [Fig. 3(c)].

Entering the range of smaller p values all the way to p < 0,
〈F̂z〉 and 〈P̂〉 decrease since the system moves first from the P
to the BA phase and then from the BA to the F2 (〈F̂z〉 = −1,
〈P̂〉 = −1) phase, see Figs. 2(c) and 3(c). These transitions
occur both in the MF and the MB approach and for different
numbers of bosons. Evidently the inclusion of correlations
causes a significant deviation in both 〈F̂z〉 and 〈P̂〉 within the
BA phase when compared to the MF approximation. Indeed,
these observables acquire smaller values and the transition
from the P to the BA phase is negatively shifted closer to
p = 0 in the MF compared to the MB case. Therefore, the
BA phase is effectively suppressed within the parametric
plane, see, e.g., Fig. 2(c), when correlations are taken into
account. For instance, for N = 5 bosons the P to the BA
phase transition point takes place at p/(|c1|n) = ±1.44 in
the MB case and at p/(|c1|n) = ±0.96 in the MF limit. This
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phenomenon is more pronounced for fewer particles, e.g.,
compare 〈F̂z〉 and 〈P̂〉 for N = 5 and N = 20, and becomes
vanishingly small for increasing N , see for instance the case
of N = 50. In addition, a smaller number of bosons also
extends the p interval in which the P phase exists, e.g., contrast
〈F̂z〉 when N = 5, 20 and N = 50 in Fig. 2(c). This behavior
can in turn be attributed to the finite size of the system.
To explicitly visualize this fact we consider an adequately
large particle number namely N = 500 with fixed q/(|c1|n) =
1.8 and illustrate the behavior of 〈F̂z〉 (〈P̂〉) in the inset of
Fig. 2(c) [Fig. 3(c)]. It is apparent that the shapes of 〈F̂z〉
and 〈P̂〉 become much smoother within the P phase whose p
interval shrinks accordingly and thus approaches its expected
thermodynamic behavior, see also Fig. 1(b). We finally remark
that the transition between the F1 and the BA (BA and
F2) phases when N → ∞ is expected [4] to occur [as also
shown in Fig. 1(b) for q/(|c1|n) > 2] at p = q (p = −q). This
result is indeed confirmed within our calculations and remains
unaltered in both the MF and MB case as shown, e.g., in
Fig. 2(c).

3. Transitions among the F1, BA, and the F2 phases by tuning
the linear Zeeman term

Subsequently, we turn our attention to the second-order
quantum phase transition from the F2 to the F1 phase through
the BA one exhibited in the thermodynamic limit upon in-
creasing p/(|c1|n) for negative spin-dependent interactions
c1 < 0, see also Fig. 1(b). To this end, we consider a fixed
q/(|c1|n) = 0.8 and c1 < 0. The population imbalance among
the involved spin states as quantified via 〈F̂z〉 and 〈P̂〉 is
presented in Figs. 2(d) and 3(d), respectively, for varying
p/(|c1|n) both at and beyond the MF level and for different
numbers of bosons. In the thermodynamic limit [4,5] the
phase transition between the ferromagnetic phase F1 (F2)
and the BA one occurs at p = q (p = −q). More specifi-
cally, we observe that within the BA phase 〈F̂z〉 decreases
monotonously for decreasing p/(|c1|n) while 〈P̂〉 grows (re-
duces) for a smaller p/(|c1|n) such that p > 0 (p < 0). In
accordance with the above-discussed second-order transitions
[Figs. 2(b) and 2(c)], we can deduce that the underlying phase
boundaries indeed occur at p = ±q and their positions are not
significantly altered when correlations are taken into account
[Fig. 2(d)]. Interestingly, in the correlated case and for N = 5
bosons, the transition from the BA to the P phase and vice
versa takes place at p/(|c1|n) = 0.35 and p/(|c1|n) = −0.35,
respectively [Figs. 2(d) and 3(d)]. As already discussed above,
this effect can be understood due to the fact that the P phase is
favorable for smaller values of q/(|c1|n) deep in the few-body
regime, e.g., N = 5, and in the presence of correlations. For
the remaining cases there are minor changes in the value
of either 〈F̂z〉 or 〈P̂〉 within the BA phase obtained between
the MF and the MB approach; it is relevant to compare in
particular these observables in the BA region between the MB
and the MF scenario for N = 20, 50 [Figs. 2(d) and 3(d)].

Summarizing, we can deduce that the interval of the AF
and the BA phases, with respect to the quadratic and the
linear Zeeman energy terms, appearing in the phase diagram
of a spin-1 Bose gas for positive (c1 > 0) and negative (c1 <

0) spin-dependent interactions, respectively, shrinks in the

presence of intra- and intercomponent correlations. More-
over, this effect is more pronounced in the few-body case.
As a consequence, one can infer that the phases involving
a superposition of different spin states are not favorable
when operating beyond the MF approximation, a phenomenon
which becomes more evident for a decreasing particle number.
Instead, single-component spin states appear to be favored for
lower particle numbers and more so in the MB setting. Finally,
let us comment that the correlation patterns building upon the
one- and two-body correlation functions of the system [see
Eqs. (12) and (13) below] are similar to the ones appearing in
the course of the evolution, see, e.g., Fig. 7 below, and there-
fore we do not present them for the ground state. Moreover,
the inclusion of correlations leads to filamentary structures in
the density of each component, an effect that is also evident
during evolution, see in particular the discussion below.

V. QUENCH DYNAMICS

Having analyzed in detail the MB-induced variations to
the ground state phase diagram of the spin-1 Bose gas for
different particle numbers, we then discuss some basic cor-
relation aspects of its nonequilibrium dynamics. To this end,
we investigate the dynamics induced by a sudden decrease
(quench) of the harmonic trap frequency of the spin-1 Bose
gas consisting of N = 50 particles both within and beyond the
MF approximation.

More specifically, the system is initialized in its
ground state configuration characterized by a fixed spin-
dependent (spin-independent) interaction strength c1 =
−0.0047

√
h̄3ω⊥/M (c0 = 1

√
h̄3ω⊥/M) for ferromagnetic in-

teractions and c1 = 0.018
√

h̄3ω⊥/M (c0 = 0.5
√

h̄3ω⊥/M) for
antiferromagnetic couplings (unless it is stated otherwise) but
a variety of Zeeman parameters p, q. The latter allows us to
enter the different ground state phases discussed in Sec. IV.
These include for instance the F1, F2, AF, BA, and P phases
(see below for more details). To trigger the dynamics we
perform a quench of the trapping frequency from ω = 0.1 to
ω = 0.07 and monitor the emergent dynamical response of the
individual components utilizing their single-particle density
and associated correlation functions. Naturally this quench
protocol excites a collective breathing motion [58,59] of the
individual components.

A. One-body density evolution

To visualize the emergent nonequilibrium dynamics of the
spin-1 Bose gas we first track the time evolution of the single-
particle density ρ (1)

α (x; t ) = 〈
(t )|ψ̂†
α (x)ψ̂α (x)|
(t )〉 of each

component [85]. Prototypical examples of the induced dy-
namics are shown in Figs. 4 and 5 demonstrating ρ (1)

α (x; t )
with α = −1, 0, 1 following a quench of the harmonic trap
frequency within the AF and the BA phase, respectively,
which emanate in our system for ferromagnetic c1 < 0 and
antiferromagnetic c1 > 0 spin-spin interactions. As it can be
readily seen in both cases this quench protocol results in
an induced breathing motion [58,59], manifested as a con-
traction and expansion dynamics of the atomic cloud of the
individual components around the trap center. Interestingly,
the frequency of the breathing oscillation remains unaltered,
namely ωα

br = 0.12, regarding the bosons residing in different
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(a1) (b1)

(a2) (b2)

(a3) (b3)

FIG. 4. Spatiotemporal evolution of the spin-resolved one-body
densities ρ (1)

α (x; t ) of the spin-1 Bose gas in an AF phase character-
ized by Zeeman energy parameters p/(c1n) = 0.11 and q/(c1n) =
−0.5 within the (a) MF and (b) MB approach. Panels correspond
to the (a1) and (b1) α = −1, (a2) and (b2) α = 0, and (a3) and (b3)
α = 1 components (see legends). The harmonically trapped spin-
1 Bose gas consisting of N = 50 particles with spin-independent
interaction strength c0 = 0.5

√
h̄3ω⊥/M and spin-dependent one c1 =

0.018
√

h̄3ω⊥/M is initially prepared in its ground state. To induce
the dynamics a quench of the trapping frequency from ω = 0.1 to
ω = 0.07 is applied at t = 0. Note that the color scaling is different
for each component; in particular, note the fundamentally different
scale of the α = 0 component.

spin states [e.g., compare Figs. 4(b1) and 4(b3)], between
the MF and the MB case [see for instance Figs. 4(a1) and
4(b1)] as well as irrespectively of the initial phase of the
spinor gas [see, e.g., Figs. 4(b1) and 4(b3) and Figs. 5(b1) and
5(b3)]. Note here that the deviation of the observed breathing
frequency ωα

br = 0.12 from its theoretically anticipated value,

i.e., ωα
br;th = 0.14, is attributed to the finite size of the system

[58,59]. A notable effect of the presence of correlations on the
single-particle level is the formation of filamentlike structures
building upon the one-body densities of the individual spin
components as depicted in Figs. 4 and 5. This filamentary
configuration refers to the multihump patterns appearing in
the density of the Bose gas and being more prominent during
its expansion dynamics, see, e.g., the box in Fig. 4. Such a
type of filamentation process is the imprint of correlations in
ρ (1)

α (x; t ) and has already been observed in correlated binary
bosonic [60,80] and fermionic [62,78] mixtures.

B. Spin-mixing processes

Another crucial observation here is that quenching an
initially AF state does not lead to a significant spin-flip
dynamics among the participating components. Indeed, the
probability of particles lying in the distinct spin states remains
almost constant in the course of the evolution, while the total
spin of the system is conserved at each time instant. Similar
observations in terms of the negligible spin-flip dynamics
and the independence of the breathing frequency can also be
drawn for an initially ferromagnetic either F1 or F2 phase as
well as the P one (not shown for brevity). In sharp contrast to
the above, when a BA phase is subjected to such a quench,
a low frequency spin-flip dynamics between the components
occurs [63], see Fig. 5. More specifically, at the initial stages
of the dynamics the particles residing in the α = 1 and the
α = −1 components get coherently transferred towards the
α = 0 spin state while the reverse scenario is subsequently
realized, see for instance the region indicated by an ellipse in
Fig. 5 corresponding to the dynamics of the α = 1 component.

To quantify this population transfer among the α = 0
and α = ±1 spin states, we consequently monitor the time

(a1) (b1)

(a2) (b2)

(a3) (b3)

FIG. 5. Time evolution of the spin-resolved one-body densities ρ (1)
α (x; t ) within the (a) MF and (b) MB approach of the spin-1 Bose gas

in a BA phase with Zeeman parameters p/(|c1|n) = 0.04 and q/(|c1|n) = 0.44. The individual panels illustrate the (a1) and (b1) α = −1, (a2)
and (b2) α = 0, and (a3) and (b3) α = 1 spin states. The spin-1 Bose gas with N = 50 atoms is harmonically trapped and it is initialized in its
ground state configuration. The spin-independent and spin-dependent interaction strengths are c0 = 1

√
h̄3ω⊥/M and c1 = −0.0047

√
h̄3ω⊥/M,

respectively. To trigger the dynamics we follow a quench of the trapping frequency from ω = 0.1 to ω = 0.07 at t = 0.

013302-9



K. M. MITTAL et al. PHYSICAL REVIEW A 102, 013302 (2020)

(a)

(b)

FIG. 6. (a) Time evolution of the population imbalance 〈P̂(t )〉
between the α = 0 and the α = ±1 components, after a quench
of the harmonic trap frequency from ω = 0.1 to ω = 0.07. Solid
lines denote 〈P̂(t )〉 within the MB approach while the dashed line
represents the MF case. (b) The same as in (a) with p/(|c1|n) = 0.04
but for quenching the trap frequency from ω = 0.1 to different values
of ω (see legend). The system is initialized in its ground state residing
in the BA phase with q/(|c1|n) = 0.44 and different p/(|c1|n) values
(see legend). Other system parameters are the same as in Fig. 5.

evolution of the expectation value of the underlying polar
operator, i.e., 〈P̂(t )〉 after a quench of the harmonic trap fre-
quency to ω = 0.07. The dynamics of this observable within
the BA phase is presented in Fig. 6(a) for Zeeman energy
parameters q/(|c1|n) = 0.44 and p/(|c1|n) = 0.04 within the
MF and the MB evolution as well as for p/(|c1|n) = −0.17
only in the MB approach. Focusing on the case of p/(|c1|n) =
0.04 we observe that 〈P̂(t )〉 increases until t ≈ 300, implying
a transfer of bosons from the α = ±1 to the α = 0 spin
state, and later on exhibits a decreasing behavior testifying
a reverse migration tendency of the atoms namely α = 0 →
α = ±1 in both approaches. The amplitude of this transfer
process is somewhat larger in the presence of correlations, see
also the corresponding behavior of 〈P̂(t = 0)〉 in the ground
state at and beyond the MF level [Fig. 3(b)]. Also, referring
to the MB evolution, the migration of bosons between the
aforementioned spin states occurs faster upon decreasing the
strength of the linear Zeeman energy term and also a smaller
amount of particles is transferred to the α = 0 component,
see Fig. 6(a). Moreover, the amplitude of this transmission
process increases for a larger quench amplitude and fixed p, q
parameters at least for t < 350. For instance, compare 〈P̂(t )〉
for the different post-quench harmonic trap frequencies ω =
0.07 and ω = 0.03 illustrated in Fig. 6(b) when p/(|c1|n) =
0.04, q/(|c1|n) = 0.44. Notice, however, that for long evolu-
tion times here t > 350 there is no clear categorization of the
amplitude of 〈P̂(t )〉 with respect to the post-quench ω. Indeed,

〈P̂(t )〉 is larger (smaller) for ω = 0.03 than for ω = 0.05 when
t < 350 (t > 350). We should also stress at this point that
in all of the above-mentioned cases 〈F̂z〉 remains constant
throughout the time evolution meaning that the overall pop-
ulation imbalance between the α = 1 and α = −1 spin states
is not affected by the quench. Summarizing, we can infer the
control of the intercomponent transfer process within the BA
phase via tuning either the amplitude of the linear Zeeman
parameter [Fig. 6(a)] or the quench amplitude [Fig. 6(b)].

C. Coherence properties

In an attempt to further expose the role of correlations
during the breathing dynamics of the spin-1 Bose gas, we next
invoke the α = ±1, 0 component spatially resolved first-order
coherence function [86,87]

g(1)
α (x, x′; t ) = ρ (1)

α (x, x′; t )√
ρ

(1)
α (x; t )ρ (1)

α (x′; t )
. (12)

In this expression, ρ (1)
α (x, x′; t ) = 〈
(t )|ψ̂†

α (x)ψ̂α (x′)|
(t )〉
denotes the α-component one-body reduced density matrix
whose diagonal is the previously discussed one-body density,
namely ρ (1)

α (x, x′ = x; t ) = ρ (1)
α (x; t ). Evidently g(1)

α (x, x′; t )
can be used to infer the proximity of the MB state to a MF
(product) one for a fixed set of coordinates x, x′. Additionally,
|g(1)

α (x, x′; t )| ∈ [0, 1] with |g(1)
α (x, x′; t )| = 0 [|g(1)

α (x, x′; t )| =
1] referring to a fully incoherent (coherent) state and thus
indicating a maximal (zero) departure from the MF state.
Accordingly, the absence of correlations is realized when
|g(1)

α (x, x′; t )| = 1 for every x, x′ while the case of partial
incoherence, i.e., |g(1)

α (x, x′; t )| < 1, between two distinct spa-
tial regions signifies the presence of correlations in the α

component [76].
Below we analyze the coherence properties in the course

of the breathing motion of the spin-1 Bose gas with N = 50
atoms which is prepared in its ground state configuration
where p/(c1n) = 0.11, q/(c1n) = −0.5, c0 = 0.5

√
h̄3ω⊥/M,

and c1 = 0.018
√

h̄3ω⊥/M. Recall that for this choice of pa-
rameters the system resides in an AF phase. We also remark
that in this case we have observed that the structures building
upon the one-body coherence function are the same inde-
pendently of the α = ±1 component while the α = 0 spin
state remains unoccupied throughout the evolution, see also
Figs. 4(b1)–4(b3). For this reason we explicitly focus on the
dynamical response of the α = +1 component.

Accordingly, |g(1)
1 (x, x′; t )| for the AF phase is illustrated

in Figs. 7(a1)–7(a3) at specific time instants of the evolution
referring to the contraction and expansion of the α-component
bosonic cloud. Overall, weak losses of coherence during the
dynamics can be immediately inferred since the off-diagonal
elements of |g(1)

1 (x, x′ �= x; t )| exhibit values in the range
[0.85, 1]. Moreover, the patterns appearing in the one-body
coherence remain robust during the evolution besides the con-
traction [Fig. 7(a1)] and expansion [Figs. 7(a2)–7(a3)] of the
off-diagonal which essentially reflects the breathing motion
of the atomic cloud [Fig. 4(b1)]. In particular, closely in-
specting |g(1)

1 (x, x′; t )| it becomes evident that the filamentary
patterns imprinted in the α = +1 spin-state one-body density
are fully coherent among themselves. This is manifested by
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(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 7. (a1), (a2), and (a3) Snapshots of the one-body coherence
function g(1)

1 (x, x′; t ) of the α = +1 component of the spin-1 Bose
gas residing in the AF phase as described in Fig. 4. (b1), (b2), and
(b3) The corresponding two-body correlation function g(2)

1,−1(x1, x2; t )
between the α = +1 and α = −1 components at different time
instants of the evolution. The harmonically trapped spinor gas with
N = 50 bosons is prepared in its ground state characterized by c0 =
0.5

√
h̄3ω⊥/M and c1 = 0.018

√
h̄3ω⊥/M. The dynamics is induced

by applying a quench of the trapping frequency from ω = 0.1 to
ω = 0.07 at t = 0. All other parameters are the same as in Fig. 4.

the bright blocks along the diagonal of |g(1)
1 (x, x′; t )|, e.g.,

g(1)
1 (x = −2, x′ = −2; t = 1) ≈ 1 in Figs. 7(a1)–7(a3). Most

importantly, nearest neighbor as well as long-distant filaments
exhibit a prominent loss of coherence as it can be directly
seen by inspecting the off-diagonal of |g(1)

1 (x, x′ �= x; t )|.
For instance g(1)

1 (x = −2, x′ = 3; t = 1) ≈ 0.88 in Fig. 7(a1)
and g(1)

1 (x = 10, x′ = −10; t = 12.5) ≈ 0.85. It is also worth
mentioning here that the coherence patterns are similar to
the above-described also when starting from a BA phase and
therefore we refrain on discussing also this case.

D. Two-body correlation dynamics

Subsequently, in order to unveil the interplay of two-body
correlations in the dynamics of the spinor Bose gas, we resort
to the normalized two-body correlation function [60,80,87]
given by

g(2)
αα′ (x, x′; t ) = ρ

(2)
αα′ (x, x′; t )√

ρ
(1)
α (x; t )ρ (1)

α′ (x′; t )
. (13)

Here ρ
(2)
αα′ (x, x′; t ) = 〈
(t )|ψ̂†

α (x)ψ̂†
α′ (x′)ψ̂α′ (x′)ψ̂α (x)|
(t )〉

refers to the diagonal two-body reduced density matrix
which gives the probability of two bosons of the α and
α′ components to be simultaneously at positions x and
x′, respectively. A perfectly condensed MB state leads to
|g(2)

αα′ (x, x′; t )| = 1 and it is termed two-body uncorrelated
while if |g(2)

αα′ (x, x′; t )| < 1 [|g(2)
αα′ (x, x′; t )| > 1] it is said to be

two-body anticorrelated (correlated), see also Refs. [60,75]
for more details.

Figures 7(b1)–7(b3) present snapshots of the two-body
intercomponent correlation function, namely g(2)

1,−1(x, x′; t ),
following a quench of the trapping frequency of the ground

state prepared in the AF phase presented in Fig. 4 and
also discussed in Sec. V C. Interestingly, for the dynamical
response of our system, g(2)

αα′ (x, x′; t ) turns out to be almost
independent of the involved components α = 1 and α′ = −1
while preserving its structure during the evolution. Recall that
α = 0 is not populated. For the intracomponent two-body cor-
relation function, of course, an expansion and contraction of
the arising patterns, as an imprint of the overall α-component
breathing motion, takes place (not shown here for brevity)
similarly to the one-body coherence function. Turning to
g(2)

1,−1(x, x′; t ) we find a correlation hole to be present along

its diagonal, see, e.g., g(2)
1,−1(x = −2, x′ = −2; t = 1) ≈ 0.9 in

Fig. 7(b1), excluding the possibility an α = 1 and an α = −1
boson to reside in the same positioned filament [60]. This
behavior is robust for all evolution times, i.e., two particles of
different components lying in the same filament are anticor-
related, see the dark blocks near the diagonal in Figs. 7(b1)–
7(b3). On the other hand, the off-diagonal elements show a
weakly correlated character, thus allowing for an α = 1 and
an α = −1 particle to be at different filaments [60,62,78], see
in particular the bright white spots near the off-diagonal, e.g.,
g(2)

1,−1(x = −2, x′ = 3; t = 1) ≈ 1.03 in Fig. 7(b1).

E. Impact of the spin-independent interactions and the atom
number on the dynamics

Let us finally examine the dependence of the above-
discussed dynamics on the value of the spin-independent
interaction strength and the number of atoms of the spin-1
Bose gas. For simplicity we shall discuss only the case where
the system in prepared in the ground state of an AF phase
characterized by Zeeman parameters as shown in Fig. 4. Other
phases such as F1, F1, P, and BA yield similar observations
and are not analyzed.

As it can be readily seen in Fig. 8 an increasing spin-
independent interaction strength, e.g., c0 = 5

√
h̄3ω⊥/M, leads

to the appearance of relatively more prominent filamentary
structures appearing in the corresponding one-body den-
sity of the α = +1 component, compare Fig. 8(a1) and
Fig. 4(b1). Furthermore, the number of filaments formed
becomes also larger for a stronger c0, e.g., from two when
c0 = 0.5

√
h̄3ω⊥/M [Fig. 8(b3)] to three for c0 = 5

√
h̄3ω⊥/M

[Fig. 8(a1)]. Note here that for brevity we only show the
density of the α = 1 spin state, since the phenomenology
of the α = −1 component is similar while the α = 0 one is
not populated due to the fact that the ground state lies in
the AF phase, see also Fig. 4. On the two-body correlation
level we showcase g(2)

1,−1(x, x′; t ) for c0 = 5
√

h̄3ω⊥/M at spe-
cific time instants of the evolution in Figs. 8(b1)–8(b3). A
three block anticorrelated pattern appears along the diagonal
of g(2)

1,−1(x, x′; t ), e.g.. g(2)
1,−1(x = 5, x′ = 5; t = 1) ≈ 0.85 in

Fig. 8(b1), with each block corresponding to a filament de-
veloping in the density of each component [Fig. 8(a1)]. We re-
mark that this behavior is in contrast to the two block structure
arising in g(2)

1,−1(x, x′; t ) for c0 = 1
√

h̄3ω⊥/M [Figs. 7(b1)–

7(b3)]. Additionally, here the nearest neighboring, e.g., g(2)
1,−1

(x = −5, x′ = 0.7; t = 1) ≈ 1.1, as well as the next-to-
nearest neighboring filaments, e.g., g(2)

1,−1(x = −5, x′ = 5; t =
1) ≈ 1.05, are slightly correlated to each other, see also the
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(a1)

(b1) (b2) (b3)

FIG. 8. (a1) Spatiotemporal evolution of the one-body density
ρ

(1)
1 (x; t ) of the α = 1 component of the spin-1 Bose gas, being

in the AF phase, within the MB approach. (b1), (b2), and (b3)
The two-body intercomponent correlation function g(2)

1,−1(x, x′; t ) at
different time instants of the dynamics (see legend). The gas consists
of N = 50 particles with spin-independent interaction strength c0 =
5
√

h̄3ω⊥/M and spin-dependent one c1 = 0.018
√

h̄3ω⊥/M while
confined in a harmonic trap. It is initialized in its ground state where
the Zeeman parameters are p/(c1n) = 0.04 and q/(c1n) = −0.44.
The dynamics is triggered via a quench of the trapping frequency
from ω = 0.1 to ω = 0.07.

off-diagonal bright region in Figs. 7(b1)–7(b3). Otherwise, the
two-body correlation patterns possess the same characteristics
as in the case of c0 = 0.5

√
h̄3ω⊥/M.

Next we consider the effect of a smaller particle number
N = 20, while keeping fixed all other system parameters.
Figure 9(a1) presents ρ

(1)
1 (x; t ) where an increased number of

filaments formed, namely four occurs when compared to two
for N = 50 bosons [Fig. 4(b1)]. Also, ρ

(1)
1 (x; t ) undergoes a

breathing motion with the same frequency as in the N = 50
scenario, a dynamical response that holds equally for the α =
−1 component while the α = 0 remains unoccupied. Recall
here that the filamentary patterns constitute an imprint of
the presence of correlations into the system and as such it
is expected that their traces will be more pronounced for a
decreasing particle number since in this latter case correla-
tions are enhanced compared to larger particle systems [60].
Accordingly, the above-described behavior is also captured
by the two-body correlation function [Figs. 9(b1)–9(b3)]. In-
deed, the occurrence of four prominent anticorrelated blocks
along the diagonal of g(2)

1,−1(x, x′ = x; t ) is evident with each
block corresponding to a particular filament. Note that this
is again in contrast to the two anticorrelated block struc-
ture of g(2)

1,−1(x, x′ = x; t ) for N = 50 particles [Figs. 7(b1)–
7(b3)]. Also, we can identify the presence of correlations
between neighboring filaments, see the bright off-diagonal
region of g(2)

1,−1(x, x′; t ) in Figs. 9(b1)–9(b3), e.g., g(2)
1,−1(x =

−1.7, x′ = 2.5; t = 1 ≈ 1.08). Moreover, the correlations de-
crease for next-to-nearest and next-to-next-nearest neighbor-
ing filaments, since the intensity of the bright regions de-
creases as one moves away from the diagonal in Figs. 9(b1)–
9(b3), e.g., compare g(2)

1,−1(x = −1.7, x′ = 2.5; t = 1) ≈ 1.08

to g(2)
1,−1(x = −3.7, x′ = 2.5; t = 1) ≈ 1.04. We also remark

(a1)

(b1) (b2) (b3)

FIG. 9. (a1) Dynamics in the MB approach of the one-body
density ρ

(1)
1 (x; t ) of the α = 1 component of the spin-1 Bose gas

in the AF phase. (b1), (b2), and (b3) Profiles of the two-body inter-
component correlation function g(2)

1,−1(x, x′; t ) at specific time instants
of the time evolution (see legend). The harmonically trapped spin-1
Bose gas contains N = 20 and characterized by spin-independent
and spin-dependent interaction strengths c0 = 0.5

√
h̄3ω⊥/M and

c1 = 0.018
√

h̄3ω⊥/M, respectively. It is prepared in the ground state
with Zeeman terms p/(c1n) = 0.04 and q/(c1n) = −0.44. To induce
the nonequilibrium dynamics we apply a quench of the trapping
frequency from ω = 0.1 to ω = 0.07.

that the correlation structures between the remaining com-
ponents exhibit similar to the above-described characteristics
(not shown here).

VI. CONCLUSIONS AND OUTLOOK

We have explored the many-body effects on the ground
state properties (and associated transitions) of a harmonically
trapped spin-1 Bose gas upon varying the linear and quadratic
Zeeman energy parameters as well as its breathing dynamics
induced by quenching the external trapping frequency. To
capture the different phases associated with second-order
quantum phase transitions in the ground state of the system we
resort to the population imbalance between the components
of the spinor gas. We reveal how the boundaries of these
phases are altered in the presence of intra- and intercom-
ponent correlations and for different particle numbers. On
the other hand, the time evolution of the one- and two-body
density distributions of the individual components enable us
to characterize the quench-induced breathing dynamics of our
system. In this way the imprint of correlations in the course
of the evolution is analyzed for different values of the spin-
dependent interactions, and thus residing in distinct phases,
spin-independent coupling constants, and particle numbers.

Focusing on the different magnetic phases emanating in
the ground state of our system, we find that the inclusion
of correlations is negligible concerning first-order transitions
while the boundaries of the second-order ones are signifi-
cantly altered. We unveil that for both ferromagnetic and an-
tiferromagnetic spin-spin interactions, the involved transition
borders are shifted leading to a decreased interval in terms
of the linear and quadratic Zeeman parameters where the AF
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and BA phases are entered. Note that the aforementioned
phases are characterized by a superposition of spin states,
thus demonstrating that correlated systems favor ground states
where the bosons become polarized in a single spin compo-
nent. Additionally, by comparing the phase boundaries cor-
responding to second-order transitions for a varying particle
number, it is showcased that the correlation effects on the
emergent phase diagram become more prominent in the few-
body scenario (i.e., N = 5–20). Furthermore, by considering
an adequately large number of bosons and operating within
the MF realm we are able to recover the theoretical predictions
in the thermodynamic limit associated with the absence of
interparticle correlations. Already for N = 50 the two de-
scriptions become quite proximal and by N = 500, the large
particle limit is reached.

Turning to the dynamical response of the spinor gas it is
shown that its breathing frequency is independent of the spin
state and the initial magnetic phase. We illustrated that the
presence of intra- and intercomponent correlations leads to the
formation of filamentary patterns in the one-body density of
each participating component. The number of these filaments
is found to increase for larger spin-independent interaction
strengths or a smaller number of particles while keeping fixed
all other system parameters. Interestingly, we demonstrate
that for an initial BA state a spin-flip dynamics takes place,
coherently transferring bosons from the α = ±1 components
to the α = 0 one and vice versa in the course of the evolution.
We also showcase that this intercomponent particle transfer
process can be controlled by means of adjusting either the
strength of the linear Zeeman term or the quench amplitude.

To further expose the effect of correlations during the
dynamics we inspect the coherence losses and the two-body
correlations within and between the spin components. It is
shown that coherence is maintained within each filament
during the dynamics, while significant losses of coherence
occur between the nearest and next-to-nearest neighboring
filaments. Most importantly, we find that irrespectively of the
spin-dependent and spin-independent interaction strength as
well as the number of bosons, two particles within a filament
exhibit an anticorrelated character while particles between
neighboring filaments are correlated to each other throughout
the evolution.

There is a variety of possible fruitful directions that can be
pursued in future investigations. A straightforward extension
of the present work would be to examine the correlation
effects in the phase diagram of spinor Bose gases with higher

than unity total spin [29]. In this way, it would be also possible
to infer the dependence of correlations with respect to the total
spin of the system. Another fruitful prospect is to unravel and
possibly control the spin dynamics of a spin-1 Bose gas upon
its exposure to a spatially dependent external magnetic field
[57]. In addition, the possibility of quenches in the linear and
quadratic Zeeman energy shift parameters in order to examine
abrupt transitions between different phases promises to offer
some interesting dynamics and possible metastable states. It
is also worthwhile to examine the many-body dynamics of
nonlinear excitations in the form of dark-dark-bright or dark-
bright-bright solitonic entities [70,88,89] in order to inspect
the potential presence of a decay mechanism or other peculiar
quantum properties already known to emerge for less complex
soliton structures [76,90,91]. Moreover, recent experiments
have utilized controlled spin mixing interaction dynamics
and generated fully entangled 87Rb spinor condensates, for
instance the twin-Fock state [92], i.e., with exactly half of
the atoms each in the spin components α = ±1, and the
analogous balanced spin-1 Dicke state [93] involving all three
spin (α = 0 and α = ±1) components. It would be especially
interesting to examine, within the ML-MCTDHX framework,
the (less than 1%) deviations from nearly perfect coherence
in such settings. Naturally, all of the present considerations
have been constrained to the one-dimensional case. Thus, it is
also of particular interest to generalize relevant considerations
to higher dimensions where topologically charged configura-
tions can arise (including especially complex ones such as
skyrmions, monopoles, knots, etc.).
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[88] W. Zhang, Ö. E. Müstecaplıoğlu, and L. You, Phys. Rev. A 75,

043601 (2007).
[89] J. Ieda, T. Miyakawa, and M. Wadati, Phys. Rev. Lett. 93,

194102 (2004).
[90] G. C. Katsimiga, S. I. Mistakidis, G. M. Koutentakis, P. G.

Kevrekidis, and P. Schmelcher, Phys. Rev. A 98, 013632 (2018).
[91] G. C. Katsimiga, S. I. Mistakidis, G. M. Koutentakis, P. G.

Kevrekidis, and P. Schmelcher, New J. Phys. 19, 123012 (2017).
[92] X.-Y. Luo, Y.-Q. Zou, L.-N. Wu, Q. Liu, M.-F. Han, M. K. Tey,

and L. You, Science 355, 620 (2017).
[93] Y.-Q. Zou, L.-N. Wu, Q. Liu, X.-Y. Luo, S.-F. Guo, J.-H. Cao,

M. K. Tey, and L. You, Proc. Natl. Acad. Sci. 115, 6381 (2018).

013302-15

https://doi.org/10.1103/PhysRevA.100.013626
https://doi.org/10.1103/PhysRevA.81.041603
https://doi.org/10.1103/PhysRevLett.104.153203
https://doi.org/10.1103/PhysRevA.99.032705
https://doi.org/10.1016/j.cnsns.2019.105050
https://doi.org/10.1103/RevModPhys.92.011001
https://doi.org/10.1088/1367-2630/aa766b
https://doi.org/10.1103/PhysRevResearch.2.023154
https://doi.org/10.1103/PhysRevA.101.053619
https://doi.org/10.1088/1367-2630/ab1045
https://doi.org/10.1088/1367-2630/ab7599
https://doi.org/10.1088/2058-7058/12/4/23
https://doi.org/10.1103/PhysRevA.93.063601
https://doi.org/10.1103/PhysRevA.78.023615
https://doi.org/10.1103/PhysRevA.59.4595
https://doi.org/10.1103/PhysRevA.75.043601
https://doi.org/10.1103/PhysRevLett.93.194102
https://doi.org/10.1103/PhysRevA.98.013632
https://doi.org/10.1088/1367-2630/aa96f6
https://doi.org/10.1126/science.aag1106
https://doi.org/10.1073/pnas.1715105115

