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Symmetry-protected topological phase for spin-tensor-momentum-coupled ultracold atoms
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We propose a realizable experiment scheme to construct a one-dimensional synthetic magnetic flux lattice
with spin-tensor-momentum coupled spin-1 atoms and explore its exotic topological states. Different from
the Altland-Zirnbauer classification, we show that our system hosts a symmetry-protected phase protected by
a magnetic group symmetry (M) and characterized by a Z2 topological invariant. In single-particle spectra,
we show that the topological nontrivial phase supports two kinds of edge states, which include two (four)
zero-energy edge modes in the absence (presence) of two-photon detuning. We further study the bulk-edge
correspondence in a non-Hermitian model by taking into account the particle dissipation. It is shown that
the non-Hermitian system preserves the bulk-edge correspondence under the M symmetry but exhibits the
non-Hermitian skin effect with breaking the M symmetry at nonzero magnetic flux. This work provides insights
in understanding the exotic topological quantum states of high-spin systems and facilitating their experimental
explorations.
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I. INTRODUCTION

Topological quantum matters, which are characterized by
gapped bulk states and symmetry-protected gapless edge
states, drive much of the fundamental research ranging from
condensed-matter physics [1–4] to quantum information pro-
cessing [5,6]. The paradigms of topological states include
integer quantum Hall effects [7–9], quantum spin-Hall effects
[10–14], Majorana fermions [15–17], and Weyl semimetals
[18–22]. Besides the topologically ordered phases with long-
range quantum entanglement, symmetry-protected topologi-
cal (SPT) phases whose edge states are only robust against lo-
cal perturbations have attracted much attention in recent years
[23–25]. However, the realization of SPT phases remains a
challenging task, despite many classes of SPT phases that
have been predicted in various theoretical proposals [26–30]
and few of them are realized in solid-state materials [4].

Meanwhile, the recent experimental breakthroughs of spin-
orbit (SO) coupling in ultracold atoms [31–34] have pro-
vided a new paradigm for exploring a variety of topological
states in a clean environment and controllable way [35–38].
In particular, the successful realization of Raman-assisted
tunneling in optical lattices [39,40] could realize the strong
synthetic magnetic fields and establish the tunable magnetic
flux lattices [41–47]. Up to now, the realized SO couplings
and the observed SPT phases are mainly focusing on the spin-
1/2 quantum gases [48–50]. Unlike the Rashba spin-vector-
momentum coupling, a variety of spin-tensor-momentum

*dengyg3@mail.sysu.edu.cn
†lichaoh2@mail.sysu.edu.cn

couplings (STMCs) could be constructed for high-spin
systems, which could provide exotic quantum phenomena
[51–53]. Moreover, due to their particle gain and loss, non-
Hermitian systems could host striking quantum phenomena
and applications, giving rise to the exceptional points [54–58],
parity-time (PT ) symmetry breaking transitions [59–63],
topological insulator lasers [64–66], and quantum brachis-
tochrone problem [67–71]. Remarkably, the bulk spectra in
the non-Hermitian systems qualitatively depend on the bound-
ary condition (non-Hermitian skin effect) [72–81], which is
beyond the paradigmatic bulk-edge correspondence in Her-
mitian systems [1–4]. It is of great interest to explore whether
new SPT phases can emerge via STMC in both Hermitian and
non-Hermitian systems of ultracold atoms. An affirmative an-
swer will significantly facilitate the experimental explorations
of exotic topological quantum matters in high-spin physics
[82–84].

In this work, we show how to realize STMC using Raman-
assisted staggered spin-flip hoppings in pseudospin-1 ultra-
cold atoms and then study its topological states. Due to the
interplay of synthetic magnetic flux and two-photon detun-
ing, the system exhibits a SPT phase which is beyond the
Altland-Zirnbauer (AZ) classification. This SPT phase satis-
fies a magnetic group symmetry (M) and supports two kinds
of edge states. Without loss of generality, we further study
the corresponding non-Hermitian models with in-plane (Bx)
and out-of-plane (Bz) imaginary magnetic fields, respectively.
Strikingly, the M symmetry can guarantee the bulk-edge
correspondence even in the presence of nonzero Bx field. Our
result is different from the non-Hermitian spin-1/2 models
[73–81], where the bulk-edge correspondence is broken when
the Bx field is applied. Furthermore, the non-Hermitian skin
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FIG. 1. (a) Level diagram and schematic for creating STMC
for ultracold atoms. (b) Proposed scheme for generating synthetic
magnetic-flux φ (−φ) per upper (lower) half plaquette via combining
spatially dependent complex hopping with Raman-assisted hopping.

effects in which the bulk eigenstates are localized near the
boundary are predicted ascribe to the M symmetry breaking
when the Bz field is applied at nonzero magnetic flux.

This paper is organized as follow. In Sec. II, we introduce
our model of the Raman-assisted STMC and derive the system
Hamiltonian. In Sec. III, we study the topological states and
analyze the property of edge states. In Sec. IV, we present the
bulk-edge correspondence in non-Hermitian models. Finally,
a brief summary is given in Sec. V.

II. MODEL AND HAMILTONIAN

We consider a quantum gas of noninteracting ultracold
atoms subjected to a bias magnetic field B along the quantiza-
tion z axis. The three atomic ground states form a pseudospin-
1 manifold and their corresponding linear (quadratic)
Zeeman shifts are h̄ωZ (h̄ωq). In Fig. 1(a), we illustrate the
atomic level structure and laser configuration. The atomic
transition |σ 〉 ↔ |eσ 〉 is coupled by a π -polarized standing-
wave laser with frequency ωL and Rabi frequency �s(y) =
�s cos(kLy), where kL is the wave vector and σ = {↑,↓, 0}.
To achieve Raman transitions, the atomic transition |0〉 ↔
|e↑〉 (|0〉 ↔ |e↓〉) is driven by σ -ploarized plane-wave lasers
with frequencies ωL + �ωL (ωL − �ω′

L) for matching the
Zeeman shifts and Raman selection rules. Here the Rabi
frequency for the two plane-wave lasers is given as �p(y) =
�pe−iκy with κ = kL cos ϑ . We should emphasize that the
off-resonant Raman processes are suppressed for sufficiently
large quadratic Zeeman shifts [31], where the linear Zeeman
shift is compensated by the frequency difference of the Raman
fields. For a large light-atom detuning, i.e., |�s,p/�| � 1
and � = ωL − ωa, one can adiabatically eliminate the ex-
cited states |eσ 〉. Therefore, the light-atom interaction re-
sults in a one-dimensional spin-independent optical lattice
Uol(y) = Us cos2(kLy)Î with Stark shift Us = −�2

s /� and

lattice constant d = π/kL. By applying an analogous gauge
transform [85],

{|↑〉 → eiκy/2|↑〉, |↓〉 → eiκy/2|↓〉, |0〉 → e−iκy/2|0〉},
the single-particle Hamiltonian reads

h0 = (p − A)2

2M
+ � cos(kLy)F̂x + δF̂z + Uol(x)Î, (1)

where M is the atomic mass, Î is the identity matrix, F̂x,y,z is
the spin-1 matrix, � = −√

2�s�p/� is the Raman coupling
strength, and δ = ωZ + 2�2

p/� − �ωL − ωq is the effective
two-photon detuning under the condition of �ω′

L = �ωL −
2(ωq − 2�2

p/�). In particular, A = −h̄κ[2F̂ 2
z − Î]/2 is the

vector potential, which denotes the STMC with the SO cou-
pling strength κ .

For a sufficiently strong lattice potential with blue detun-
ings (i.e., Us > 0), the tight-banding Hamiltonian with con-
sidering the lowest orbit and the nearest-neighbor hoppings
takes the form

H0 =
∑

σ=↑,↓

∑

n

[(−1)nty(â†
n,σ ân+1,0 − â†

n,σ ân−1,0)

− t (â†
n,σ ân+1,σ e−iφ/2 + â†

n,0ân+1,0eiφ/2) + H.c.]

+ δ
∑

n

(â†
n,↑ân,↑ − â†

n,↓ân,↓), (2)

where ân,σ=↑,↓,0 is the atomic annihilation operator for the
nth site, t is the nearest-neighbor spin-independent hopping,
ty is the Raman-assisted nearest-neighbor spin-flip hopping,
and φ = κd is the Peierls phase. With our laser configuration
shown in Fig. 1(a), the synthetic magnetic flux (−1 < φ/π <

1) can be easily tuned by changing the angle ϑ with respect
to the y axis. In addition, the on-site spin-flip hopping is
zero with netting the nearest-neighbor spin-flip hopping and
corresponding the atoms symmetrically localized at the nodes
for the blue lattice potential [85].

To gain more insights into the magnetic flux, we introduce
the gauge transformation â†

n,0 −→ (−1)n+1â†
n,0 to eliminate

the staggering factor in the spin-flip hopping. Then the lattice
Hamiltonian becomes

H0 =
∑

σ=↑,↓

∑

n

[ty(â†
n,σ ân+1,0 − â†

n,σ ân−1,0)

− t (â†
n,σ ân+1,σ e−iφ/2 − â†

n,0ân+1,0eiφ/2) + H.c.]

+ δ
∑

n

(â†
n,↑ân,↑ − â†

n,↓ân,↓), (3)

whose corresponding schematic is shown in Fig. 1(b). In
contrast to nonzero flux for the spin-half model [85], the net
synthetic magnetic flux per plaquette is zero due to the STMC
for our spin-1 system.

Under the periodic boundary condition (PBC) satisfying
translational invariance, the Hamiltonian in the momentum
space is given as

h0(k) = ε(k)Î + δF̂z + d1(k)Q̂yz + d2(k)F̂ 2
z , (4)

where ε(k) = 2t cos(kd + φ/2), d1(k) = −2
√

2ty sin(kd ),
d2(k) = −4t cos(kd ) cos(φ/2), F̂ 2

z is the spin-quadrupolar
operator, and Q̂yz is the generator of SU(3) Lie algebra [86].
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Interestingly, the last two terms of Q̂yz and F̂ 2
z in Eq. (4)

represent two different types of STMC, which play essential
roles for forming topological states.

To explore the symmetry classes, we introduce three sym-
metry operators for spin-1 systems: the time reversal symme-
try T = e−iπ F̂y K , the particle-hole symmetry C = i e−iπ F̂x K ,
and the chiral symmetry S = C ⊗ T = i e−iπ F̂z (defined as the
product of T and C), where K is a complex conjugate oper-
ator. Explicitly, the gauge-potential-induced dispersion ε(k)
simultaneously breaks T , C, and S symmetries for nonzero
magnetic flux. Due to the STMC, the term of d1(k)Q̂yz breaks
both T and C symmetries, while the term of d2(k)F̂ 2

z breaks
both C and S symmetries. Therefore, the Hamiltonian (4)
is beyond the conventional AZ classification for the one-
dimensional (1D) system in the absence of the particle-hold
or chiral symmetry protection [87]. However, we find that
the Hamiltonian h0(k) satisfies a magnetic group symmetry
Mh0(k)M−1 = h0(−k) with M = e−iπ F̂zK ⊗ Ry, which is
a combination of T and the mirror symmetry My = e−iπ F̂x Ry

with Ry representing the spatial reflection along the y axis.
In addition, the introduced magnetic group symmetry satisfies
[M, h0(k)] = 0 and M = M−1 so that it brings a SPT phase
hosting a topological nontrivial phase characterized by the 1D
Z2 invariant [48,88].

III. BAND TOPOLOGY AND EDGE STATES

To further characterize the SPT phase, we calculate the
energy spectrum in k space via h0(k)|μα (k)〉 = Eα (k)|μα (k)〉,
where Eα (k) [|μα (k)〉] denotes the eigenenergies (eigenstates)
with α = {−, 0,+} indexing the {lowest, middle, highest}-
helicity branches, respectively. Due to the Z2 invariant, the
system topology can be described by the Zak phase ϕZak =∫ π/d
−π/d〈μ−(k)|∂k|μ−(k)〉dk for the lowest branch. The asso-

ciated two distinct phases are characterized by the gauge-
dependent Zak phase with ϕZak = 0 or π representing the
topological trivial (or nontrivial) state. We first ignore the
gauge potential ε(k) which does not affect the topological
invariant of the helicity branches and the topological phase
transition of the system. As a result, the Hamiltonian with
satisfying the magnetic group symmetry M will ensure an
inversion symmetry: Ph(k)P = h(−k), where P = e−iπ F̂z is
the inversion operator. The Bloch states at the two higher
symmetric momenta {k = 0, k = π/d} are eigenstates of
P: P|μ−(k = 0)〉 = P1|μ−(k = 0)〉 and P|μ−k = π/d )〉 =
P2|μ−(k = π/d )〉. Thus the winding number for the low-
est helicity branch can be further experimentally extracted
by measuring the Z2 topological invariant ν = −Im[ln(P1 ∗
P2)]/π [89], which is equivalent to the Zak phase through ν =
ϕZak/π with ν = 1 for topological nontrivial states and ν = 0
for trivial states. As to the experimental measurement, this
property significantly improves the accuracy and accessibility
of measurement of the topological invariant in experiment
[48]. In addition, the spin texture for the higher symmetric
momenta of the system can be extracted by the spin-resolved
time-of-flight imaging [90].

Figure 2(a) shows the phase diagram in the (φ, δ)
plane, where ν = 1 (0) correspond to topological nontrivial
(trivial) phases for the lowest helicity branch. The analytic ty-
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FIG. 2. (a) Topological phase of Hamiltonian (4) on the φ-δ
plane. (b) The δ-dependence energy spectra under OBC. Panels
(c) and (e) show the typical Bloch spectra for δ/t = 0 and δ/t = 2;
the corresponding energy spectra under OBC are shown in (d) and
(f). The red dots in (b), (d), and (f) denote the edge modes. The other
parameters are chosen as φ/π = 0.1 and ty/t = 1.

independent phase boundary is given by δ/t = ±4 cos(φ/2).
As expected, the topological nontrivial phase ν = 1 exhibits
topologically protected edge states due to the bulk-edge cor-
respondence by imposing a hard-wall confinement along the
y axis; see Fig. 2(b). We verify that the highest and lowest
helicity branches possess identical topological invariant ν,
while the middle helicity branch is always topologically trivial
with ν = 0.

Interestingly, the edge states under open boundary condi-
tion (OBC) depend on the strength of δ. In the absence of
δ, the system supports a dark state: |μ0〉 = [|↑〉− |↓〉]/√2,
in which the spin-0 component is decoupled from the spin-
↑ and ↓ components and the band spectra is gapless with
touching points at higher symmetric momenta. Figure 2(d)
displays the twofold degenerate zero-energy edge modes for
δ = 0. To understand this, we analyze the symmetries of
Hamiltonian (3). In addition to the M symmetry, we find
that the Hamiltonian (3) satisfies T H0T −1 = −H0, where T
is the gauge transformation operator â†

n,σ −→ (−1)n+1â†
n,σ .

According to the definition, the two edge states |ψL〉 and |ψR〉
could transform into each other under the magnetic group
symmetry: M|ψL〉 = |ψR〉 and M|ψR〉 = |ψL〉, which guar-
antees the twofold degeneracy. Moreover, the anticommuta-
tion relation between H0 and T implies that the two edge states
have opposite energies. Combining M and T symmetries, the
two zero-energy edge modes at left (|ψL〉) and right (|ψR〉)
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are consistent with the numerical results shown in Fig. 2(d).
Therefore, the two zero-energy edge states (|ψL〉, |ψR〉) are
protected by both the M and T symmetries. Remarkably, the
T symmetry forces the left edge state |ψL〉 only occupying the
odd lattice site.

For nonzero values of δ, there appear two pairs of edge
states with nonzero opposite energies for a topological non-
trivial phase [Fig. 2(g)], which can also be well understood
by analyzing the system symmetry. In contrast, to preserve T
symmetry at δ = 0, the Hamiltonian (3) breaks T symmetry
when δ = 0. However, the M symmetry ensures each pair of
degenerate edge modes exhibiting nonzero energies, whereas
the δ term fails to split out the degeneracy of each pair of edge
modes. Meanwhile, the system hosts a different gauge trans-
formation symmetry T ′H0T ′−1 = −H0 with T ′ = e−iπ F̂x ⊗ T .
As a result, the commutation relation [M, H0] = 0 and the
anticommutation relation {T ′, H0} = 0 support two pairs of
edge states with opposite nonzero energies for topological
nontrivial phases at nonzero δ, leading to the four edge states
as shown in Fig. 2(f). Moreover, we find that these edge modes
may occupy both even and odd lattice sites due to the broken
T symmetry.

IV. BULK-EDGE CORRESPONDENCE

Now we turn to study the bulk-edge correspondence for the
STMC spin-1 system including dissipation h(k) = h0(k) +
iBxF̂x + iBzF̂z. Here Bx (Bz) is the non-Hermitian parameters
of in-plane (out-of-plane) imaginary magnetic fields [91]. As
to the experimental feasibility, the imaginary magnetic field
Bx and Bz can be realized by using a hyperfine resolved two-
photon Raman process [77,92]. As a result, an effective non-
Hermitian coupling term emerges by adiabatically eliminating
the excited state.

To gain more insight, we first consider the atoms subjected
to a Bx field. The non-Hermitian term of iBxF̂x preserves the
M symmetry, which ensures that the topology of the non-
Hermitian system remains characterized by the Z2 invariant.
Figure 3(a) shows the phase diagram in the (δ,Bx ) plane
with φ/π = 0.1. When the bulk gap closes at the exceptional
points, i.e., E−(k) = E0(k), there exists two phase transition
boundaries by tuning δ. The red solid line denotes the phase
transition between the gapped and gapless topological non-
trivial phases, while the topological trivial (ν = 0) to nontriv-
ial (ν = 1) phase transition is characterized by the blue dashed
line. As can be seen, the region of topological nontrivial phase
is roughly linear growing with Bx. Moreover, we find that the
system exhibits a gapless phase in the topological nontrivial
region, where the real part of the complex band gap closes but
the imaginary part remains open. The gapless phase region is
largely enhanced at larger Bx.

Figure 3(b) plots the real part of E as a function of δ

under PBC (gray lines), which is consistent with the bulk
spectra under OBC (blue dots) excluding the expected two
pairs edge states (red dots) for topological nontrivial phases.
The bulk-edge correspondence for our non-Hermitian spin-1
model is protected by the M symmetry, which guarantees
the real Bloch energy spectra for the gapped phases with
E (k) = E∗(k) [Fig. 3(c)]. Figure 3(d) shows the density dis-
tribution of the bulk state along the lattice sites. As can be

FIG. 3. (a) Phase diagram of non-Hermitian system in the (δ,Bx )
plane. (b) The real part of spectra as functions of δ with Bx/t =
0.2. The bulk spectra under PBC (gray lines) are the same as the
ones based on OBC (blue lines), which demonstrates the bulk-edge
correspondence. (c) The typical spectra under OBC for δ/t = 2. The
red dots in (b) and (c) represent the edge states. (d) The typical
density distribution of bulk state at δ/t = 2. The other parameters
are φ/π = 0.1 and ty/t = 1.

seen, the random bulk eigenstate for the gapped phase under
OBC is a Bloch state due to the M protected bulk-edge
correspondence. To understand this, we assume an ansatz in
which the bulk eigenstate with eigenenergy E (k) takes the
following form [76]: |ψ〉 = |μ(k)〉⊗∑

n(r eikd )n|n〉, where r
is real and positive decay index and |n〉 = [ân,↑, ân,0, ân,↓]T

is the atomic state for the nth lattice site. Then we have
M|ψ〉 = [M|μ(k)〉] ⊗∑

n r−neinkd |n〉 corresponding to the
eigenenergy E∗(k). By utilizing the commutation rela-
tion [M, h(k)] = 0 and |μ(k)〉 = M|μ(k)〉, which yields
the decay index r = 1 (extended state). Notably, the non-
Hermiticity with preserving bulk-edge correspondence is very
different from the ones in non-Hermitian parity-time symmet-
ric systems [59–63].

To further explore the bulk-edge correspondence in our
high-spin system, we assure the system is illuminated by a
Bz field. Different from the iBxF̂x term, the non-Hermitian
term of iBzF̂z breaks the M symmetry, which indicates that
the complex band spectra could exist even for the gapped
phases. Interestingly, we find that the real part of the Bloch
band gap closes and reopens at δ/t = ±4 cos(φ/2), where the
Bz independent phase boundary is the same as the Hermitian
Hamiltonian (4). And the imaginary part of the Bloch band
gap is equal to the value of Bz at the topological phase
transition.

Figure 4(a) shows the real part of the energy spectra of
the non-Hermitian system for φ/π = 0.3. Here, the gray lines
correspond to the PBC, and the black and red dots respectively
correspond to bulk and edge states under OBC. It’s clear that
the Bloch band spectra is quantitatively different from the
open-boundary spectra. The significant divergence is ascribed
to the broken bulk-edge correspondence when Bz = 0 and
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FIG. 4. (a) δ dependence of the real part of Bloch spectra. The
gray lines denote the periodic Bloch spectra under PBC, while the
blue lines (red dots) represent the bulk (edge) spectra under OBC.
(b) The typical density distribution of bulk state for the topological
nontrivial phase with δ/t = 2, which indicates the non-Hermitian
skin effect with broken bulk-edge correspondence. The other param-
eters are φ/π = 0.3, ty/t = 1, and Bz/t = 1.5.

φ = 0. In particular, the non-Hermitian skin effect [76] is
observed, as shown in Fig. 4(b), where the bulk eigenstate
is localized near the boundary instead of the extended Bloch
state. However, we verify that the non-Hermitian system
in the presence of nonzero Bz can also host the bulk-edge
correspondence when φ = 0. In this case, the bulk-edge cor-
respondence is protected by the inversion symmetry (P) even
in the absence of M symmetry.

V. CONCLUSION

Based upon the currently availably techniques for ultra-
cold atoms, we propose the STMC spin-1 lattice model with
tunable synthetic magnetic flux lattice, which possesses the
SPT phase under the M symmetry. Beyond the conventional
AZ classification corresponding to the chiral symmetry pro-
tection, we explore the band topology and find two kinds
of edge states under different symmetries. Subsequently, we
have investigated the bulk-edge correspondence in a non-
Hermitian spin-1 model with including the imaginary Zeeman
field. In particular, under unbroken (broken) M symmetry,
there appears preserved (destroyed) bulk-edge correspon-
dence without (with) non-Hermitian skin effect. Our study can
be extended to study other spin-tensor-momentum coupled
exotic topological quantum matters [51–53] and higher-order
topological phase transitions [93–95].
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[37] N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman,
Light-induced gauge fields for ultracold atoms, Rep. Prog.
Phys. 77, 126401 (2014).

[38] N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological
bands for ultracold atoms, Rev. Mod. Phys. 91, 015005 (2019).

[39] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky,
Y.-A. Chen, and I. Bloch, Experimental Realization of Strong
Effective Magnetic Fields in an Optical Lattice, Phys. Rev. Lett.
107, 255301 (2011).

[40] C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle,
Observation of Bose-Einstein condensation in a strong synthetic
magnetic field, Nat. Phys. 11, 859 (2015).

[41] N. Goldman, A. Kubasiak, A. Bermudez, P. Gaspard, M.
Lewenstein, and M. A. Martin-Delgado, Non-Abelian Optical
Lattices: Anomalous Quantum Hall Effect and Dirac Fermions,
Phys. Rev. Lett. 103, 035301 (2009).

[42] A. Bermudez, L. Mazza, M. Rizzi, N. Goldman, M. Lewenstein,
and M. A. Martin-Delgado, Wilson Fermions and Axion Elec-
trodynamics in Optical Lattices, Phys. Rev. Lett. 105, 190404
(2010).

[43] N. Goldman, I. Satija, P. Nikolic, A. Bermudez, M. A. Martin-
Delgado, M. Lewenstein, and I. B. Spielman, Realistic Time-
Reversal Invariant Topological Insulators with Neutral Atoms,
Phys. Rev. Lett. 105, 255302 (2010).

[44] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Realization of the Hofstadter Hamiltonian with
Ultracold Atoms in Optical Lattices, Phys. Rev. Lett. 111,
185301 (2013).

[45] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton,
and W. Ketterle, Realizing the Harper Hamiltonian with Laser-
Assisted Tunneling in Optical Lattices, Phys. Rev. Lett. 111,
185302 (2013).

[46] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Experimental realization of the
topological Haldane model with ultracold fermions, Nature
(London) 515, 237 (2014).

[47] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.
Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N.
Goldman, Measuring the Chern number of Hofstadter bands
with ultracold bosonic atoms, Nat. Phys. 11, 162 (2014).

[48] B. Song, L. Zhang, C. He, T. F. J. Poon, E. Hajiyev, S. Zhang,
X.-J. Liu, and G.-B. Jo, Observation of symmetry-protected
topological band with ultracold fermions, Sci. Adv. 4, eaao4748
(2018).

[49] B. Song, C. He, S. Niu, L. Zhang, Z. Ren, X.-J. Liu, and G.-B.
Jo, Observation of nodal-line semimetal with ultracold fermions
in an optical lattice, Nat. Phys. 15, 911 (2019).

[50] S. de Léséleuc, V. Lienhard, P. Scholl, D. Barredo, S. Weber,
N. Lang, H. P. Büchler, T. Lahaye, and A. Browaeys, Observa-
tion of a symmetry-protected topological phase of interacting
bosons with Rydberg atoms, Science 365, 775 (2019).

[51] X.-W. Luo, K. Sun, and C. Zhang, Spin-Tensor–Momentum-
Coupled Bose-Einstein Condensates, Phys. Rev. Lett. 119,
193001 (2017).

[52] H. Hu, J. Hou, F. Zhang, and C. Zhang, Topological Triply De-
generate Points Induced by Spin-Tensor-Momentum Couplings,
Phys. Rev. Lett. 120, 240401 (2018).

[53] Y. Deng, L. You, and S. Yi, Spin-orbit-coupled Bose-Einstein
condensates of rotating polar molecules, Phys. Rev. A 97,
053609 (2018).

[54] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-
L. Chua, J. D. Joannopoulos, and M. Soljačić, Spawning rings
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