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Self-induced splitting of x-ray emission lines
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We present a theoretical approach for describing collective x-ray emission processes in extended multilevel
targets, based on a combination of propagation equations for the quantum correlation functions and the
semiclassical Maxwell-Bloch equations. Such a description overcomes the key deficiencies of the two constituent
sets of equations, which have until now been independently used to describe these phenomena. The model
developed is employed to study the spectral properties of superfluorescence of Kα emission in zinc at ∼8630 eV
after inner-shell photoionization with intense attosecond free-electron laser pulses. At high pump intensities, the
numerical simulations predict a splitting of the Kα1 emission line due to a self-induced Autler-Townes effect,
which could readily be observed with standard high-resolution x-ray spectrometers. As short duration of the
pump pulse is one of the crucial parameters for the manifestation of this phenomenon in the hard-x-ray regime,
experimental verification could be possible due to the most recent developments of free-electron laser sources.
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I. INTRODUCTION

Amplified spontaneous emission (ASE) [1,2] and superflu-
orescence (SF) [3] are two examples of nonlinear phenom-
ena in light-matter interaction, which have been extensively
studied in the optical regime [4–7]. In such setups, the target
is typically excited by a short intense light pulse creating an
inverted population, and fluorescence to a lower-lying state is
observed. The characteristic features of the two phenomena
allow for a clear distinction in experimental spectra. In ASE,
the number of emitted photons increases exponentially with
excited-state density and the duration of the emitted pulse is
increased. In contrast, SF exhibits a linear dependence of the
number of emitted photons and the emitted pulse is delayed in
time with respect to pumping and its duration is decreased [8].
In the optical regime, it is thus possible to observe these phe-
nomena by either detecting the total photon yield or recording
the time dependence of the emitted radiation intensity as a
function of pump intensity [9,10]. However, the transition
between the two regimes is not sharp [11]; increasing the
excited-state population in the target leads to the saturation
of amplified spontaneous emission, where the emitted field
exhibits the characteristics of SF. Due to this, both collective
emission processes are often called superfluorescence [12].
This is not to be confused with the term superradiance, as
coined by Dicke [13] to describe the radiation emitted from
a system of atoms prepared in a superposition of states by a
coherent field.

Experimental observation of these phenomena in the
x-ray domain has only recently become possible with the
development of free-electron lasers (FELs) [14–16]. The high
intensity and short duration of pulses produced by these light
sources enables the creation of a population inversion, for
example, by inner- or valence-shell photoionization, leading
to fluorescence in the x-ray or XUV spectral regions, respec-
tively. In this way, ASE has been observed in neon gas [17]

and copper foil [18]. In both cases, the amplification of Kα

emission was observed after ionization of a 1s electron by
FEL pulses, and the characteristic exponential dependence
of the number of emitted photons on the FEL intensity was
reported.

Detecting the time dependence of the emitted radiation
intensity is not feasible in the x-ray domain because the
duration of the emitted pulses is on the order of the excited-
state lifetime, which for core-hole states is well below 1 ps
[19]. The characteristic features of collective emission are
however also manifested in the spectral domain. Spectral fea-
tures of x-ray superfluorescence have recently been observed
in manganese complexes [20] and xenon [21]. In both cases, a
broadening of the spectral lines was observed when reaching
saturation. The modification of the emission line shape was
also observed in several theoretical studies, which additionally
predicted the emission line to split into two (or more) peaks
when the field intensities become high enough [22,23]. In the
UV and x-ray domain, the splitting produced by the Autler-
Townes effect and the subsequent induced transparency has
been observed by coupling short-lived states with an intense
optical laser [24,25]. However, observation of the self-induced
Autler-Townes (or AC Stark) splitting of the emission line as
predicted for superfluorescence in the x-ray domain is lacking.

Even though theoretical models are capable of reproducing
the characteristic features of collective emission processes,
quantitative agreement with the experimental results is usually
obtained by varying the target parameters, such as target
density and length. Since superfluorescence develops from
spontaneous emission, a successful model must describe both
the quantum field fluctuations in the absence of external
electric fields and the interaction of strong electric fields with
matter and their propagation through an excited medium in
the nonlinear regime [3]. In the past, several different attempts
have been made to simulate the evolution of superfluorescence
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FIG. 1. Schematic representation of the processes after photoion-
ization of a 1s electron by a short FEL pulse. The excited state |1s−1〉
can decay radiatively to states |2p−1

3/2〉 and |2p−1
1/2〉. The three ionic

states can further be photoionized or decay nonradiatively to Zn2+.

in different setups, all relying on specific approximations. The
most widely used model is based on Maxwell-Bloch equations
with spontaneous emission described by a stochastic noise
term simulating fluctuations of quantum polarization [26–28].
Such a noise model however does not generate the expected
exponentially decreasing emission intensity, but instead pro-
duces a temporal profile of the emitted field with a delayed
peak with respect to pumping [8], making it inadequate
when dealing with multilevel systems and competing decay
channels. Recently, a method based on quantum correlation
functions has been demonstrated to properly describe both
spontaneous and stimulated emission in a two-level system
[29]. The model encompasses the transition from spontaneous
emission through amplification to superfluorescence and in-
corporates incoherent processes which are significant in the
x-ray regime.

In this paper we extend the approach to modeling collective
x-ray emission processes in three-level extended targets, using
a combination of quantum correlation functions [29] and
Maxwell-Bloch equations [8]. As we will demonstrate, due
to the approximations that have to be made to obtain a closed
system of propagation equations for the quantum correlation
functions, this model is in itself unsuitable to treat nonlinear
phenomena in multilevel systems. However, coupling it to
the semiclassical Maxwell-Bloch equations enables adequate
modeling of both spontaneous emission and effects due to
strong electric fields.

The presented model is employed to study the spectral
properties of superfluorescence of the Kα1,2 emission in zinc
at ∼8630 eV [30]. The target is photoionized by high-intensity
9750-eV FEL pulses with a duration of a few hundred at-
toseconds. This has recently become feasible with the demon-
stration of single-spike self-amplified spontaneous emission
(SASE) FEL pulses in both the hard- and soft-x-ray regions
[31–33]. In this way, a high density of 1s−1 excited states is
created (Fig. 1). This state can decay via the Auger process,
or radiatively to states 2p−1

1/2 and 2p−1
3/2. Other incoherent

processes, such as pumping to the lower states and additional
photoionization by both the pump and emitted fields, are also
taken into account. This target was chosen because of the large
energy separation between the two Kα lines (23 eV) with

respect to their linewidths (∼1 eV), enabling the treatment of
the two emission lines by two distinct field modes. Moreover,
the lifetime of state 1s−1 of ∼0.5 fs is longer than the shortest
achievable duration of the FEL pulses, which as we will show
is required for a clear manifestation of superfluorescence, and
the closed d shell in zinc simplifies the treatment of the atomic
properties of the target.

II. THEORETICAL DESCRIPTION

We consider an ensemble of atoms, each of which can be
represented as a three-level system of Zn+. This is feasible
since we are studying the amplification of two electromag-
netic fields resonant with specific radiative transitions pro-
ceeding from a common upper level. Each of the levels is
degenerate; however, the analysis performed in Appendix A
shows that both the magnetic substructure of the ionic levels
and polarization properties of the emitted light do not need
to be considered explicitly. Since each of the two excited
ionic states is initially equally populated and contributes an
equal number of photons to each of the two polarization
modes in the forward direction, the Kα1 and Kα2 lines can
be treated as resulting from the transition between a sin-
gle initial state and a final state, the populations of which
should be considered as the sum of the populations of the
corresponding physical states over the magnetic quantum
numbers.

The ionic states are populated as a result of incoherent
pumping by a short intense FEL pulse (Fig. 1), which can
also lead to valence-shell excitations and shake processes.
These most likely result in the production of a 3d spectator
hole that can subsequently decay by emission of photons
with energies in the range of Kα emission. For zinc the
relative contribution of these processes to the Kα emission
line intensity is around 10% [34]. According to calculations
with the GRASP code [35], the most probable alternative
radiative decay process of the 1s hole in Zn is Kβ emission
involving an electron jump from the 3p orbital that has a
12% probability to occur. However, both valence excitation
and these additional dipole emission channels cannot be
incorporated into the presented model in a straightforward
way and are thus neglected, presenting a limitation of this
theoretical approach. Higher allowed multipole transitions can
be neglected, since the most probable of these is the magnetic
dipole transition |1s−1

1/2〉 → |2s−1
1/2〉, which in Zn has a proba-

bility that is six orders of magnitude lower than that for Kα

emission.
To simplify the initial treatment of the problem, we assume

that all atoms at position z in the target are in the excited
state |1〉 at time t = z/c, which corresponds to instantaneous
swept-gain pumping of the system, and no incoherent pro-
cesses are present. These can straightforwardly be included at
a later stage. The excited medium is assumed to have the shape
of an elongated cylinder, which is the case typically realized
in experiments [3]. The excited state radiatively decays to
lower-lying states |0〉 and |2〉. The effective Hamiltonian
operator which describes the atomic system interacting with
quantized electric field modes in the dipole and rotating-wave
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approximation is written as [36]

H =
∑

α

E0σ̂
(α)
00 +

∑
α

E1σ̂
(α)
11 +

∑
α

E2σ̂
(α)
22

+
∑
k,s

h̄ωkâ†
k,sâk,s +

∑
q,s

h̄ωqb̂†
q,sb̂q,s

+
∑
α,k,s

h̄[gk,se
ik·rα σ̂

(α)
10 âk,s + g∗

k,se
−ik·rα â†

k,sσ̂
(α)
01 ]

+
∑
α,q,s

h̄[dq,se
iq·rα σ̂

(α)
12 b̂q,s + d∗

q,se
−iq·rα b̂†

q,sσ̂
(α)
21 ]. (1)

Here Ei are the energies of the three states and σ̂i j = |i〉〈 j|,
i, j = 0, 1, 2, the transition operators between the states. The
sum

∑
α runs over the atoms in the target. The creation and

annihilation operators âk,s and â†
k,s (b̂q,s and b̂†

q,s) correspond
to an electromagnetic field mode with wave vector k (q),
frequency ωk (ωq), and polarization s. The positive-frequency
parts of the quantized electric fields are defined as

Ê (α)
0,+(t ) =

∑
k,s

√
h̄ωk

2ε0V
ek,sâk,s(t )eik·rα , (2a)

Ê (α)
2,+(t ) =

∑
q,s

√
h̄ωq

2ε0V
eq,sb̂q,s(t )eiq·rα , (2b)

where ek,s (eq,s) is the polarization vector and V the quantiza-
tion volume. The negative-frequency parts of the field opera-

tors, Ê (α)
0,−(t ) and Ê (α)

2,−(t ), are defined as Hermitian conjugates
of expressions (2). The vector rα denotes the position of the
atom α, which is coupled to the electromagnetic field modes
by the electric dipole interaction described by the coupling

gk,s = 1

h̄

√
h̄ωk

2ε0V
μ10 · ek,s, μ10 = 〈1|e0r̂|0〉, (3a)

dq,s = 1

h̄

√
h̄ωq

2ε0V
μ12 · eq,s, μ12 = 〈1|e0r̂|2〉. (3b)

Here r̂ = ∑
i r̂iα , where r̂iα is the position of an electron

relative to the nucleus of the atom α and the sum
∑

i runs
over all the electrons in the atom. The dipole approximation is
valid for core-shell excitations in the x-ray domain [37], since
the core wave function is exponentially decreasing outside the
core radius, which is much smaller than the wavelength of the
emitted field.

Following the procedure described in Ref. [29] and detailed
in Appendix B, we arrive at the propagation equation for the

atomic correlation function between states |0〉 and |1〉,
∂

∂τ
〈σ̂ (α)

10 (τ )σ̂ (β )
01 (τ )〉

= −(	sp
0 + 	

sp
2 )〈σ̂ (α)

10 (τ )σ̂ (β )
01 (τ )〉

+ 3
o

16π
	

sp
0

{ ∑
γ<α

〈σ̂ (γ )
10 (τ )[σ̂ (α)

11 (τ ) − σ̂
(α)
00 (τ )]σ̂ (β )

01 (τ )〉

+
∑
γ<β

〈σ̂ (α)
10 (τ )[σ̂ (β )

11 (τ ) − σ̂
(β )
00 (τ )]σ̂ (γ )

01 (τ )〉
}

− 3
o

16π
	

sp
2

×
{ ∑

γ<β

〈σ̂ (α)
10 (τ )σ̂ (β )

02 (τ )σ̂ (γ )
21 (τ )〉

+
∑
γ<α

〈σ̂ (γ )
12 (τ )σ̂ (α)

20 (τ )σ̂ (β )
01 (τ )〉

}
+ 〈F̂ (α)

10 (τ )F̂ (β )
01 (τ )〉,

(4)

and an analogous expression for 〈σ̂ (α)
12 (τ )σ̂ (β )

21 (τ )〉. Here 	
sp
0

and 	
sp
2 are the spontaneous decay rates from state |1〉 to states

|0〉 and |2〉, respectively, 
o = π (r/l )2 is the solid angle into
which the photons are emitted and is defined by the radius
r and length l of the target, τ is the retarded time defined
for each atom α as τ = t − zα

c , and F̂ (α)
i j (t ) are the stochastic

Langevin terms due to the interaction with the vacuum field.
The right-hand side of Eq. (4) contains expectation values of
triple operator products, for which propagation equations can
be derived in a similar way. These are coupled to expectation
values of quartic operators and so on. In order to obtain a
closed set of equations, an approximation has to be made at
this point. The triple products in the second term of Eq. (4)
can be factorized as [29]

〈σ̂ (γ )
10 (τ )[σ̂ (α)

11 (τ ) − σ̂
(α)
00 (τ )]σ̂ (β )

01 (τ )〉
≈ [〈σ̂ (α)

11 (τ )〉 − 〈σ̂ (α)
00 (τ )〉]〈σ̂ (γ )

10 (τ )σ̂ (β )
01 (τ )〉. (5)

However, the same approximation cannot be made to resolve
the third term on the right-hand side of Eq. (4), as the triple
products there are composed of all nondiagonal operators
σ̂i j , i �= j. These products include the operators σ̂02 and σ̂20

coupling the two lower states of the three-level system, which
are not directly dipole coupled by an electric field mode.
These contributions can be neglected when neither of the
electric fields is too strong (see Appendix B). Applying these
approximations and following the remainder of the derivation
in Ref. [29], as well as including the incoherent processes,
leads to the closed set of equations

∂

∂τ
ρ11(z, τ ) = r1(z, τ ) − [	sp

0 + 	
sp
2 + 	1(z, τ )]ρ11(z, τ ) − 3
o

8π
	

sp
0 n

∫ z

0
dz′A0(z, z′, τ )S0(z, z′, τ )

− 3
o

8π
	

sp
2 n

∫ z

0
dz′A2(z, z′, τ )S2(z, z′, τ ), (6a)

∂

∂τ
ρii(z, τ ) = ri(z, τ ) − 	i(z, τ )ρii(z, τ ) + 	

sp
i ρ11(z, τ ) + 3
o

8π
	

sp
i n

∫ z

0
dz′Ai(z, z′, τ )Si(z, z′, τ ), (6b)
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∂

∂τ
Si(z1, z2, τ ) = −1

2
[	i1(z1, τ ) + 	i1(z2, τ )]Si(z1, z2, τ )

+ 3
o

16π
	

sp
i n

{
[ρ11(z1, τ ) − ρii(z1, τ )]

∫ z1

0
dz′

1Ai(z1, z′
1, τ )Si(z

′
1, z2, τ )

+ [ρ11(z2, τ ) − ρii(z2, τ )]
∫ z2

0
dz′

2Ai(z2, z′
2, τ )Si(z1, z′

2, τ )

}

+ 3
o

16π
	

sp
i {[ρ11(z1, τ ) − ρii(z1, τ )]ρ11(z2, τ )Ai(z1, z2, τ )�(z1 − z2)

+ [ρ11(z2, τ ) − ρii(z2, τ )]ρ11(z1, τ )Ai(z2, z1, τ )�(z2 − z1)}, (6c)

∂

∂z
Gi(z, τ1, τ2) = −1

2
[κi(z, τ1) + κi(z, τ2)]Gi(z, τ1, τ2) + 3
o

16π
	

sp
i n

{∫ τ1

0
dτ ′

1Di1(z, τ1, τ
′
1)[ρ11(z, τ ′

1) − ρii(z, τ
′
1)]

× Gi(z, τ
′
1, τ2) +

∫ τ2

0
dτ ′

2Di1(z, τ2, τ
′
2)[ρ11(z, τ ′

2) − ρii(z, τ
′
2)]Gi(z, τ1, τ

′
2)

}

+ 3h̄
o2�3
1i

162π3ε0c3
	

sp
i n

{
Di1(z, τ1, 0)Di1(z, τ2, 0)ρ11(z, 0)

+
∫ min (τ1,τ2 )

0
dτ ′Di1(z, τ1, τ

′)Di1(z, τ2, τ
′)[r1(z, τ ′) + 	i(z, τ

′)ρ11(z, τ ′)]
}
, (6d)

where i = 0, 2, �1i is the frequency of the transition between
states |1〉 and |i〉, n = Nπr2 is the linear atom density (N is the
number of atoms per unit volume), and �(z) is the Heaviside
function. Here we introduced the continuous variables for the
state populations, correlation functions of atomic coherences,
and field correlation functions as follows:

ρii(z, τ ) = 1

n
z

∑
α:z<zα<z+
z

〈σ̂ (α)
ii (τ )〉, (7a)

Si(z1, z2, τ ) = 1

(n
z)2

∑
α:z1<zα<z1+
z
β:z2<zβ <z2+
z

〈σ̂ (α)
1i (τ )σ̂ (β )

i1 (τ )〉,

(7b)

Gi(z, τ1, τ2) = 1

n
z

∑
α:z<zα<z+
z

〈Ê (α)
i,− (τ1)Ê (α)

i,+ (τ2)〉ei�1i (τ1−τ2 ).

(7c)

The effect of the incoherent processes is included in rates
ri(z, t ) describing incoherent pumping to the three states and
their additional decay rates 	1 and 	i, leading to

	i1(z, τ ) = 	
sp
0 + 	

sp
2 + 	1(z, τ ) + 	i(z, τ ). (8)

We have not included any effects of decoherence or nonradia-
tive decays between the excited and lower states, as they will
not be relevant for the description of the problem in Fig. 1,
but these can be added in an analogous way. The inclusion
of incoherent processes introduces additional absorption and
decoherence factors defined as

Ai(z2, z1, τ ) = exp

(
−1

2

∫ z2

z1

dz′κi(z
′, τ )

)
, (9a)

Di1(z, τ2, τ1) = exp

(
−1

2

∫ τ2

τ1

dτ ′	i1(z, τ ′)
)

, (9b)

where κi is the absorption coefficient for the field mode Ei.
The intensity of the emitted fields can be defined through the
field correlation function as Ii(z, τ ) = Gi(z, τ, τ ) or expressed
in terms of the atomic variables as

Ii(z, t ) = 3h̄
o2�3
1in

162π3ε0c3
	

sp
i

{
n

∫ z

0
dz′

1

∫ z

0
dz′

2Ai(z, z′
1, τ )

× Ai(z, z′
2, τ )Si(z

′
1, z′

2, τ )

+
∫ z

0
dz′A2

i (z, z′, τ )ρ11(z′, τ )

}
. (10)

In the specific case shown in Fig. 1, pumping to the three
ionic states starts from the common ground atomic state by
photoionization with an external (FEL) pulse. The evolution
of the ground-state population ρgg and intensity of the pump
FEL field IP can thus be expressed as

∂

∂τ
ρgg(z, τ ) = −

[ ∑
i=0,1,2

r̃i(z, τ ) + r̃x(z, τ )

]
ρgg(z, τ ),

(11a)

∂

∂z
IP (z, τ ) = −κP (z, τ )IP (z, τ ), (11b)

where the pumping rates r̃i are connected to the rates defined
in Eqs. (6) by ri(z, τ ) = r̃i(z, τ )ρgg(z, τ ) and r̃x is the rate
describing pumping to states not encompassed in the three-
level system. The absorption coefficient for the pump field
is defined as κP = N

∑
i=g,0,1,2 σP iρii, where σP i is the cross

section for photoionization of state |i〉 with the pump field.
The set of equations (6) describes well the evolution of the

system in the spontaneous emission limit; however, because
the terms containing the operators σ̂02 and σ̂02 in Eq. (4) and
the analogous expression for the atomic correlation function
between states |1〉 and |2〉 are neglected, it does not describe
the system adequately when the number of emitted photons
becomes large. Under these conditions, it is however expected
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that the contribution of spontaneous emission is negligible,
the essential atomic coherences have been built up, and the
emitted radiation can be treated classically. The correlation
functions can thus be factorized as

Si(z1, z2, τ ) = ρi1(z1, τ )ρ1i(z2, τ ), (12a)

Gi(z, τ1, τ2) = Ei,−(z, τ1)Ei,+(z, τ2), (12b)

where ρi1 and ρ1i are the off-diagonal elements of the den-
sity matrix and Ei,± are the slowly varying amplitudes of

the classical electric field modes. In this so-called semiclas-
sical regime, the system is typically described by means
of the Maxwell-Bloch equations [38], which can be ob-
tained by replacing the transition and field operators in
the Heisenberg equations of motion by complex numbers
and neglecting the stochastic Langevin terms (see details in
Appendix B). This leads to the set of propagation equa-
tions for the density matrix elements and classical electric
fields

∂

∂τ
ρii(z, τ ) = ri(z, τ ) − 	i(z, τ )ρii(z, τ ) + 	

sp
i ρ11(z, τ ) + i

h̄
[μ1iρi1(z, τ )Ei,+(z, τ ) − μi1ρ1i(z, τ )Ei,−(z, τ )], (13a)

∂

∂τ
ρ11(z, τ ) = r1(z, τ ) − [	1(z, τ ) + 	

sp
0 + 	

sp
2 ]ρ11(z, τ ) − i

h̄
[μ10ρ01(z, τ )E0,+(z, τ ) − μ01ρ10(z, τ )E0,−(z, τ )]

− i

h̄
[μ12ρ21(z, τ )E2,+(z, τ ) − μ21ρ12(z, τ )E2,−(z, τ )], (13b)

∂

∂τ
ρ10(z, τ ) = −	01(z, τ )

2
ρ10(z, τ ) + i

h̄
[ρ11(z, τ ) − ρ00(z, τ )]μ10E0,+(z, τ ) − i

h̄
μ12ρ20(z, τ )E2,+(z, τ ), (13c)

∂

∂τ
ρ12(z, τ ) = −	12(z, τ )

2
ρ12(z, τ ) + i

h̄
[ρ11(z, τ ) − ρ22(z, τ )]μ12E2,+(z, τ ) − i

h̄
μ10ρ02(z, τ )E0,+(z, τ ), (13d)

∂

∂τ
ρ02(z, τ ) = −	02(z, τ )

2
ρ02(z, τ ) + i

h̄
μ12ρ01(z, τ )E2,+(z, τ ) − i

h̄
μ01ρ12(z, τ )E0,−(z, τ ), (13e)

∂

∂z
Ei,+(z, τ ) = −κi

2
Ei,+(z, τ ) − i

�1i

2ε0c
μi1Nξiρ1i(z, τ ), (13f)

where again i = 0, 2. The dipole matrix elements are denoted
by μi j and an additional decoherence rate is introduced as

	02(z, τ ) = 	0(z, τ ) + 	2(z, τ ). (14)

Comparing Eqs. (13) to a set of Maxwell-Bloch equations
derived from the classical Maxwell equations and a Hamil-
tonian coupling the quantized atomic system to a classical
electromagnetic field [38], one notices that an additional
factor appears in the field propagation equation (13f),

ξi = 
oπr2

2λ2
i

, i = 0, 2, (15)

in which λi is the wavelength of the field emitted on the 1 → i
transition. This is a geometrical factor that is a consequence
of performing a one-dimensional approximation, where we
assume that only the modes of the field with wave vectors
oriented along the cylinder axis within a small solid angle

o will interact with a large number of atoms and thus be
amplified. The effect of this factor on the numerical results
is negligible if the geometrical solid angle approximately
corresponds to the diffraction solid angle r2/l2 ∼ λ2/r2. This
is equivalent to the condition that the Fresnel number F ∼
r2/lλ ∼ √

ξ is on the order of 1, which has been argued to be
the only case in which the reduction of the problem to a single
spatial dimension is feasible [3]. In targets characterized by
a large Fresnel number, the emission is however expected to
occur in smaller independent regions defined by the diffrac-
tion solid angle. In these cases, the geometrical solid angle
should be replaced with the diffraction solid angle 
o ∼
(λ/r)2 in Eqs. (6) to approximately account for the losses due

to the diffraction effects, although strictly speaking the evo-
lution of the system should be treated as a three-dimensional
problem.

The coupling between the lower-lying states of the three-
level system, which has been neglected in the derivation of the
correlation-function equations (6), is included in the Maxwell-
Bloch equations in Eqs. (13c)–(13e) via the ρ02 coherence.
Analyzing Eq. (13e) again shows that the contribution of
this coupling will be important when the amplitudes of both
fields and coherences ρ01 and ρ21 become large. This makes
Maxwell-Bloch equations suitable for describing the evolu-
tion of the system in the region of the phase space where the
treatment with quantum correlation functions is inadequate.
On the other hand, it can be seen that if one assumes an
absence of fields and coherences at time τ = 0, none of
them will appear at later times due to the propagation of the
Maxwell-Bloch equations alone, unless introducing an extra
source term.

Since the propagation region where one of the derived
models can accurately describe the evolution of the system
coincides with the region where the other cannot, one is able
to devise a method for coupling the two sets of equations. At
short times and propagation distances, spontaneous emission
is the process dominating the system evolution, so the starting
point of the model is the quantum correlation-function equa-
tions (6). The transition to the Maxwell-Bloch equations (13)
should be performed if and when the following two conditions
are fulfilled: The contribution of spontaneous with respect
to stimulated emission is negligible on both transitions and
the contribution of the coupling between states |0〉 and |2〉
is still not significant. Quantitatively, the first condition can
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be expressed as REi � 1, where REi denotes the ratio of the
stimulated and spontaneous emission terms in Eq. (10):

REi = n
∫ z

0 dz′
1

∫ z
0 dz′

2Ai(z, z′
1, τ )Ai(z, z′

2, τ )Si(z′
1, z′

2, τ )∫ z
0 dz′A2

i (z, z′, τ )ρ11(z′, τ )
. (16)

The second condition can be defined in terms of the contribu-
tions to the Maxwell-Bloch equations for the coherences ρ01

and ρ21 whose evolution is described by Eqs. (13c) and (13d).
Deriving these directly from the propagation equations (6c)
for the atomic correlation functions using the factorization
given by Eq. (12) leads to equations similar to Eqs. (13c) and
(13d), but without the last term on the right-hand side of each.
This is exactly the term describing the coupling between the
lower-lying states which was neglected in the derivation of the
quantum correlation-function equations. Defining

R0 = μ12ρ20(z, τ )E2,+(z, τ )

[ρ11(z, τ ) − ρ00(z, τ )]μ10E0,+(z, τ )
, (17a)

R2 = μ10ρ02(z, τ )E0,+(z, τ )

[ρ11(z, τ ) − ρ22(z, τ )]μ12E2,+(z, τ )
(17b)

thus leads to the second condition for the transition to the
Maxwell-Bloch equations, that is, Ri � 1 with i = 0, 2.

To obtain numerical results, the equations are rewritten
in their finite-difference form and propagated on a two-
dimensional grid with one spatial dimension. During the prop-
agation of the correlation-function equations (6), the ratios
RE0 and RE2 are calculated at each grid point. When the values
of both ratios exceed a chosen limiting value, the transition
to the Maxwell-Bloch equations is performed and the ratios
R0,2 are calculated to validate the second condition described
above. Performing the transition from the correlation-function
model to the Maxwell-Bloch equations requires relating the
variables used in the two models. This is straightforward for
the state populations, as the expected values ρii defined in
Eqs. (6) directly correspond to the diagonal density matrix el-
ements in Eqs. (13). However, the atomic and field correlation
functions are connected to the electric fields and coherences
through Eqs. (12). Taking into account the discretization of
the propagation grid, the atomic and field correlation functions
are represented by two-dimensional real square matrices at
each time or position, respectively. From these, the discretized
coherences and electric fields can be obtained by means of
the singular-value decomposition [39]. As it turns out, with
the parameters studied in the following section, this proce-
dure generally yields one singular value much larger than
the others. The coherences and fields are then obtained by
multiplying the square root of this value by the corresponding
basis vector. The arbitrary overall phase of the obtained fields
is chosen so that they are real and positive at short times. The
structure of the Maxwell-Bloch equations then dictates that
the starting points for the coherences ρ01 and ρ21 have to lie on
the positive imaginary axis. As there is no variable analogous
to the density matrix element ρ02(z, τ ) in the correlation-
function model, this variable is set to zero at the transient
region. This leads to real values of the fields and the coherence
ρ02 and purely imaginary values of the other two coherences
throughout the region where the system evolution is described
by the Maxwell-Bloch equations.

In addition to the temporal profiles of the emitted fields,
emission spectra can also be extracted from the simulation.
In the region where the system evolution is described by the
quantum correlations functions, the spectral intensity of the
emitted fields can be obtained from the Fourier transform
of the field correlation functions according to the Wiener-
Khinchin theorem. The calculation of spectra is seemingly
less straightforward at propagation distances at which the time
evolution is partially described by both sets of equations.
In such a situation, the contribution to the spectral intensity
from spontaneous emission at short times is negligible with
respect to the contribution of intensity at longer times, when
the fields are amplified. As the amplification and the saturation
stage of the field evolution is described by the Maxwell-Bloch
equations, the emission spectra are obtained by the Fourier
transform of the calculated electric fields.

III. RESULTS AND DISCUSSION

As an example of a problem that can be solved by the
model described in the preceding section, we will study
collective emission following inner-shell photoionization of
zinc with the ground-state configuration [Ar]3d104s2 (Fig. 1).
The excited state 1s−1 with a natural width of 1.67 eV [19]
decays via the Auger process with a branching ratio of
0.526 [40], or radiatively to states 2p−1

3/2 and 2p−1
1/2 exhibiting

0.72 and 0.65 eV natural widths, respectively [19]. The K-L
fluorescence to the lower states proceeds through the Kα1

and Kα2 channels by emission of 8638.9- and 8615.8-eV
photons, respectively, and the corresponding branching ratios
are 0.28 and 0.14 [41]. The ionic states 1s−1

1/2, 2p−1
3/2, and 2p−1

1/2
correspond to the states |1〉, |0〉, and |2〉 of the three-level
system presented in Fig. 1, respectively (see Appendix A).
The photoionization cross sections required for the deter-
mination of the incoherent pumping rates, field absorption
coefficients, and partial decay rates can be found in Ref. [42],
or they can be calculated with the GRASP [35] and RATIP [43]
codes. In order to maximize the population transfer to the
excited state, the energy of the pump FEL photons is assumed
to be 9750 eV, which is right above the zinc K edge at
9659 eV [41].

The shape of the target is determined by the intersection of
the pump field with a thin zinc foil. The length of the target
equals the foil thickness, which we take to be l = 5 μm, and
the radius of the emitting cylinder is defined by the cross
section of the pump beam. At this point we take the radius
to correspond to the condition F ∼ ξ 2 ∼ 1 discussed in the
preceding section, which leads to r ∼ (l2λ2)1/4 ≈ 28 nm. We
will later generalize the model to approximately account for
larger radii corresponding to F > 1.

A. Analysis of the developed model

Contrary to the femtosecond hard-x-ray pulses produced
by FELs based on SASE, the intensity profile of the re-
cently demonstrated subfemtosecond FEL pulses consists of
a single spike [31,32] and can thus be approximated by a
Gaussian with a full width at half maximum duration of
τP , IP (0, τ ) = I0 exp[−4 ln(2)(τ − τ0)2/τ 2

P ], where τ0 is the
temporal position of the pulse peak and I0 the peak intensity.
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FIG. 2. (a) Intensity of the emitted radiation on the Kα1 (left)
and Kα2 (right) transition normalized to the maximum intensity at
each propagation distance z. The dashed lines denote the transition
between the two sets of equations. (b) Number of emitted photons as
a function of the propagation distance.

We assume that the spatial intensity profile of the FEL pulse
is uniform inside an area defined by the target radius r. The
peak intensity is thus related to the pulse energy EP by I0 =
2
√

ln 2EP/r2π3/2τP . The chosen parameter values are τP =
400 as and EP = 0.2 μJ, which is in line with the realistically
achievable values for attosecond FEL pulses [31,33], and τ0 =
725 as is a time offset allowing one to describe the leading tail
of the Gaussian pump intensity profile.

Another parameter required by our model is the value of
ratio RE given by Eq. (16) at which the transition from the
correlation-function description to the Maxwell-Bloch equa-
tions is performed. For the studied model, we have chosen
REi = 100 for both fields (i = 0, 2) so that the transition
between the two sets of equations is performed when the
contribution of spontaneous emission on both Kα1,2 is at least
100 times smaller than that of stimulated emission and thus
negligible even if the field gets exponentially amplified. In
the following, we will show that choosing this value does not
violate the second condition [Eq. (17)].

Figure 2 shows the scaled radiation intensity and number
of emitted photons for the two transitions. The Kα1 emission
exhibits the characteristic features of the different stages of
field amplification [8,28,29]. At the beginning of the target,
spontaneous emission is the dominant process, and the time
profile of the emitted radiation intensity is a convolution of the
Gaussian profile of the FEL pump pulse and the exponential
decay of the excited state. At larger propagation distances, the
emitted field is amplified and the intensity maximum delayed,
until the system reaches saturation. Here the delay and dura-
tion of the emitted pulse decrease, which is a characteristic
sign of superfluorescence, and Rabi oscillations are visible in
the temporal profile. The different regimes are also reflected
in the number of emitted photons, with a clear progression

FIG. 3. (a) Calculated (left) and estimated (right; see the text)
values of the ρ02 density matrix element. (b) Ratios R0 (left) and R2

(right). The (dark) blue color shows the regions where the ratios are
larger than 0.1. In both plots the dashed lines denote the transition
between the two sets of equations.

from an exponential to a linear dependence at a target depth
of about 1.5 μm.

The evolution of the field emitted on the Kα2 transition
is less straightforward and heavily influenced by the stronger
Kα1 emission. The dependence of the number of emitted
Kα2 photons is composed of two exponential regions with a
change of slope when the Kα1 emission reaches saturation.
At this point, the population inversion ρ11(z, τ ) − ρ00(z, τ )
becomes negative; however, ρ11(z, τ ) − ρ22(z, τ ) is still pos-
itive because the transfer of population to the final state of
the Kα2 transition is smaller due to the smaller spontaneous
decay width. This leads to the second stage of exponential
amplification of the Kα2 field at propagation distances larger
than 1.5 μm.

In the saturation region, the intensity maximum of the Kα2

emission follows in time the maximum of the Kα1 emission.
This is a consequence of the coupling between the two lower
states described by ρ02, which is shown in Fig. 3(a). In
the scope of the Maxwell-Bloch equations, the evolution of
the field emitted on the 1 → i transition is determined by the
corresponding density matrix element ρ1i. The significance
of ρ02 in the evolution of ρ1i can be assessed by looking at
the ratios Ri defined by Eqs. (17). While in the case of the
Kα1 emission (described by ρ10 and R0) the contribution of
ρ02 is negligible with respect to the population inversion, the
evolution of the Kα2 emission (described by ρ12 and R2) is
mainly determined by the coupling between the lower states
[Fig. 3(b)]. Proper modeling of this coupling is thus crucial
for the description of field propagation is such systems.
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FIG. 4. Intensity of the radiation emitted on the Kα1 (top row) and Kα2 (bottom row) transitions normalized to the maximum intensity
at each propagation distance z for the CF (first column), MB (second column), and CFMB (third column) models, along with the number of
emitted photons on each transition for the three models, ρi = 0.08. The dashed white lines show the position of the intensity maximum.

To check whether taking the initial value of ρ02(z, τ ) in
the Maxwell-Bloch equations to be zero is a good approxi-
mation, this coherence can be estimated from the propagated
quantum correlation functions. Even though Eqs. (12) do
not strictly hold at short times and propagation distances,
at which spontaneous emission is the dominant process, the
fields and coherences can still roughly be estimated using this
factorization. Merging the obtained estimates with the fields
E0,2 and coherences ρ01 and ρ21 calculated with the Maxwell-
Bloch equations allows for the evaluation of Eq. (13e) in the
whole propagation region, leading to the estimated value of
ρ02 shown on the right side of Fig. 3(a). The figure shows that
the agreement between the calculated and estimated values is
reasonable and the magnitude of the estimated ρ02 is negligi-
ble in the transient region between the two sets of equations
(denoted by the dashed line); thus the above approximation is
justified.

By performing the transition between the two sets of equa-
tions when the smaller of the ratios RE0,E2 is equal to a chosen
large value, in our case 100, the first condition described at the
end of Sec. II is automatically satisfied. The second condition
is related to the ratios R0,2 defined by Eqs. (17). Figure 3(b)
shows that both of these ratios are smaller than 0.1 along the
chosen transient line, meaning that also the second condition
is satisfied.

B. Comparison of different models of collective x-ray emission

To highlight the differences between the methods generally
used to simulate collective emission processes in the x-ray
region, we compare three different models. The first is the
description of the problem with quantum correlation-function
(CF) equations (6), where coupling between the two lower
states of the system has been neglected (to be referred to as
the CF model). The second is the modeling by means of the
semiclassical Maxwell-Bloch (MB) equations (13) with an
additional stochastic noise term designed to mimic the effects
of spontaneous emission (the MB model) [8,27,28]. This term
is included on the right-hand side of Eqs. (13c) and (13d)

and is usually modeled as a Gaussian white noise with the
following correlation function:

〈 f (z1, τ1) f ∗(z2, τ2)〉 = Fρ11(z1, τ1)δ(z1 − z2)δ(τ1 − τ2). (18)

The constant factor F is chosen so as to reproduce the
expected number of emitted photons in the spontaneous emis-
sion limit. The last model is the combination of correlation-
function equations and Maxwell-Bloch equations described in
the preceding section (the CFMB model).

In order to simplify the comparison, we neglect the pump-
ing by an external field and assume that at τ = 0, the target is
prepared so that the population of the excited state ρ11(z, 0) is
equal to some constant value ρi throughout the target. Figure 4
shows the scaled intensity and number of photons emitted
on the Kα1,2 transitions calculated with the three models for
ρi = 0.08. In Kα1 emission, there is no visible difference
between the CF and CFMB models in both the temporal
profiles of the emitted field and the number of photons. In
the initial part of the target, when spontaneous emission is
the dominant process, the intensity maximum is positioned
at τ = 0, as expected of the instantaneous swept pumping.
However, the results are significantly different in the case
of the MB model. The emitted pulse is delayed even at the
beginning of the target, clearly showing a shortcoming of
modeling spontaneous emission by means of the stochastic
noise term. This affects the evolution of the field throughout
the target, making the oscillations in the saturation region less
pronounced. In the initial part of the target, random fluctua-
tions are visible in the temporal intensity profiles, which are a
consequence of averaging the simulation results over a finite
number of realizations of the propagation (the MB model
results shown in Fig. 4 were averaged over 100 repetitions
of the simulation).

The results for the Kα2 emission clearly show the advan-
tages of the CFMB method. In the initial part of the target,
the system evolution is described by the correlation-function
equations (6), so the emitted field profile is similar to the one
calculated with the CF model. At larger propagation distances,
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FIG. 5. Spectral intensity of the Kα1 (left) and Kα2 (right)
emission normalized to the maximum intensity at each propagation
distance z for EP = 0.2 μJ. The white dotted lines denote �1i ±
�R,i/2, where �1i (i = 0, 2) is the transition energy and �R,i is the
corresponding effective Rabi frequency.

when the emitted fields are amplified, the transition to the
Maxwell-Bloch equations (13) is performed and significant
differences are noticeable between the results of the CF and
CFMB models. In this region, the field evolution is more in
line with the MB model, where the peak of Kα2 emission
also follows in time that of the Kα1 emission. The difference
between the solutions is also visible in the dependence of the
number of emitted photons, with the CF model predicting a
much higher number of emitted photons at the end of the
target than the other two models.

C. Spectral properties of superfluorescence

Since the lifetimes of core-hole states are on the order
of femtoseconds and the duration of x-ray pulses emitted by
these states becomes even shorter due to superfluorescence,
the intensity profile of the emitted pulses cannot be directly
measured in the time domain. The interesting information the
developed model can provide is thus the spectral distribution
of outgoing radiation, where the different collective emis-
sion processes imprint different characteristic features to the
spectra.

The evolution of the emitted field spectra throughout the
target is shown in Fig. 5, where the pump pulse energy
of 0.2 μJ is the same as in the simulations presented in
Fig. 2. In the amplification region of Kα1 emission in the
initial part of the target, the width of the spectral line is
similar to the spontaneous emission width due to a similar
pulse duration. At a propagation distance of about 1.5 μm,

a splitting appears in the Kα1 emission spectrum, which is a
consequence of the Autler-Townes effect [22]. The predicted
characteristic energy splitting of the doublet in the case of
the resonant fields is equal to the Rabi frequency, defined
as the product of the field amplitude and the corresponding
transition dipole moment. Since in our case the field amplitude
is time dependent, an effective Rabi frequency can be esti-
mated from the average field amplitude of the emitted pulse as
�R,i(z) = μi1

∫ T
0 |Ei(z, τ )|dτ/T , where T is the temporal

position of the first field intensity minimum. The splitting

calculated from the effective Rabi frequency is denoted by
white dashed lines in Fig. 5. The two-peaked spectral structure
becomes visible when the effective Rabi frequency becomes
larger than the spontaneous emission width. Practically no
splitting is present in the Kα2 emission line due to the lower
radiation intensity.

The described shape of the emission lines is a consequence
of the time-dependent radiation intensities. In the case of
a continuous-wave driving field, the expected shape of the
Kα1 emission line would be that of a Mollow triplet [44]
due to the large intensity of the resonant field coupling
states 1s−1 and 2p−1

3/2. The weaker Kα2 field would act as a
probe of the field-induced splitting of the common excited
state, leading to a two-peaked structure [23]. However, when
the coupling is pulsed and the number of field cycles during
the pulse duration is small, the dressed-atom picture predict-
ing the described spectral features breaks down [45]. In this
case the system evolution can be treated, for example, with
Bloch equations, which show that both the number of peaks in
the emission spectra and their shapes depend on the coupling
pulse properties in a complex way [45–47]. The multipeak
structure of the emission spectra is a consequence of the
interference of radiation emitted by an atom at different times
during the interaction.

Until now we have assumed that the spatial intensity profile
of the FEL pulse is uniform; however, realistic sources typi-
cally produce pulses with a lateral intensity profile resembling
an axially symmetric Gaussian. Moreover, the lateral dimen-
sions of the pump pulse often lead to the case of F > 1 (as dis-
cussed in Sec. II), leading to non-negligible diffraction effects.
Such a situation cannot be accurately modeled in the scope
of the developed model. It can however be approximately
accounted for by decomposing the target region into smaller
extended cylinders characterized by F = 1. The radius of each
cylinder r ∼ (l2λ2)1/4 is given by taking the geometrical solid
angle equal to the diffraction solid angle. For each cylinder,
the spatial intensity profile of the pump pulse is taken to be
uniform, with the corresponding intensities normalized so that
the sum of the number of pump photons in each cylinder
is equal to the number of pump photons in a pulse with a
Gaussian spatial intensity profile featuring a FWHM of 2r0

and maximum intensity I0 = EP2 ln(2)3/2/τPr2
0π

3/2.
The emission spectra for different pump pulse energies

resulting from such spatial averaging for r0 = 100 nm are
shown in Fig. 6. The splitting in the Kα1 emission line is still
clearly discernible in the spatially averaged profiles; however,
the dip between the two peaks is less pronounced. This is
due to the contributions of regions with smaller pump pulse
intensities, where the effective Rabi frequency and separation
between the two peaks are smaller. The intensity of the Kα2

emission line is about an order of magnitude smaller and again
does not exhibit a considerable splitting.

Increasing the pump pulse energy even further could also
lead to a splitting of the Kα2 emission line; however, this case
cannot be accurately simulated with the presented model, as
it assumes that the two emitted field modes do not overlap in
the spectral domain. Such a situation could lead to modified
dynamics due to the field emitted on one transition leading to
stimulated emission on the other transition.
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FIG. 6. Spectral intensity of the radiation emitted from a 5-μm-
long target on the Kα1 (∼8639 eV) and Kα2 transitions (∼8616 eV)
at different pump pulse energies. The spatial intensity profile of the
pump pulse is assumed to be an axially symmetric Gaussian (see
the text). At each pump energy the spectra of the two fields are
normalized to the maximum intensity of the Kα1 line.

D. Impact of pump pulse duration on the
emission spectral line shape

Below we investigate the impact of the pump pulse du-
ration on the predicted self-induced splitting of the Kα1

emission line. When the duration of the pump pulse is con-
siderably longer than the lifetime of the excited state, the
developed CFMB model does not perform optimally. Namely,
the singular-value decomposition used to obtain the initial and
boundary conditions for the propagation of Maxwell-Bloch
equations yields several singular values with comparable mag-
nitudes corresponding to different incoherent field modes.
However, in this case, modeling the evolution by means of
the Maxwell-Bloch equations with the stochastic noise term
(the MB model; see Sec. III B) yields satisfactory results, as
the delay produced by this term is much shorter than the pump
pulse duration. For simplicity, the spatial intensity profile of
the FEL pulse is taken to be uniform inside a cylinder with
radius r = 28 nm. Increasing the duration of the pump pulse
while keeping the pump pulse energy constant would lead to
a decreasing peak pump intensity and consequently a smaller
population transfer to the excited state [8]. The intensity of
the emitted radiation and the effective Rabi frequency would
hence also be smaller, leading to the disappearance of the
emission line splitting. It is thus more interesting to study the
effect of pump pulse duration while maintaining a constant
maximum pump intensity I0. The results in this section are
calculated with I0 = 2 × 1019 W/cm2.

Figure 7(a) shows the spectral intensity of the Kα1,2 emis-
sion for varying ratios τP/τK , where τP is the pump pulse
duration and τK = 400 as the lifetime of the 1s−1 core-hole
state in zinc. The two-peaked structure of the Kα1 emission
line cannot be discerned anymore at τP/τK = 2, even though
the emitted field reaches saturation even at larger τP/τK ratios,
as can be seen from Fig. 7(b). At long pump pulse duration,
strong depopulation of the excited state while the population
inversion is still being created leads to a longer duration of
the emitted pulses [Fig. 7(b)] and with that narrower emission
lines on both transitions. From the results of the preceding

FIG. 7. (a) Scaled spectral intensity of Kα1 (left) and Kα2 (right)
emission emitted from a 5-μm-long target for different τP/τK ratios.
(b) Number of emitted photons as a function of the τP/τK ratio (left)
and temporal intensity profiles of the transmitted FEL pulse and the
emitted Kα1 field at the end of the target (right).

section, one might anticipate that increasing the maximum
pump intensity could lead to the appearance of the emission
line splitting even at longer pump pulse durations. However,
the simulation results show that this is not the case. Increasing
the pump pulse energy to the maximum values achievable
with present-day FELs leads to some modifications of the
emission line shapes, but no significant splitting is observed.

An interesting consequence of the modified system dynam-
ics at large values of τP/τK is that the number of photons
emitted on the Kα2 transition can become significantly larger
than that on the Kα1, despite the smaller spontaneous decay
width. By increasing the pump pulse duration at a constant
maximum intensity, the pump pulse energy is effectively
increased and with that the density of excited ionic states
in the target. As a consequence, the stronger Kα1 emission
reaches saturation at shorter propagation distances. The rate
of depletion of the excited-state population is much smaller in
this linear regime, leading to a considerable population inver-
sion on the Kα2 transition at longer propagation distances and
with that a stronger amplification of the Kα2 emission.

The short pump pulse duration with respect to the excited-
state lifetime is thus crucial for the observation of the splitting
in the emission spectra. As shown in Sec. III C, taking into
account the nonuniform spatial intensity profile of the FEL
pulse leads to a less pronounced two-peaked spectrum. The
splitting would thus become indiscernible at even smaller
τP/τK ratios with respect to the results of Fig. 7. This behavior
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is in agreement with the observed amplified Kα emission
spectra in copper [18], where the FWHM pump pulse duration
was 7 fs, much longer than the excited-state lifetime of 0.43 fs
[19]. No splitting of the Kα1 emission line was observed after
reaching saturation; however, at large pump intensities, an
asymmetric broadening of the Kα1 emission line on the lower-
energy side was observed. This seems to be in disagreement
with the results of Fig. 7(a). Note, however, that our model
does not include the presence of the 3d vacancies, which this
broadening has been attributed to.

IV. CONCLUSION

We have presented a theoretical approach to modeling
collective emission processes in three-level systems, based
on a combination of equations for the quantum correlation
functions and Maxwell-Bloch equations. Due to the two-part
structure, the developed model provides an adequate treatment
of both spontaneous emission and coupling of states in strong
electric fields. The inclusion of incoherent processes, such as
space- and time-dependent pumping and depletion of state
populations due to nonradiative decays and photoionization,
makes the model suitable for treating collective effects in the
x-ray regime.

As an application of the model, we presented numer-
ical results for the evolution of superfluorescence in Kα

emission in zinc. The calculations predict a clear splitting
of the amplified Kα1 emission line after reaching satura-
tion, which could be observed with the present-day res-
olution of x-ray spectrometers. The self-induced splitting
has been theoretically predicted before and has been ob-
served in the optical regime, however it has not been ex-
perimentally observed in the x-ray domain. The simulations
show that the crucial parameter for a clear manifestation
of this effect is the duration of the pump pulses, which
should be roughly equal to or smaller than the lifetime of
the excited state. Realization of such an experiment in the
x-ray domain, where the lifetimes of core-hole states are
below 1 fs, has only recently become feasible with the demon-
stration of attosecond FEL sources.

While accounting for incoherent processes concerning the
ionic states of the three-level system, the developed model
does not take into account other processes, possibly induced
by the high-intensity pump pulses, such as production of the
3d vacancies via shake processes [30], shifts of the energy
levels induced by the changed ionization states of neighboring
atoms, and sequential multistage pumping processes [48].
These could lead to additional spectral intensity and a change
of the emission line shape. Experimental observation is thus
crucial for the evaluation of the presented results and further
development of the theoretical model.
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APPENDIX A: EFFECT OF MAGNETIC SUBSTRUCTURE
OF THE IONIC STATES AND POLARIZATION

PROPERTIES OF THE EMITTED FIELD

After photoionization by the FEL pulse, the two excited
vacancy states |1s1/2,1/2〉 and |1s1/2,−1/2〉 are equally popu-
lated. We assume that the pump field is linearly polarized
and z is the quantization axis. Let us consider Kα2 transitions
to states |2p1/2,1/2〉 and |2p1/2,−1/2〉. The matrix elements
of the ionic dipole operator D̂ = (D̂x, D̂y, D̂z ) in the chosen
coordinate system can be calculated by applying the Wigner-
Eckart theorem. For transitions between the four different
pairs of states these are

μ1 = 〈2p1/2,1/2|D̂|1s1/2,1/2〉

= 1√
6

(0, 0,−1)〈1/2||D||1/2〉, (A1a)

μ2 = 〈2p1/2,−1/2|D̂|1s1/2,−1/2〉

= 1√
6

(0, 0, 1)〈1/2||D||1/2〉, (A1b)

μ3 = 〈2p1/2,−1/2|D̂|1s1/2,1/2〉

= 1√
3

(
1√
2
,

i√
2
, 0

)
〈1/2||D||1/2〉, (A1c)

μ4 = 〈2p1/2,1/2|D̂|1s1/2,−1/2〉

= 1√
3

(
1√
2
,− i√

2
, 0

)
〈1/2||D||1/2〉, (A1d)

where 〈 j f ||D|| ji〉 is the reduced dipole matrix element. The
corresponding angular distributions of emitted photons are
proportional to

dσ1

d�
= 3

8π
sin2 θ

|〈1/2||D||1/2〉|2

6
, (A2a)

dσ2

d�
= 3

8π
sin2 θ

|〈1/2||D||1/2〉|2

6
, (A2b)

dσ3

d�
= 3

32π
(3 + cos 2θ − 2 sin2 θ sin 2φ)

|〈1/2||D||1/2〉|2

3
,

(A2c)

dσ4

d�
= 3

32π
(3 + cos 2θ + 2 sin2 θ sin 2φ)

|〈1/2||D||1/2〉|2

3
,

(A2d)

where θ and φ are the azimuthal and polar angles in the chosen
coordinate system, respectively. Summing over all contribu-
tions shows that the joint angular distribution is isotropic,
dσ/d� = |〈1/2||D||1/2〉|2/4π .

In the case of extended targets, the active medium interacts
with photons emitted along the propagation direction of the
pump field. Inserting θ = π/2 and φ = 0 into the above an-
gular distributions shows that in each of the four transitions an
equal number of photons is emitted in the forward direction.
Photons emitted in the first two transitions are polarized along
the polarization of the pump field, whereas the polarization
of photons emitted in the last two transitions is orthogonal
to the polarization of the pump field and the propagation
direction. Each of the initial states |1s1/2,1/2〉 and |1s1/2,−1/2〉
thus contributes an equal number of photons to each of the
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polarization modes in the forward direction. A similar analysis
can be performed for the Kα1 transitions, leading to the same
conclusion, though with twice the number of emitted photons.

In the following we show that the magnetic substructure
and polarization properties can also be neglected in the case
of stimulated emission. To this end we consider two models of
Kα2 emission. The target is modeled as a sequence of layers
with width 
z, where each of the layers undergoes the same
time evolution modeled in time steps 
t = 
z/c. In the first
model, which encompasses the magnetic substructure of the
ionic levels and polarization properties of the emitted light,
the initially equally populated excited states |1s1/2,1/2〉 and
|1s1/2,−1/2〉 decay by emission of photons with one of two
different polarizations |H〉 and |V 〉 with the spontaneous de-
cay rate independent of the magnetic quantum number of the
initial and final ionic states. At each time step, n + 1 photons
are emitted from a layer of atoms, where n is the total number
of photons in the previous time step and target layer. This
takes into account both spontaneous and stimulated emission,
where the probability for emission of photons with a certain
polarization is proportional to the number of photons with that
same polarization entering the target layer. The polarization
of the spontaneously emitted photon and the excited state,
from which each of the n + 1 photons is emitted, is randomly
chosen. The obtained results are compared to a simplified
model, where photons, all with the same polarization |S〉, are
emitted in the transition from a single excited state |1〉 to a
single final state |2〉. The decay rate for |1〉 → |2〉 spontaneous
transition is the same as above and the population of each of
the two states |1〉 and |2〉 is considered equal to the sum of
the populations of the corresponding physical states over the
magnetic quantum numbers.

The results obtained with the two models of Kα2 emission
are presented in Fig. 8. The bottom panel of the figure shows
that on average the sum of the populations of the two excited
states |1s1/2,1/2〉 and |1s1/2,−1/2〉 of the first model coincides
with the population of the single excited state |1〉 of the
second model at all times. Similarly, the sum of the emitted
photons with polarizations |H〉 and |V 〉 in the first model is on
average equal to the number of emitted photons in the second
model. This shows that the simplified model, which omits
the magnetic substructure of the ionic levels and polarization
properties of the emitted light, adequately describes the Kα1,2

decay even in the case of stimulated emission. In principle,
when propagating the equations, any of the two initial mag-
netic substates can be taken as |1〉 and any of the two final
magnetic substates can be taken as |2〉. The correspondence
|1s1/2,1/2〉 → |1〉 and |2p1/2,1/2〉 → |2〉 and thus |S〉 → |V 〉
is preferable because the parallelism of the transition dipole
moment and photon polarization leads to a simplification of
the propagation equations. The magnitude of dipole matrix
element equals the magnitude of the reduced dipole matrix
element, μ12 = 〈1/2||D||1/2〉.

APPENDIX B: DERIVATION OF THE QUANTUM
CORRELATION-FUNCTION EQUATIONS FOR A

THREE-LEVEL SYSTEM

Below we provide a more detailed description of the
derivation of the set of equations (6). Since a complete

FIG. 8. Shown on top is the number of emitted photons and
on bottom the difference in ionic state populations with respect
to initial populations for the two Kα2 decay models described in
the text. The results of the model which considers the magnetic
substructure of ionic states and different polarizations are averaged
over 20 repetitions of the simulation. The initial population of states
|1s1/2,1/2〉 and |1s1/2,−1/2〉 is 106.

derivation of an analogous system of equations for a two-level
system is presented in Ref. [29], we will here only describe
the key points and differences allowing one to obtain a set
of equations for a three-level system. All the intermediate
missing steps are detailed in Ref. [29].

The Hamiltonian (1) leads to a set of Heisenberg-Langevin
equations for transition operators σ̂

(α)
i j , i, j = 0, 1, 2, and field

operators â(†)
ks and b̂(†)

qs . The latter can be formally integrated to
yield

âk,s(t ) = âk,s(0)e−iωkt

− i
∑

β

e−ik·rβ g∗
k,s

∫ t

0
dt ′e−iωk (t−t ′ )σ̂

(β )
01 (t ′), (B1a)

b̂q,s(t ) = b̂q,s(0)e−iωqt

− i
∑

β

e−iq·rβ d∗
q,s

∫ t

0
dt ′e−iωq(t−t ′ )σ̂

(β )
21 (t ′), (B1b)

which are then substituted into the equations for operators
σ̂

(α)
i j . The sums over all atoms of the system

∑
β can be

split into two parts: β = α results in terms proportional to
the spontaneous decay width, whereas the sum over β �= α

describes the interaction of a given atom with all other atoms.
Defining the spontaneous decay widths as

	
sp
i = |μ1i|2�3

1i

3π h̄ε0c3
, i = 0, 2 (B2)
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and the electric field modes as

Ê (α)
0,+(t ) = −i

∑
β �=α

∑
k,s

ek,s

√
h̄ωk

2ε0V
g∗

k,se
ik·(rα−rβ )

×
∫ t

0
dt ′e−iωk (t−t ′ )σ̂

(β )
01 (t ′), (B3a)

Ê (α)
2,+(t ) = −i

∑
β �=α

∑
q,s

eq,s

√
h̄ωq

2ε0V
d∗

q,se
iq·(rα−rβ )

×
∫ t

0
dt ′e−iωq(t−t ′ )σ̂

(β )
21 (t ′) (B3b)

leads to the following set of equations for the time propagation
of transition operators:

˙̂σ (α)
00 = 	

sp
0 σ̂

(α)
11 + i

h̄
(σ̂ (α)

10 μ10 · Ê (α)
0,+ − μ01 · Ê (α)

0,−σ̂
(α)
01 )

+ F (α)
00 , (B4a)

˙̂σ (α)
11 = −(	sp

0 + 	
sp
2 )σ̂ (α)

11 − i

h̄
(σ̂ (α)

10 μ10 · Ê (α)
0,+

−μ01 · Ê (α)
0,−σ̂

(α)
01 + σ̂

(α)
12 μ12 · Ê (α)

2,+

−μ21 · Ê (α)
2,−σ̂

(α)
21 ) + F (α)

11 , (B4b)

˙̂σ (α)
22 = 	

sp
2 σ̂

(α)
11 + i

h̄
(σ̂ (α)

12 μ12 · Ê (α)
2,+ − μ21 · Ê (α)

2,−σ̂
(α)
21 )

+ F (α)
22 , (B4c)

˙̂σ (α)
01 = −

(
i�10 + 	

sp
0 + 	

sp
2

2

)
σ̂

(α)
01 + i

h̄
(σ̂ (α)

11 − σ̂
(α)
00 )

×μ10 · Ê (α)
0,+ − i

h̄
σ̂

(α)
02 μ12 · Ê (α)

2,+ + F (α)
01 , (B4d)

˙̂σ (α)
21 = −

(
i�12 + 	

sp
0 + 	

sp
2

2

)
σ̂

(α)
21 + i

h̄
(σ̂ (α)

11 − σ̂
(α)
22 )

×μ12 · Ê (α)
2,+ − i

h̄
σ̂

(α)
20 μ10 · Ê (α)

0,+ + F (α)
21 , (B4e)

˙̂σ (α)
20 = i�20σ̂

(α)
20 − i

h̄
μ01 · Ê (α)

0,−σ̂
(α)
21 + i

h̄
σ̂

(α)
10 μ12 · Ê (α)

2,+

+ F (α)
20 . (B4f)

Here �i j = (Ei − Ej )/h̄ are the transition energies and
F (α)

i j correspond to the stochastic Langevin operators, as they
include the values of the field operators at the initial time
â(†)

ks (0) and b̂(†)
qs (0), when these are in a vacuum state.

Since the excited part of the medium has the shape of
an elongated cylinder, we can assume that only the field
modes with wave vectors oriented within a small solid angle

o around the cylinder axis z will interact with a large
number of excited atoms and will thus be amplified. We also
assume that the vectors of the dipole transition matrix el-
ements are oriented along the polarization direction of the
induced fields. The sum over wave vectors in Eqs. (B3) can
thus be replaced with∫

d3k → 
o
∫ ∞

0

ω2

c3
dω (B5)

and a similar expression for the integration over the wave
vector q. With this the induced field operators can be
expressed as

Ê (α)
i,+ (τ ) = − i
oμi1�

3
1i

16π2ε0c2

∑
β<α

σ̂
(β )
i1 (τ ), (B6)

where the retarded time τ is defined for each atom α as τ =
t − zα/c and i = 0, 2.

Inserting these expressions into Eqs. (B4) leads to a closed
set of equations for the transition operators σ̂i j , which can be
used to obtain the equations for the expectation values of state
populations, correlation functions of atomic coherences, and
field correlation functions following the procedure described
in Ref. [29]. In this derivation we made the approximation
described in Sec. II, i.e., we neglected the terms in equations
for the atomic correlation functions which contain operators
σ̂02,20. Equation (B4f) directly shows that these contributions
are small when the electric fields are weak.

Maxwell-Bloch equations for the density matrix elements
can be obtained from Eqs. (B4) by neglecting the stochastic
Langevin terms F̂ (α)

i j , replacing the operators with complex
numbers and introducing continuous variables in an analogous
way as in Eq. (7). Making the replacement σ̂i1 → ρ1i and∑

β<α → ∫ z
0 dz in Eqs. (B3) and differentiating the obtained

expressions with respect to z also leads to the propagation
equations for the electric fields, which contain the geometrical
factor ξ defined in Eq. (15).

Incoherent processes are modeled by including Lindblad
superoperators in the master equations for the density matrix.
For details, see Ref. [29].
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