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Doubly excited states of the positronium molecule

Yi Zhang,1,2 Meng-Shan Wu ,1,* Ying Qian ,3 Kálmán Varga,4 Hui-Li Han,1 and Jun-Yi Zhang1

1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement
Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China

2University of Chinese Academy of Sciences, Beijing 100049, China
3School of Computer Science and Technology, East China Normal University, Shanghai 200062, China

4Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

(Received 17 June 2020; accepted 10 July 2020; published 31 July 2020)

The projection method with explicitly correlated Gaussians is used to demonstrate the existence of two doubly
excited states of the positronium molecule (Ps2). One is below the Ps(n = 2) + Ps(n = 2) threshold, with A1

symmetry, and the other is below the Ps(n = 2) + Ps(n = 3) threshold, with E symmetry. These states exist as
resonances in the Ps-Ps continuum. Moreover, the resonance positions and resonance widths of the two states are
calculated using the complex rotation method with basis sets obtained via the orthogonalizing pseudoprojector
method. The resonance positions obtained using the complex rotation method agree with the results of the
orthogonalizing pseudoprojector method. We also investigate the various structural properties of these states
as well as the decay probabilities of 2γ emission due to electron-positron annihilation.
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I. INTRODUCTION

The positronium (Ps) molecule, Ps2, which is a special
molecular system formed by two positronium atoms, has at-
tracted much experimental and theoretical interest [1–18]. The
existence of Ps2 was first theoretically predicted by Hylleraas
[1] in 1947 and was observed experimentally by Cassidy
and Mills [4] in 2007. Optical spectroscopy measurements
of Ps2 for the L = 1 excited state were performed by the
same group [5] in 2012. These experiments laid a foundation
for new antiparticle phenomena, such as Ps Bose-Einstein
condensation (BEC) [2] and γ -ray lasers [3].

To date, many theoretical studies have focused on this
system [6–18]. Kinghorn and Poshusta [9] calculated the
binding energies of the ground state and two metastable
states of Ps2 by exploiting the full permutational symmetry of
the Hamiltonian, including charge-reversal symmetry. Later,
Varga et al. [11] reported another L = 1 bound state with
negative parity. The complete symmetry and spin problem
with charge-conjugation parity was worked out by Schrader
[13], and the relativistic and leading logarithmic radiative
corrections of the ground and P-wave excited states were in-
vestigated by Puchalski and Czarnecki [6]. For the resonances
of Ps2, several low-lying states below the Ps(n = 1) + Ps(n =
4) threshold have been predicted by Usukura and Suzuki [14]
using the complex scaling method. Despite these extensive
studies, however, the doubly excited states of Ps2 have not
previously been reported.

Unlike most molecules composed of normal atoms, the Ps2

molecule can decay through the annihilation of the electron-
positron pair into photons even in the ground state. This decay
mode is similar to that of atomic Ps. It is well known that the
annihilation of Ps depends on the overlap of the positron and
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electron wave functions. For this reason, the lifetime of the
first excited state is longer than that of the ground state. For
example, the lifetime of Ps(1 1S0) is 0.125 ns, while Ps(2 1S0)
has a lifetime of 1 ns [19]. For the doubly excited states of Ps2,
the lifetime information is less well known; however, a longer
lifetime is expected. It is therefore interesting to investigate
the structural properties and decay probabilities of the 2γ

emission of doubly excited states of Ps2.
In this paper, we investigate the doubly excited states of Ps2

that correspond to the Ps(n = 2) + Ps(n � 2) thresholds. The
structural properties of these states as well as the decay prob-
abilities of 2γ emission due to electron-positron annihilation
are also studied. The stochastic variational method (SVM)
[20–23] with explicitly correlated Gaussians (ECGs) is used
to describe this nonadiabatic system. To approach the doubly
excited states of Ps2, unwanted states are removed by adding
the orthogonalizing pseudoprojector (OPP) operator [24,25]
to the Hamiltonian. This method, the so-called projection
method, can provide intrinsic information on the resonance
energies of these autoionizing states of Ps2.

This paper is organized as follows. In Sec. II, the OPP
method with ECGs and the symmetry group of Ps2 are ex-
plained. In Sec. III, the doubly excited states of the negative
positronium ion (Ps−) are calculated as a test of the OPP
method. Then, the properties of two doubly excited Ps2 states
are calculated using the OPP method. The resonance positions
and resonance widths of the two doubly excited Ps2 states
are also calculated using the complex rotation method in this
section. A brief summary is presented in Sec. IV. Atomic units
are used unless otherwise noted.

II. THEORETICAL METHOD

A. The OPP method combined with the SVM

The projection method [26,27] has been widely used for
the identification of resonance states. In this method, a penalty
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function is added to the Hamiltonian to enforce the exclusion
of certain orbitals from the active space, resulting in the
autoionization of the system. This projection calculation is
often called a Q̂ĤQ̂ calculation. The Hamiltonian Q̂ĤQ̂ is
diagonalized to investigate resonant states, where Q̂ = (1 −
P̂) is the projection operator. For the calculation of the doubly
excited states of Ps2, the combined projection operator is
defined as

∑
i, j P̂i j = ∑

i, j |φ1 S(ri − r j )〉〈φ1 S(ri − r j )|, where
|φ1 S(ri − r j )〉 is the wave function of the Ps(1S) orbital.
This projection operator is slightly different from the usual
definition of an atomic projection operator, and a detailed
description is given below.

In the present work, the Q̂ĤQ̂ Hamiltonian is approx-
imated by adding an OPP operator to the Hamiltonian.
The OPP method was first introduced by Krasnopolsky and
Kukulin [28] in 1974. Mitroy and Ryzhikh [29] performed a
comprehensive numerical investigation of the effects due to
different strengths of the OPP operator and different sizes of
basis sets. They found that the energies calculated via the OPP
method will converge to those calculated by diagonalizing
the Q̂ĤQ̂ Hamiltonian. Compared with the Q̂ĤQ̂ method, the
OPP method is easier to apply. The occurrence of positron
attachment to the doubly excited states of helium has been
confirmed using the OPP method [25].

The modified Schrödinger equation for doubly excited Ps2

has the following form:

(Ĥ + λP̂)� = EOPP�. (1)

The nonrelativistic Hamiltonian Ĥ is written as

Ĥ = −
4∑

i=1

∇2
ri

2
+ 1

|r1 − r2| − 1

|r1 − r3| − 1

|r1 − r4|

− 1

|r2 − r3| − 1

|r2 − r4| + 1

|r3 − r4| . (2)

The electron coordinates are r1 and r2, while r3 and r4 denote
the positron coordinates. We use ri j to represent the distance
between particles i and j, and its expectation value is 〈ri j〉 =
〈�|ri j |�〉 with the OPP wave function �. The expectation
value of 〈δi j〉 is also defined as 〈�|δ(ri j )|�〉, which gives
the probability of finding the two particles labeled i and j at
the same point in space. The OPP operator is constructed by
summing over the Ps(1S) projection operators:

λP̂ = λ
∑
i, j

P̂i j

= λ
∑
i, j

|φ1S (ri − r j )〉〈φ1S (ri − r j )|, (3)

where λ is a large positive number; in the present calculations,
λ is set to 105 a.u., which is sufficiently large compared to
previous calculations [21,26–29]. The Ps(1S) wave function
|φ1S (ri − r j )〉 is expanded as a linear combination of 10
ECGs, and the obtained energy is −0.249999 a.u., where
i and j are summed over all possible orbitals of electron-
positron pairs. Four orbitals, namely, |φ1S (r1 − r4)〉, |φ1S (r2 −
r4)〉, |φ1S (r1 − r3)〉, and |φ1S (r2 − r3)〉, are considered in the
present calculations; thus, the overall calculations are complex
and time consuming.

The energy EOPP obtained using the OPP method converges
to the real resonance position ER with a small shift �Q

[26,30]. This relationship can be expressed as

ER = EOPP + �Q, (4)

where the shift �Q is very small and positive in the lower S
state and could originate from the original Q̂ĤQ̂. Thus, the
complex rotation method is needed to refine the resonance
position ER and estimate the resonance width �.

ECGs [22,23] are used to describe the complex Coulomb
interactions between charged particles. ECGs not only de-
scribe the correlations between charged particles but also
allow the matrix elements of the Hamiltonian to be evaluated
easily and quickly. After the center-of-mass motion has been
separated out from the Hamiltonian, the ECG basis to be used
can be written as

	n = |ν|2K+L exp

⎛
⎝−1

2

3∑
i�1 j�1

An
i jxi · x j

⎞
⎠YLM (ν̂), (5)

where xi is xi = ri − r4 and ν = ∑3
i=1 uixi is the global vector.

The independent parameters An
i j contained in the nth sym-

metric matrix An are optimized through energy minimization
using the SVM. The preexponential factor |ν|2K+L (where K
is an integer and L is the total orbital angular momentum)
is introduced to describe the increasing number of nodes for
doubly excited states with L = 0 in the present calculations.

B. Permutational symmetry

The following real particle permutations of Ps2 can be
identified: the identity, 1; the interchange of the electrons, P12;
the interchange of the positrons, P34; the interchange of both
the positrons and the electrons, P12P34; the first-class charge
reversals, P13P24 and P14P23; and the second-class charge
reversals, P1324 and P1423. These eight permutations form a
permutation group S4, which is isomorphic to the point group
D2d . From knowledge of the point group D2d [9,13,15], we
can obtain the following symmetry projection operators Pμ

for the irreducible symmetries under particle permutations:

PA1 = 1
8 (1 + P13P24)(1 + P12)(1 + P34), (6)

PA2 = 1
8 (1 − P13P24)(1 + P12)(1 + P34), (7)

PB1 = 1
8 (1 + P13P24)(1 − P12)(1 − P34), (8)

PB2 = 1
8 (1 − P13P24)(1 − P12)(1 − P34), (9)

PE11 = 1
4 (1 − P12P34 + P13P24 − P14P23), (10)

PE12 = 1
4 (P12 − P34 − P1324 + P1423), (11)

PE21 = 1
4 (P12 − P34 + P1324 − P1423), (12)

PE22 = 1
4 (1 − P12P34 − P13P24 + P14P23), (13)

where {μ} = {A1, A2, B1, B2, E11, E12, E21, E22} is the set of
irreducible representations of the D2d group. These symme-
try projectors can be applied to the wave function as one
representation of the D2d group. Therefore, the symmetry of
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TABLE I. Resonance positions ER, resonance widths �, and OPP energies EOPP for the doubly excited Ps−(2s2) and Ps−(2s3s) states.
Comparisons with previous results are also shown. Atomic units are used.

State (ER, �/2) EOPP

Ps−(2s2) Present (−0.0760304, 2.154 × 10−5) −0.0762811
Ref. [32] (−0.0760304, 2.15 × 10−5)
Ref. [34] (−0.0760304, 2.15173 × 10−5)

Ps−(2s3s) Present (−0.06354, 4.34 × 10−6) −0.063599
Ref. [32] (−0.063650, 5 × 10−6)
Ref. [34] (−0.063649, 4.33925 × 10−6)

the wave function with L, μ, and parity π can be denoted by
Lπ (μ).

The Hamiltonian operator Ĥ that is evaluated through vari-
ational calculations usually commutes with all permutation
operators. Therefore, we can formulate a convenient imple-
mentation in which all permutational operators are applied to
the ket:

Ĥmn = 〈Pμ	m|Ĥ |Pμ	n〉 = 〈	m|Ĥ |Pμ†Pμ	n〉. (14)

In the OPP method, the projection operators do not commute
with the permutation operators. The total symmetry projector
Pμ, which actually adapts the wave function to one represen-
tation of the D2d group, should be applied to both the bra and
the ket:

Ĥmn + λP̂mn = 〈Pμ	m|Ĥ + λP̂|Pμ	n〉, (15)

which makes convergence rather slow. Meanwhile, the cal-
culation of Ĥ + λP̂ can result in the problem of linear depen-
dence much more easily than in the case of Ĥ . For this reason,
the variational calculation becomes numerically unstable with
further enlargement of the ECG basis.

C. Complex rotation method

The resonance positions and resonance widths of these
autoionizing states can be calculated using the complex rota-
tion (CR) method [31]. In the CR method, the transformation
r → exp(iθ )r is carried out to make the resonant wave func-
tion square integrable and amenable to basis-set expansion.
With the application of this rotation, the Hamiltonian with
Coulombic interactions becomes

Hθ = exp(−2iθ )T + exp(−iθ )V. (16)

The resonance position ER and resonance width � are deter-
mined by solving the complex eigenvalue problem. The com-
plex eigenvalue is defined as Ec = ER − i�/2. The resonant
states can be identified by adjusting the rotation parameter θ ,
and their energies show relatively little change as θ varies,
which means that ∂|Ec|/∂θ becomes a minimum. To locate
the resonant states more accurately, we introduce dilation pa-
rameters α = 0.99, 1, and 1.01. Here, dilation is defined as the
following transformation of all coordinates of the dynamical
system: r → rα. Different dilation parameters will relate to
the same resonant states.

III. RESULTS AND DISCUSSION

In this paper, we mainly focus on the calculation of
the properties of doubly excited Ps2 states under A1 and
E symmetry. We have also performed OPP calculations for
the doubly excited Ps2 state under B1 symmetry. A basis
with 5000 dimensions was used to obtain the energy EOPP =
−0.12495 a.u., which is higher than the threshold energy
EPs(2S)+Ps(2S) = −0.125 a.u. For B2 and A2 symmetry, the cor-
responding threshold is Ps(2S) + Ps(3P), which means that
not only the Ps(1S) orbital but also the Ps(2P) orbital need to
be excluded in the OPP calculations. Such OPP calculations
require large-scale computational resources and are beyond
our current computing capabilities.

A. Example calculation using the OPP method for Ps−

Extensive calculations have been performed for the doubly
excited Ps− states using the CR method [32–34]. In this
section, calculations for the doubly excited Ps−(2s2) and
Ps−(2s3s) states are carried out to validate the OPP method.
First, the OPP method combined with the SVM is used to
obtain the OPP energies and wave functions for these two
doubly excited states. Then, the CR method is used to refine
the resonance positions (ER) and widths (�) using the basis
sets obtained via the OPP method.

The present results for the doubly excited Ps−(2s2) and
Ps−(2s3s) states and comparisons with previous results
[32,34] are given in Table I. In the present OPP calculations,
the wave functions are expanded with 500 ECGs. We can
see that the values of EOPP are very close to the ER values,
with small discrepancies of |�Q/ER| = 0.33% and 0.09%
for Ps−(2s2) and Ps−(2s3s), respectively. Theoretically, the
values of �Q could be reduced through further optimization or
enlargement of the ECG basis. However, the calculations will
become numerically unstable due to the linear dependence
problem. Table I also shows that the present values of the
resonance positions and widths are in good agreement with
those of Ho [32] and Li and Shakeshaft [34]. This means that
the basis sets we obtain using the OPP method (OPP basis
sets) are of high quality and are suitable for CR calculations.

B. Doubly excited Ps2 state with A1 symmetry

The doubly excited Ps2 state with A1 symmetry can be
denoted by 0+(A1). The symmetry projector applied to the
spatial part of the basis functions is PA1 = (1 + P13P24)(1 +
P12)(1 + P34); see Eq. (6). The spins of the electrons and
positrons in 0+(A1) are equal to zero, i.e., S− = 0 and S+ = 0.
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TABLE II. Expectation values of various structural properties for the doubly excited Ps2 state with A1 symmetry. N is the dimensionality
of the basis. For convenience, we use 〈R1〉 = 〈r14〉 = 〈r24〉 = 〈r13〉 = 〈r23〉 and 〈R2〉 = 〈r12〉 = 〈r34〉 to represent the expectation values of the
electron-positron distance and the electron-electron (or positron-positron) distance, respectively. In addition, 〈�1〉 = 〈δ14〉 = 〈δ24〉 = 〈δ13〉 =
〈δ23〉 and 〈�2〉 = 〈δ12〉 = 〈δ34〉 represent the probability of finding an electron and a positron at the same point in space and the probability of
finding two electrons (or two positrons) at the same point in space, respectively. Atomic units are used.

N Energy 〈R1〉 〈R2〉
〈
R2

1

〉 〈
R2

2

〉
104〈�1〉 107〈�2〉

3000 −0.12531 19.83 29.72 641.1 1185 6.725 7.440
3500 −0.12540 20.33 30.74 700.0 1330 6.462 6.696
4000 −0.12544 20.68 31.44 745.5 1394 6.330 6.336
4500 −0.12548 20.93 31.95 782.3 1467 6.259 6.116
5000 −0.12550 21.11 32.31 809.9 1522 6.210 5.919

The results of convergence tests for the OPP energy and other
structural properties of this state as functions of the dimen-
sionality N of the basis are reported in Table II. In this table,
we use 〈R1〉 = 〈r14〉 = 〈r24〉 = 〈r13〉 = 〈r23〉 to represent the
expectation value of the distance between an electron and a
positron and 〈R2〉 = 〈r12〉 = 〈r34〉 to represent the expectation
value of the distance between the two electrons (or the two
positrons). For convenience, we also define 〈�1〉 = 〈δ14〉 =
〈δ24〉 = 〈δ13〉 = 〈δ23〉 to represent the probability of finding
an electron and a positron at the same point in space and
〈�2〉 = 〈δ12〉 = 〈δ34〉 to represent the probability of finding
two electrons (or two positrons) at the same point in space
in Table II.

From Table II, we can see that the energy converges to
10−4 a.u. and that the expectation values converge to two
significant figures with the largest basis set (N = 5000). The
basis sets used in the present calculations are very large
compared with that used for the calculation of the ground-state
properties of Ps2, which requires only a basis with N = 200
dimensions to make the energy converge to at least 10−6 a.u.

Table II shows that the calculated 0+(A1) energy EOPP =
−0.12550 a.u. is lower than the relevant threshold energy
EPs(2S)+Ps(2S) = −0.125 a.u. by only 4%, and the expectation
value of 〈R2〉 is larger than that of 〈R1〉. On the other hand,
the expectation values of 〈δi j〉 also consistently show that the
value of 〈�1〉 is larger than that of 〈�2〉. All of these results
indicate that the structure of this doubly excited state could be
dominated by a [Ps(2S) + Ps(2S)]-like configuration.

Compared to the average interparticle distances, the prob-
ability density distributions of the interparticle distances pro-
vide more information about the structure of this doubly ex-
cited state. We can define the probability density distribution
of the distance between particles i and j as

ρ(ri j ) =
∫

d�ri j 〈�|δ
(

3∑
k=1

ckxk − ri j

)
|�〉r2

i j, (17)

where 〈· · · 〉 denotes the integration over the relative coor-
dinates (x1, x2, and x3) and

∫
d�ri j denotes the integration

over the angle of ri j . ρ(ri j ) can be easily obtained since
the matrix elements for the Dirac delta function δ can be
analytically calculated using the ECG basis. The probability
density distributions of R1 and R2 for this doubly excited
state are shown in Fig. 1. We can see that ρ(R1) has a peak
near 12 a.u. and a narrow plateau near 2 a.u. Since the radial
probability density distribution of Ps(2S) has two peaks, this

structure of ρ(R1) could originate from a [Ps(2S)-Ps(2S)]-like
configuration. The figure also shows that ρ(R2) has only one
peak, which is near 20 a.u.

The special decay mode in which electron-positron pair
annihilation leads to photon emission plays an important role
in the experimental observation of Ps2. Electron-positron pair
annihilation in the Ps2 system results in the emission of
either two photons (2γ annihilation) or more photons (nγ

annihilation). The main process here is 2γ annihilation, and
the corresponding annihilation rate �2γ for this doubly excited
state can be written as [23,35]

�2γ = 4πα3〈δ(r14)〉 = 1/τ, (18)

where τ is the corresponding lifetime. With the value of 〈�1〉
given in Table II, the value of �2γ is �2γ = 1/(7.9 ns) for the
0+(A1) state. Compared with the lifetime of the ground state
of Ps2 with A1 symmetry, τ = 0.22455(6) ns [6], the lifetime
of this doubly excited state is much longer.

The OPP energy EOPP can be regarded as a good approx-
imation of the resonance position ER, whereas the resonance
width � cannot be obtained directly through the OPP calcu-
lation. With the OPP basis sets for this doubly excited state,

FIG. 1. The probability density distributions of R1 and R2 for the
doubly excited Ps2 state with A1 symmetry. R1 = r14 = r24 = r13 =
r23 represents the distance between an electron and a positron. R2 =
r12 = r34 represents the distance between the two electrons (or the
two positrons). Atomic units are used.

012825-4



DOUBLY EXCITED STATES OF THE POSITRONIUM … PHYSICAL REVIEW A 102, 012825 (2020)

TABLE III. Comparison between the OPP energies and reso-
nance parameters for the doubly excited Ps2 states with A1 and E
symmetry.

State EOPP ER �/2

A1 −0.12550 −0.12522 0.0000461
E −0.099298 −0.09672 0.000634

the CR method can be used to calculate ER and �. To better
represent the wave functions of the breakup channels, outer
basis functions [24,36,37] are added to the OPP basis set.
Only the Ps(2S) + Ps(2S) breakup channel is considered in
the present CR calculation, and the Ps(2S) + Ps(2S) outer
basis functions are written as

	out
n = exp(−αnR2)φPs(2s)(r1 − r3)φPs(2s)(r2 − r4). (19)

Here, exp(−αnR2) is called the connected function, and R
is the relative distance between the two Ps(2s) atoms. The
Ps(2S) wave function φPs(2s) is expanded as a linear combi-
nation of 12 ECGs (which yields an energy of −0.0624999
a.u.). In the present CR calculation for this doubly excited
Ps2 state 0+(A1), six outer basis functions are added (further
enlargement of 	out

n will result in the linear dependence
problem). The exponents αn are defined as αn = 0.01/2.5n.
Thus, the final basis for the CR calculation consists of 5006
ECGs, including 5000 OPP ECGs and 6 	out

n ECGs.
The complex trajectories for this doubly excited state are

shown in Fig. 2. Using the dilation transformation, three
complex trajectories with different dilation parameters α =
0.99, 1, and 1.01 are plotted in this figure. We can see that
with these three dilations, the resonance remains located at
the same position, resulting in the resonance parameters ER =
−0.12522 a.u. and �/2 = 0.000461 a.u.

The OPP energies and the resonance parameters are listed
for comparison in Table III. We can see that the OPP energy
EOPP is in good agreement with the ER value given by the CR
calculation, with a discrepancy of |�Q/ER| = 0.22%, for the
0+(A1) state.

C. Doubly excited Ps2 state with E symmetry

The total symmetry projector PE11 = 1 − P12P34 +
P13P24 − P14P23 is chosen to represent E symmetry with

FIG. 2. CR diagram for the doubly excited Ps2 state with A1

symmetry. α is the parameter of the dilation transformation.

positive parity. In contrast to A1 symmetry, E symmetry
is not associated with a unique set of spins. The spins
of the electrons and positrons for E symmetry can be a
mixture of (S− = 0, S+ = 1) and (S− = 1, S+ = 0). Thus,
the expectation value 〈O14〉 is not equal to 〈O24〉, where
Ô stands for an arbitrary operator. This can be clearly
seen in Table IV, where 〈r14〉 �= 〈r24〉 and 〈δ14〉 �= 〈δ24〉.
Table IV shows the results of convergence tests for the
OPP energy and other structural properties of this state
as functions of the basis dimensionality N . We define
〈R1〉 = 〈r14〉 = 〈r23〉 and 〈R2〉 = 〈r13〉 = 〈r24〉 to represent
the two different expectation values of the distances between
an electron and a positron. 〈R3〉 = 〈r12〉 = 〈r34〉 represents
the expectation value of the distance between the two
electrons (or the two positrons). 〈�1〉 = 〈δ14〉 = 〈δ23〉 and
〈�2〉 = 〈δ13〉 = 〈δ24〉 represent the probabilities of finding
an electron and a positron at the same point in space.
Meanwhile, for simplicity, 〈�3〉 = 〈δ12〉 = 〈δ34〉 is also
defined to represent the probability of finding two electrons
(or two positrons) at the same point in space in Table IV.

For E symmetry, the energy converges to 10−4 a.u., and the
expectation values converge to two significant figures with the
largest basis set (N = 5000). The OPP energy of this doubly

TABLE IV. Expectation values of various structural properties for the doubly excited Ps2 state with E symmetry. N is the dimensionality
of the basis. For convenience, 〈R1〉 = 〈r14〉 = 〈r23〉 and 〈R2〉 = 〈r13〉 = 〈r24〉 represent the expectation values of the electron-positron distances,
and 〈R3〉 = 〈r12〉 = 〈r34〉 represents the expected distance between the two electrons (or the two positrons). In addition, 〈�1〉 = 〈δ14〉 = 〈δ23〉
and 〈�2〉 = 〈δ13〉 = 〈δ24〉 represent the probabilities of finding an electron and a positron at the same point in space, and 〈�3〉 = 〈δ12〉 = 〈δ34〉
represents the probability of finding two electrons (or two positrons) at the same point in space. Atomic units are used.

N Energy 〈R1〉 〈R2〉 〈R3〉
〈
R2

1

〉 〈
R2

2

〉 〈
R2

3

〉
103〈�1〉 104〈�2〉 107〈�3〉

3000 −0.099227 18.06 31.60 32.52 396.3 1219 1180 1.598 3.391 1.381
3500 −0.099243 18.08 31.61 32.55 398.1 1220 1183 1.611 3.520 1.331
4000 −0.099269 18.12 31.62 32.58 401.5 1224 1187 1.606 3.537 1.310
4500 −0.099287 18.17 31.60 32.58 404.2 1223 1189 1.603 3.549 1.280
5000 −0.099298 18.19 31.59 32.59 406.7 1222 1190 1.602 3.553 1.271
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FIG. 3. The probability density distributions of R1, R2, and R3

for the doubly excited Ps2 state with E symmetry. R1 = r14 = r23

and R2 = r13 = r24 represent the distances between an electron and
a positron. R3 = r12 = r34 represents the distance between the two
electrons (or the two positrons). Atomic units are used.

excited state, EOPP = −0.099298 a.u., is much lower than the
relevant threshold energy, EPs(2S)+Ps(3S) = −0.0902778 a.u.

Since the value of 〈�1〉 is different from that of 〈�2〉 in
the case of E symmetry, it is necessary to modify the 2γ

annihilation rate expression given in Eq. (18) as follows:

�2γ = 2πα3〈δ(r14)〉 + 2πα3〈δ(r24)〉 = 1/τ. (20)

Using Eq. (20) and the values of 〈�1〉 and 〈�2〉 in Table IV,
we find that �2γ = 1/(5.1 ns). Thus, the lifetime of this
doubly excited state is longer than that of the ground state
of Ps2 with E symmetry (τ = 0.44 ns) [12].

The probability density distributions of R1, R2, and R3 for
this doubly excited state are shown in Fig. 3. We can see
that ρ(R1) has two peaks, which are located near 1.5 and
15 a.u. These two peaks should originate from the Ps(2S)
configuration. Meanwhile, ρ(R2) has three peaks, near 1.5,
15, and 38 a.u., which should originate from Ps(3S). ρ(R3)
has only one peak, near 29 a.u. From the probability den-
sity distributions and the OPP energy, we can infer that the
structure of this doubly excited state could be dominated by a
[Ps(2S)-Ps(3S)]-like configuration.

Similarly, the CR calculation is also carried out for this
doubly excited state. Only the Ps(2S) + Ps(3S) breakup chan-
nel is considered in the present CR calculation for this state,
and the corresponding outer basis functions are written as

	out
n = exp(−αnR2)φPsPs(r1 − r3)φPsPs(r2 − r4). (21)

The Ps(2S) wave function φPs(2s) is expressed as given above,
while the Ps(3S) wave function φPs(3s) is expanded as a
linear combination of 16 ECGs (the energy of this state is
−0.0277777 a.u.). In the final calculation, six outer basis
functions are added to the 5000 OPP ECGs. The exponents
αn are defined as αn = 0.01/3n. Three complex trajectories
with the dilation parameters α = 0.99, 1, and 1.01 are plotted
in Fig. 4. We can see that the resonance position is located

FIG. 4. CR diagram for the doubly excited Ps2 state with E
symmetry. α is the parameter of the dilation transformation.

at θ = 0.20 rad, and the resonance parameters are ER =
−0.09675 a.u. and �/2 = 0.000634 a.u. The OPP energy
EOPP of this state also provides a good approximation of ER,
with a discrepancy of |�Q/ER| = 2.7%.

IV. CONCLUSION

The doubly excited 0+(A1) and 0+(E ) states of Ps2 have
been confirmed using the projection method with explicitly
correlated Gaussians. The energies and relevant thresholds
are shown in Fig. 5. The energy of the 0+(A1) state is
−0.12550 a.u., which is related to the Ps(2S) + Ps(2S) thresh-
old, while the 0+(E ) state has an energy of −0.099298 a.u.,
which is related to the Ps(2S) + Ps(3S) threshold. Moreover,
the resonance positions and resonance widths of the two states
are calculated using the CR method with the OPP basis sets.
The OPP energies EOPP are in good agreement with the reso-
nance positions ER obtained using the CR method, showing
the high quality of the OPP basis sets. Various structural
properties of the two states as well as the decay probabilities

FIG. 5. The energy spectrum of the two doubly excited Ps2

states. The two-body decay thresholds are shown as dotted lines.
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of 2γ emission due to electron-positron annihilation are also
studied. We find that the lifetime of the doubly excited state
with A1 symmetry is 7.9 ns, which is much longer than the
lifetime of the ground state with the same symmetry. For E
symmetry, the lifetime of the corresponding doubly excited
state is 5.1 ns, which is also longer than that of the ground state
of Ps2 with the same symmetry. These doubly excited states
of Ps2 have not previously been reported. The identification of
these autoionizing states of Ps2 could present a new approach
for future spectroscopic measurements of Ps complexes.
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