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Relativistic coupled-cluster-theory study for low-energy electron scattering with argon
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In this work, we carry out an comprehensive study for the electron scattering with atomic argon in the
framework of relativistic box-variational method. The phase shifts first are extracted from relativistic coupled-
cluster-theory calculations. Then the properties including total elastic, momentum transfer, viscosity cross
sections, and differential cross sections are evaluated and compared with available experimental and theoretical
data. The validity and accuracy of present method are verified by the good agreement with experimental
values, especially for the differential cross sections at small angle forward and backward scattering where
obvious discrepancies exist between experiments and theories. The predicted scattering length of −1.39 a0 for
electron-argon system is only 2% larger in magnitude than the most recent experimental estimate. In addition,
the role of electron correlation effect are also investigated in these properties.
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I. INTRODUCTION

The low-energy elastic scattering of electrons on noble
gases, in particularly on argon, is of particular interest in
atomic and molecular physics for many decades [1]. One
aspect is that reliable data for electron scattering from no-
ble gases are of crucial importance in applications, such as
electron-driven processes in phenomena of the earth and the
planets, radiation chemistry, gaseous discharges, plasmas, and
so on. On the other hand, many precise measurements are
available in this energy region and they provide a fundamental
test for theoretical methods. This is due to the fact that target
preparation with light noble gases is straightforward, and the
quality of existing data provided reference values for deter-
mining the instrumental response in experiments. Another
reason is that the relativistic effect and target polarization play
a dominant role in the low-energy scattering processes and
this makes accurate theoretical treatment more challenging.

Although the treatment of correlation effect and relativistic
nature has achieved a high level of accuracy in problems in-
volving bound states, the situation is very different in the prob-
lems involving continuum states, such as the scattering prob-
lem. In the past few years, some new methods were proposed
to convert the electron scattering problem to the problem of
finding the solution of the Schrödinger equation including a
series of discretized continuum states, or named as pseudo-
continuum states. This is based on the fact that, when correct
boundary conditions are applied, the pseudocontinuum states
should be equivalent with true continuum states with same
energies [2], since both wave functions are solutions of the
same Schrödinger equation with same boundary conditions
and same energies, although different normalization may be
applied. Using these methods, the scattering parameters, such
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as the phase shifts and scattering length, are directly related to
the discrete energies of pseudocontinuum states. Then the cor-
relation and relativistic effect can be accurately accounted in
exactly the same way as the bound state problems, and a high
level of accuracy of scattering parameters could be expected
by using the theoretical methods that has been proved to be
capable of obtaining high precision discrete energy values.

The box-variational method [3,4] is such a very simple
method converting the scattering problems to the discrete en-
ergies of pesudocontinuum states. In this approach, the system
including the target and the incident electron is placed in an
infinite wall cavity of radius R, chosen to be large enough that
the wave function of scattered electron reach its asymptotic
region. The discretized energies of the system in the cavity, En

for a particular partial wave scattering, are obtained by solving
the Schrödinger equation with the same boundary conditions,
and then can be used to determine the phase shifts, δ, through
a specific relation derived from the boundary conditions.
The nonrelativistic box-variational method has been applied
intermittently in a variety of contexts [5–9]. Recently, Cheng
et al. developed a relativistic version of this method, and
successfully used it to study low-energy electron scattering
on atomic helium, neon, and krypton connected with an all-
order single-double implementation of relativistic many-body
perturbation theory [10]. The comparison with experimental
values showed a good agreement.

Following that work [10], the present work carry out
detailed studies of low-energy electron scattering with argon
in the framework of relativistic box-variational method. Like
as [10], B-splines basis set and the relativistic wave-function
boundary conditions proposed by Johnson et al. [11] are used
to expand the large, P(r), and small, Q(r), components of
the Dirac wave function. Different with the work [10], an
relativistic coupled-cluster (RCC) calculation starting from
an no-pair Dirac-Coulomb-Breit Hamiltonian [12,13] is used
to obtain discrete energies of the pseudocontinuum states of
electron-argon system. Both linear and nonlinear terms within
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the single- and double-excitations are included in correlation
calculation. The nonlinear terms account for the contributions
from many of the triple and quadruple determinant states,
which is necessary for achieving high accurate energies. This
approximation is termed as RCCSD-B-spline calculation.

In the present work, the scattering phase shifts were first
extracted from the RCCSD-B-spline energies. Then we eval-
uated total elastic cross sections, momentum transfer cross
sections, and viscosity cross sections at incident electron
energies up to k = 0.8 a.u. (E = 8.7 eV), as well as the
differential cross sections (DCS) at energies of 1, 3, 5, and
7.5 eV, and carried out a comprehensive comparison with
available experimental and theoretical data. A good agreement
in all these cross sections can be found especially in the DCS
for small angle forward and backward scattering, where all
the existing theoretical results significantly overestimated the
experimental data. Our final predicted scattering length for
electron-argon system is −1.39 a0, which is only 2% larger
in magnitude than the most recent experimental estimate from
Kurokawa et al. [14]. Atomic units will be used throughout,
unless otherwise is explicitly stated.

II. FORMALISM

A. Box calculations and interpolation

The relativistic box-variational method is to extract phase
shifts by applying the MIT/Notre Dame boundary conditions
[11,15], P(R) = Q(R), to the relativistic asymptotic form
of the scattering wave functions with given energies. These
energies are obtained by solving the Dirac equation for the
system of target and incident electron in the same cavity with
the same boundary conditions.

The radius of the cavity, R, is large so that the scattered
electron at the boundary is described in asymptotic wave-
function showing oscillating behavior, and the true continuum
states with certain energies could have nodes at the cavity
radius and satisfy the boundary conditions, P(R) = Q(R).
Then the energies of these true continuum states could be
predicted from energies of pseudocontinuum states with the
same boundary conditions. A high level of accuracy can be
expected as well as the discretized energies are produced very
accurately. More energies can be obtained by continuously
changing the radius of the cavity in a wide range. An inter-
polation procedure is also applied to obtain the phase shifts
and cross sections at any energies.

We outline the essential features of the box calculation and
interpolation procedure in this section, and more details can
be found inRef. [10]. The relativistic asymptotic scattering
wavefunctions are expressed as [16]

P(r) = kr j�(kr) − tan(δ)krn�(kr) (1)

and

Q(r) =

⎧⎪⎪⎨
⎪⎪⎩

ck(kr j�−1(kr) − tan(δ)krn�−1(kr))

E + 2mec2
, κ > 0

−ck(kr j�+1(kr) − tan(δ)krn�+1(kr))

E + 2mec2
, κ < 0

,

(2)

TABLE I. Interpolating functions, w(δ, k) for the phase shifts for
each L value. The w0 column gives the value of w(δ, k) for the final
CCSD calculation in the k = 0 limit. The dipole polarizability for
atomic Argon is αd = 11.081 a.u. [17].

L w(δ, k) w0 D E

0 − tan(δ) − E × k4 + π

3 αd k2

k(1 + 4
3 αd k2 ln(k/D))

−1.39 0.045 −6.5

1
arctan( π

15 αd k2) − δ

k3
11.8

2
arctan( π

105 αd k2) − δ

k3
0.96

3
tan(δ)

k2
0.064

where j� and n� are spherical Bessel functions of the first and
second kind. κ > 0 and κ < 0 represent the cases of j = l −
1/2 and j = l + 1/2, respectively.

The phase shifts then can be extracted by applying the
boundary conditions to a pseudocontinuum state with energy
E in a cavity of radius R as

tan(δ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−kc j�−1(kR) − (E + 2mec2) j�(kR)

−kcnl−1(kR) − (E + 2mec2)n�(kR)
, κ > 0

−kc j�+1(kR) + (E + 2mec2) j�(kR)

−kcn�+1(kR) + (E + 2mec2)n�(kR)
, κ < 0

.

(3)
A further correction was also added to phase shift obtained at
the cavity radius, R, to estimate the r → ∞ phase shift. This
correction was determined by integrating the Dirac equation,
from r = R to r = 10R in a −αd/(2r4) potential field, where
αd is the static dipole polarizability [17]. The correction was
found to be typically very small, only altering the phase shift
in the fifth significant digit.

The present CCSD calculations are restricted to the states
� � 3. Higher � phase shifts are given by the modified effec-
tive range theory (MERT) [18–20],

tan(δ�) = παd k2

(2� − 1)(2� + 1)(2� + 3)
. (4)

The error introduced by using MERT functions increases at
larger energies [20]. However, the contribution from � > 3
states is expected to be very small up to a few tens electron-
volts. In the present work, the largest percentage contribution
from � > 3 states are found to occur at the minimum of the
cross sections, being only about 1% for total cross sections
and 0.6% for momentum transfer cross sections, thus the
uncertainties introduced by using the MERT values should be
negligible.

Application of box conditions to the CCSD calculation
only gives the phase shifts at certain discrete energies in the
continuum. In order to obtain the data at any energies, an
interpolating procedure which has been previously utilized
in our previous work [10] was adopted. The details of the
functions used to create the phase shifts at any momentum
of incident electron are tabulated in Table I. These functions
are reliant on values of the dipole polarizability from Ref. [17]
and the behavior of the interpolated phase shifts as a function
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of energy was typically very smooth. The interpolation was
done using natural cubic splines and the values of D and E
are chosen manually to make w(k, δ) roughly constant at the
smallest values of k.

B. The couple-cluster calculations

In the relativistic coupled cluster theory framework, the
wave function of an atom with a valence orbital v is defined
as

|�v〉 = eS|�v〉, (5)

where the reference state |�v〉 is set as the lowest-order Dirac-
Fock wave function. The cluster operator S is expressed as a
sum of n-particle excitation Sn of the lowest-order wavefunc-
tion

S =
N∑

n=1

Sn = S1 + S2 + S3 + · · · , (6)

where N is the number of electrons of a system. Only consid-
ering the linear single- and double- excitation approximation,
the wave function is simplified as

|�v〉 ≈ (1 + S1 + S2)|�v〉. (7)

This approximation is called LCCSD method, which is equal
with the all-order method. If all non-linear terms of single-
and double- excitation are also taken into account, the wave
function is

|�v〉 ≈ {1 + S1 + S2 + 1

2
(S2

1 + S2
2 + S1S2)

+ 1

6
(S3

1 + 3S2
1S2) + 1

24
S4

1}|�v〉. (8)

This approximation is termed as CCSD method. The cluster
excitations includes two classes from core and valence elec-
trons, which are represented by S(0,0) and S(0,1), respectively,
i.e.,

S = S(0,0) + S(0,1)

= S(0,0)
1 + S(0,0)

2 + S(0,1)
1 + S(0,1)

2 . (9)

In the language of second quantization, the cluster operator
for core excitations is

S(0,0) = S(0,0)
1 + S(0,0)

2

=
∑

ra

{a†
r aa}sr

a + 1

2

∑
rsab

{a†
r a†

s aaab}srs
ab, (10)

and the cluster operator for valence excitation is

S(0,1) = S(0,1)
1 + S(0,1)

2

=
∑
r �=v

{a†
r av}sr

v +
∑
rsa

{a†
r a†

s avaa}srs
va. (11)

Above the alphabet a and b represent the core orbitals; r
and s are designated as virtual orbitals; and v indicates va-
lence states. a†(a) are single-particle creation (annihilation)
operator, and s···

··· are cluster amplitudes. The cluster ampli-
tudes and correlation energies are determined by solving the

coupled equations derived from the generalized Bloch equa-
tions keeping only the connected terms.

Q[S(m,n)
� , H0]P = Q

{
(V 	 − 	Heff )(m,n)

�

}
connP, (12)

Heff = P
(
V 	

)(m,n)
conn P, (13)

where P and Q are the usual projection operators which act on
the model space and its orthogonal complement respectively,
and Heff represents the effective Hamiltonian.

In this work, we obtained the energies of pseudocontinuum
states using the zero-order Dirac-Fock approximation based
on the Dirac-Coulomb-Breit Hamiltonian (DCB), LCCSD,
and CCSD methods, respectively. In Dirac-Fock calculation,
we used 50 B-splines of order k = 13 to expand the large and
small components of the radial wave functions. In coupled-
cluster calculation, all core orbitals are set as active, the virtual
orbitals with energies less than 1500 a.u. and partial waves
with �max < 6 are included. The details of the method can be
found in Refs. [12,13].

III. DATA ANALYSIS WITH DIFFERENT RADIUS

The determination of radius of the cavity is of vital impor-
tance in the box-variational calculation. Different discretized
continuum states are obtained using different radius R of
the B-spline basis. It has been stated in Ref. [2] that the
pseudocontinuum states produced in a B-spline calculation
with different radius can be interpreted as a representation
of true continuum states with different normalization, and
the pseudocontinuum with any energies can be obtained by
properly adjusting the radius. Thus it is reasonable to perform
calculations with different radius to examine the quality of
discrete energies and also to obtain more energies to improve
the accuracy level of the interpolation procedure.

In this paper, the discrete energies are obtained using
the DCB, LCCSD and CCSD models and with R = 40, 56
and 80 a0 for each model. The predicted energy rang is
0.04–0.40, 0.057–0.60, and 0.081–0.81 a.u. for R = 80, 56,
and 40 a0, respectively. Then we extracted the phase shifts
from the energies and made an interpolation to get the phase
shifts anywhere. The further long-range correction to the
phase shift, made by integrating the −αd/(2r4) polarization
potential outwards from r = R to 10R, was always less than
0.0001 rad with the correction being largest at the smallest
energies. The final phase shifts obtained by using the energies
with different radius in the interpolation are termed in the
following discussions as DCB, LCCSD, and CCSD results,
respectively. One should note that higher angular momentum
B-spline basis should be included to represent the long-range
behavior of the wave functions when the radius of cavity is
enlarged. Since we used the same B-spline basis set in all the
calculations, the quality of last two or three discrete energies
would become worse with the increment of the radius.

Figure 1 plots tan δ/k versus k, where k is the momentum
of the incident electron, for s-wave to compare the CCSD
phase shifts with different radius of the cavity. One can find
noticeable irregularities in the energy dependence for R80
results when k > 0.35 a.u. and for R56 results when k >

0.55 a.u. Combining with the fact that the tail of R56 results
show a better behavior than R80 results, the feature supported
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FIG. 1. The s-wave tan δ/k vs k from the CCSD calculations with
different radius for low-energy electron-argon scattering.

our prediction that higher energy levels would become worse
when the radius becomes larger. So we only use the energies
of R80 calculation when k < 0.35 a.u., R56 when k < 0.55
a.u., and all R40 results in the interpolation to obtain the final
CCSD phase shifts. A quite similar phenomenon can also be
found for DCB and LCCSD calculations with different radius
of cavity that are not presented for the sake of clarity, thus
a similar procedure is adopted to produce the final DCB and
LCCSD results reported in this manuscript. Omitting the tails
of the R56 and R80 calculations in Fig. 1, all results are almost
indistinguishable from each other. This is an validation for the
consistence of the present calculations with different radius. It
is naturally to conclude that the discrete energy of any value
between 0.04 − 0.8 a.u. can be obtained by continuously
changing the radius of cavity from 80 a.u. to 40 a.u., and the
results should also agree with the final results presented here.

FIG. 2. The tan δ/k vs k of s-wave for low-energy electron-argon
scattering.

IV. COMPARISON WITH EXPERIMENTAL
AND THEORETICAL DATA

The scattering of low-energy electron by argon has been
the subject of extensive experimental and theoretical investi-
gations. The crossed-beam technique is most frequently used
to directly measure the differential cross sections (DCS).
Then the integrated cross sections (ICS), including total cross
sections, momentum transfer cross sections, and viscosity
cross sections, can be obtained by integrating the DCS over
the whole angular range. One important origin of uncertainties
is the extrapolation procedure, which is always via phase-
shift analysis or least-squares fitting with analytical functions,
to get the cross sections at all angles. There have been a
number of measurements performed using this technique and
a series of phase shifts, DCS and ICS have been reported
for electron-argon system [14,21–30]. Most of these measure-
ments [21,22,24–26,29] are limited to relative measurements
of cross sections, and the data needs to be scaled into absolute
cross sections using the relative-flow technique or normalized
to the existing benchmark data. There are also some direct
measurement of the total cross sections [14,23,27,28] provid-
ing reliable upper bound of the cross-section data. The most
recent measurement was performed by Kurokawa et al. [14]
where a method for producing an electron beam at very low
energy was developed and the grand total cross sections were
reported from as low as 7 meV to 20 eV.

Swarm measurement is another widely used technique in
electron-atom scattering. The distinguishing feature of this
technique lies in the fact that they can provide absolute cross
sections at low energies accounting for scattering through all
angles. With some approximations to solve the Boltzmann
equation, which are valid in low-energy electron scattering
on noble gas atoms where only elastic scattering occurs, the
total momentum transfer cross sections can be unfolded from
the experimental data of the transport coefficients, such as the
drift velocity and the diffusion coefficient. Then a phase shift
analysis can be adopted on the swarm-derived cross sections
to obtain the phase shifts and differential cross sections. The
complicated unfolding procedure and the phase-shift analysis
would introduce large uncertainties. Care must be taken in
the procedure of theoretical analysis. The swarm-derived mo-
mentum transfer cross sections of low-energy electron-argon
scattering have been reported by several groups [31–35]. The
differential cross sections and total elastic cross sections are
also reported by Haddad and O’Malley [34].

Obviously the phase shift analyzing, mostly based on the
modified effective range theory (MERT) [18–20], is nec-
essarily needed to obtain various cross sections and make
direct comparisons between different measurements. It is also
necessary in the extrapolation procedure from the existing
experimental cross sections and theoretical phase shifts. The
standard four parameter MERT (MERT4) expansion is valid
to fit low-energy phase shift data and the uncertainty intro-
duced is always less than 0.5% [20]. On the other hand, using
MERT4 in the analyzing of experimental cross sections would
introduce large uncertainties especially at energies below
0.5 eV where the correlation effect becomes dominant. So
MERT5 or MERT6 (more higher order terms and adjustable
parameters are added) is a more proper choice in these cases.
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TABLE II. The CCSD phase shifts (in rad) for e−-Ar scattering. The first row for the δ0 column gives the scattering length (in a0).

k δ0 δ1 δ2 δ3

s p 1
2

p 3
2

d 3
2

d 5
2

MERT f 5
2

f 7
2

MERT

0 −1.39
0.05 0.03999 0.00434 0.00433 0.00069 0.00069 0.00083 0.00015 0.00015 0.00028
0.1 0.03308 0.01331 0.01317 0.00288 0.00288 0.00332 0.00073 0.00073 0.00111
0.2 −0.06107 0.02222 0.02132 0.01276 0.01277 0.01326 0.00358 0.00358 0.00442
0.3 −0.2058 −0.00303 −0.00531 0.03253 0.03257 0.02983 0.00856 0.00857 0.00995
0.4 −0.3704 −0.06543 −0.06926 0.06826 0.06841 0.05300 0.01594 0.01594 0.01768
0.5 −0.5420 −0.1547 −0.1601 0.1297 0.1301 0.08270 0.02599 0.02600 0.02762
0.6 −0.7138 −0.2587 −0.2654 0.2340 0.2342 0.11879 0.03928 0.03932 0.03976
0.7 −0.8824 −0.3692 −0.3771 0.3987 0.3998 0.16105 0.05647 0.05647 0.05410
0.8 −1.049 −0.4815 −0.4903 0.6401 0.6412 0.20909 0.07691 0.07690 0.07061

On the theoretical side, the phase shifts, differential and
integrated cross sections for low-energy electron scattering
on argon were reported by complex optical potential (COP)
calculations of McEachran and Stauffer [36–38] and Mim-
nagh et al. [39], the MCHF calculations of Saha [40,41],
the B-spline R-matrix (BSR) calculation of Zatsarinny et al.
[42], and a number earlier calculations [43–48]. Note that the
BSR differential and integrated cross section can be found in
the LXcat database [49]. There are also two comprehensive
studies for e-Ar scattering in a large energy region from
Adibzadeh and Theodosiou [50] and Haque et al. [51]. How-
ever, the agreement between theory and experiments is still
not satisfactory especially in the case of differential cross
sections. For the sake of clarity, at all the cases presented in
this paper, we show only a few of the calculated cross sections
which demonstrate the best accord with experiment.

A. phase shifts and scattering length

The results of tan δ/k versus k for s-wave of final DCB,
LCCSD and CCSD calculations are compared with available
theoretical [37,39,40] and experimental data [22,29,30] in
Fig. 2. The importance of the correlation effect can be found in
the significantly lower values of DCB results. The DCB value
is always negative because the polarization effect is neglected
and then the interaction between the incident electron and the
target is repulsive. In the LCCSD calculations, the phase shifts
is positive at k < 0.175 a.u. since the polarization effect leads
to the projectile-target interaction being attractive at very low
energies. The phase shifts in CCSD calculations, in which the
nonlinear terms are incorporated, is positive when k < 0.146
a.u. indicating a less attractive projectile-target interaction.
The obviously lower values of the CCSD calculation compar-
ing with the LCCSD results reveals the importance of includ-
ing nonlinear terms in the coupled-cluster calculation at very
low energies. The LCCSD and the MCHF results of Saha [40]
tend to be larger below 0.2 a.u., while the COP calculations
[37,39] are slightly lower above 0.6 a.u. The present CCSD
values are in a close agreement with the experimental data
of Gibson et al. [22] and Williams [30]. The one exception
occurs at k = 0.54 a.u. where the measurement of Gibson
et al. [22] appears to have an irregularity. The uncertainties
of the measurement of Williams [30] are reported to be from

3% to 5% and the corresponding error bars are not displayed
in the figure.

The CCSD phase shifts for the individual partial waves,
along with the integrated cross sections, are tabulated in
Tables II and III, respectively. The s-wave and p-wave phase
shifts go through zero for momentum between 0.1 and 0.2 a.u.,
and 0.2 and 0.3 a.u., respectively. This contributes to the depth
of the well-known Ramsauer-Townsend (RT) minimum that
we can find in the cross sections in the following parts. The
MERT values for the d-wave and f -wave are also presented
for comparison. The CCSD phase shifts at the lowest energies
for the d-wave and f -wave did not converge to the MERT
formula as expected. Although these partial waves only con-
tribute to the cross sections by less than 4% when k � 0.1 a.u.,
this do indicate the incompleteness of the description for the
electron-atom polarization in the present methodology.

Scattering lengths, which is directly related to the cross
sections at zero limit, are listed in Table IV comparing with
previous reported studies. As discussed above, the DCB value
of scattering length is positive because the polarization effect
is excluded and the interaction between the incident electron
and the target is repulsive. The negative values of scattering
lengths for LCCSD and CCSD calculations show that the
polarization leads to this effective interaction being attractive.
A smaller value of −1.39 a0 is predicted in our CCSD
calculation and this is due to a less attractive interaction with

TABLE III. The CCSD total elastic cross sections σT, momentum
transfer cross sections σMT, and viscosity cross sections σV (in πa2

0)
for e−-Ar scattering.

k σT σMT σV

0 7.7284 7.7284
0.05 2.734 2.126 1.682
0.1 0.6501 0.2343 0.3222
0.2 0.6126 0.7300 0.4239
0.3 2.111 1.958 1.725
0.4 4.277 3.358 3.384
0.5 6.897 5.359 5.172
0.6 10.18 8.440 6.972
0.7 14.57 12.72 8.627
0.8 20.35 17.40 9.816
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TABLE IV. The scattering length (in a0) for e−-Ar scattering.
The BSR value is derived from its zero-energy momentum transfer
cross sections in the LXcat database [49].

Ascat (a0)

theory
DCB 1.48
LCCSD −1.82
CCSD −1.39
Saha [41] −1.486
McEachran and Stauffer [37] −1.441
Mimnagh et al. [39] −1.386
Bell et al. [47] −1.68
BSR [49] −1.449

experiment
Haddad and O’Malley [34] −1.488
Ferch and Raith [28] −1.449
Weyhreter et al. [25] −1.593
Buckman and Mitroy [20] −1.442
Petrovic et al. [52] −1.459
Kurokawa et al. [14] −1.365(5)

the inclusion of nonlinear terms. The 30% differences be-
tween LCCSD and CCSD scattering lengths indicate that the
nonlinear terms have a big impact on the scattering lengths.

Most of the experimental predictions for scattering lengths
lie in the range of −1.44 a0 and −1.60 a0, except the most
recent measurement from Kurokawa et al. [14]. However,
scattering lengths are estimated by MERT analysis of cross
sections or phase shifts at finite energies, and these are ob-
tained from the measurements mostly restricted at a relatively
higher energy range (�50 meV), thus it may have uncertainty
in extrapolating the cross-section curve down to zero energy
by the MERT fit. Especially for swarm experiments, deriving
the momentum transfer cross sections from the macroscopic
experimental results includes a complicated and cumbersome
unfolding procedure that is another important origin of uncer-
tainty. Another important factor is the functional form of the
MERT expressions used to extract the scattering length. As we
discussed above, using MERT4 in analyzing of experimental
cross sections would introduce large uncertainties especially
at energies below 0.5 eV. The experiment of Kurokawa et al.
[14] is a single-collision measurement starting from as low
as 7 meV and an extended version of MERT6 formula was
used to minimize the uncertainty. They reported a value of
scattering length of −1.365[5] a0. On the theoretical side,
the value of Bell et al. [47] is −1.65 a0 being larger than
all other results. The MCHF scattering length of −1.486 a0

shows excellent agreement with the experimental value from
[34]. The nonrelativistic COP calculation [39] included the
dynamic distortion effects and predicted a value of −1.386 a0,
whereas their later relativistic calculation in Ref. [37] gives a
scattering length of −1.441 a0. Their calculations also indi-
cate that relativistic effects are significant at energies below
5 eV, giving rise to p1/2 and p3/2 phase shifts which differ by
20% at 1 eV and 3% at 3 eV. The BSR value of −1.449 a0

is derived from its zero-energy momentum transfer cross sec-
tions, 7.387200 × 10−20 m2, from the LXcat database [49].
Both the BSR and relativistic COP scattering lengths agree

well with experimental predictions from [20,28]. The present
CCSD scattering length of −1.39 a0 differs with the value
of Ref. [14] only by less than 2%. More measurement at
much lower energies are needed to precisely determine the
scattering length for electron-argon scattering.

B. Differential cross sections

The differential cross section σe�(θ ) is calculated as

σe�(θ ) = | f (θ )|2 + |g(θ )|2, (14)

where f (θ ) and g(θ ) are the direct and spin-flip scattering
amplitudes, respectively. The relativistic amplitudes and the
T-matrix element are calculated as

f (θ ) = 1

k

∞∑
�=0

((� + 1)T +
� (k) + �T −

� (k))P�(cos θ ), (15)

g(θ ) = 1

k

∞∑
�=0

(T −
� (k) − T +

� (k))P1
� (cos θ ), (16)

T ±
� (k) = eiδ±

� (k) sin(δ±
� (k)). (17)

In these equations, δ+
� refers to the phase shift with j = � + 1

2
and δ−

� refers to the phase shift with j = � − 1
2 .

Comparing with the integrated cross sections presented in
the following part, the differential cross section is a more strict
test for different theoretical method since the DCS is much
more sensitive to the description of the relativistic nature
and target polarization effect of the electron-target system.
Actually obviously discrepancies can be found between the
existing theoretical and experimental data at the DCS of low-
energy forward and backward electron-argon scattering and
the differences could be as large as 20% as we can find in the
following figures.

The DCB, LCCSD and CCSD calculations of differential
cross sections (DCS) for incident electron energies of 1, 3,
5, and 7.5 eV are presented in Fig. 3 to verify the effect of
different treatment for the polarization. Note that the s-wave
contribution to the DCS is the same at all angles and the
minima are mainly determined from the p-wave and d-wave.
At 1 eV, the fact that DCB cross sections are approximately
one order larger at all angles indicates that the correlation
effect plays a dominant role in the scattering process at such
a low energy. The LCCSD and CCSD calculations exhibited
obvious discrepancies at small angles. As energy increases,
the DCB and LCCSD calculations behave better especially
at the angles larger than 90◦. The DCB cross sections at
7.5 eV are only slightly larger above 140◦ and below 40◦.
The difference between LCCSD and CCSD cross sections
is almost negligible at 5 and 7.5 eV above 60◦. However,
the LCCSD results still always have a marginally deeper
minimum at a slightly larger angle. These features conclude
that the target polarization is less important above 7.5 eV
and a more complete description of the polarization effect is
essential to obtain more accurate differential cross sections
below 5 eV especially below 60◦ and around the minimum.

The present CCSD DCS are compared with the most recent
experimental and theoretical data in Figs. 4–7. At 1.0 eV, the
measurements of Gibson et al. [22], Weyhreter et al. [25]
and Haddad and O’Malley [34], and the COP calculations of
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FIG. 3. The present differential cross sections (in πa2
0) for low-energy electron-argon scattering. CCSD cross sections (solid), LCCSD

cross sections (dashed line), and DCB cross sections (dotted line).

McEachran and Stauffer [37] are displayed for comparison.
Note that the BSR cross sections at 0.952 eV [49] are also
shown in the figure. This is reasonable since we have checked
that our CCSD results at 0.952 eV are indistinguishable from
that at 1 eV. Weyhreter et al. [25] stated their uncertainties to
be from 0.1% to 1.2% which is too small to be shown in the
figure. Gibson et al. [22] gives the uncertainties of typically
around 10% at most of angles, while the uncertainty is as
large as almost 100% at their smallest angle 30◦ due to the
very small cross sections. The measurements of Gibson et al.

FIG. 4. The differential cross section (in πa2
0) with the incident

electron energy 1 eV for low-energy electron-argon scattering.

[22] and Weyhreter et al. [25] shows excellent agreement, but
both of them did not give any data below 20◦ and the position
of minimum cannot be identified. Haddad and O’Malley [34]
reported their cross section from 3◦ but their results are
significantly larger than other data at angles above 30◦. Our
CCSD cross sections predicted a minimum at 20◦, which is
close to the data of Haddad and O’Malley [34], and agree well
with their cross sections below 20◦. The BSR and COP cross
sections agree well with each other between 10◦ and 30◦, and
both of them predicted a minimum at 25◦. At angles larger
than 60◦, all the theoretical cross sections show excellent
agreement with the experimental data of Gibson et al. [22]
and Weyhreter et al. [25]. Between 30◦ and 60◦, the CCSD and
BSR cross sections are slightly larger but all theoretical data
are lying within the uncertainties of these two experiments.

In Fig. 5, our CCSD DCS at 3 eV are compared with the
measurements of Gibson et al. [22], Furst et al. [24], and
Srivastava et al. [29], and the COP calculations of McEachran
and Stauffer [37], the optical potential model (OPM) calcu-
lation of Haque et al. [51], and the BSR cross sections at
2.993 eV [49]. Most of these measurements, as well as the
measurements displayed in Figs. 6 and 7, are reported with un-
certainties from 6% to 15%. Srivastava et al. [29] stated their
uncertainties to be 20% at all the angles. A distinct feature
of Fig. 5 is the appearance of the second minimum which is
much smaller than the first minimum. Unfortunately although
the experimental data are all lying within the uncertainties of
each other, they are all restricted in the angle range between
20◦ and 130◦ and can not give any information about the posi-
tion of both minima. All the theoretical calculations revealed
the existence of two minima but predicted slightly different
magnitudes and positions. With the outlier of the OPM cross
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FIG. 5. The differential cross section (in πa2
0) with the incident

electron energy 3 eV for low-energy electron-argon scattering.

sections [51], most of the theoretical data agree well with the
experimental measurements in the angular range between two
minima but shows obvious discrepancies outside this range.
The BSR DCS are above all other cross sections between 15◦
and 60◦ while the OPM cross sections are significantly larger
above 140◦. The present CCSD DCS tend to be the lowest one
below our first minimum around 15◦ and above the second
minimum at 135◦. This phenomenon can also be found in
the DCS at 5 and 7.5 eV where the CCSD calculation also
gives the lowest cross sections. More detailed measurements
at this angular range are needed to verify different theoretical
models.

The CCSD DCS at 5 eV are plotted in Fig. 6 and compared
with the measurements of Mielewska et al. [21], Gibson et al.
[22], Furst et al. [24], and Srivastava et al. [29], and the
calculations of McEachran and Stauffer [37], Adibzadeh and
Theodosiou [50], and Haque et al. [51]. The measurements

FIG. 6. The differential cross section (in πa2
0) with the incident

electron energy 5 eV for low-energy electron-argon scattering.

FIG. 7. The differential cross section (in πa2
0) with the incident

electron energy 7.5 eV for low-energy electron-argon scattering.

were in a larger angular range and the positions of two minima
are revealed at around 25◦ and 125◦ that are consistent with
present CCSD calculation. The situation is similar with the
case at 3 eV. With the exception of the DCS from Haque
et al. [51], the agreement level between the two minima
are excellent among the theoretical and experimental data,
while our CCSD cross sections are the lowest theoretical data
outside this angular range where all the experimental data also
produced significantly lower cross sections. Although obvi-
ously larger than the data of Mielewska et al. [21] above 140◦,
our CCSD cross sections behave better than other calculations
and tend to be the only theoretical data that shows excellent
agreement with the measurements of Gibson et al. [22] and
Furst et al. [24] at the angles below 30◦.

A very much similar situation can be found in the DCS
at 7.5 eV in Fig. 7 where our CCSD DCS are compared
with the measurements of Mielewska et al. [21], Gibson
et al. [22], and Srivastava et al. [29], and the calculations
of Adibzadeh and Theodosiou [50] and Haque et al. [51].
The calculations from Adibzadeh and Theodosiou [50] and
Haque et al. [51] in which different model potentials are
used to study the electron-argon scattering in a very large
energy range both yield obviously larger cross sections below
60◦ and above 140◦, and their calculations also predicted a
much deeper second minimum. Our CCSD cross sections
are once again the only theoretical data that shows excellent
agreement with the experimental data below 60◦ and shows
much better agreement than other calculations above 140◦. As
a further check, we also compared our CCSD DCS at 4.898
and 7.619 eV with the BSR DCS [49]. The comparisons are
not presented here for simplicity. Both calculations yield the
same positions of the two minima at both energies. The BSR
DCS are significantly larger than CCSD DCS below 80◦ at
4.898 eV, while they show excellent agreement above 80◦ at
4.898 eV and at the whole angular range at 7.619 eV.

By checking the DCS in these energies, one can conclude
that most of the theoretical data including our CCSD results
are in a close agreement with the experimental data in the
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central range (30◦–140◦), while all the previous theoreti-
cal calculations significantly overestimated the experimental
cross sections outside this angular range. This discrepancy
is probably due to the incomplete description of the correla-
tion effect and the relativistic nature. By taking both linear
and nonlinear terms into account in the single- and double-
excitation coupled cluster calculations, our CCSD cross sec-
tions resolved the discrepancy below 30◦ and shows excellent
agreement with experiments. Furthermore, the CCSD DCS
also shows a better agreement with experiments above 140◦.
Generally the present CCSD differential cross sections shows
by far the best agreement with existing experimental measure-
ments.

C. Integrated cross sections

Various accurate integrated cross sections for low-energy
electron scattering are of crucial importance for determining
the atomic and molecular structure and studying electron
transport in matter, and are also needed in many applications.

The total cross section σT is one of the most reliable
quantities to characterize the scattering process since it can be
determined without any normalization procedure. Therefore
it may serve as a standard value (an upper limit) for the
normalization of data for individual scattering process and/or
as a test of theoretical models. The higher-order cross sections
σr, usually referred to as momentum transfer cross sections
σMT when r = 1 and as viscosity cross sections σV when
r = 2, are also of particular importance in various domains
of electron kinetic and transport theories. For example, both
cross sections are necessary in solving the multiterm Boltz-
mann equation to establish the form of the electron steady-
state distribution function for a weakly ionized plasma placed
in an external dc electric field. These cross sections are usually
defined as

σT = 2π

∫ π

0
σe�(θ ) sin θdθ, (18)

σr = 2π

∫ π

0
σe�(θ )(1 − cosr θ ) sin θdθ. (19)

Then we can obtain the cross sections as

σT = 4π

k2

∞∑
�=0

(
(� + 1) sin2(δ+

� ) + � sin2(δ−
� )

)
, (20)

σMT = 4π

k2

∞∑
�=0

(
(� + 1)(� + 2)

(2� + 3)
sin2(δ+

� − δ+
�+1)

+�(� + 1)

(2� + 1)
sin2(δ−

� − δ−
�+1)

+ (� + 1)

(2� + 1)(2� + 3)
sin2(δ+

� − δ−
�+1)

)
, (21)

σV = 4π

k2

∞∑
�=0

(
2�(� + 1)

(2� − 1)(2� + 1)(2� + 3)
sin2(δ+

� − δ−
� )

+ �(� + 1)(� + 2)

(2� + 1)(2� + 3)
sin2(δ−

� − δ−
�+2)

+ (� + 1)(� + 2)(� + 3)

(2� + 3)(2� + 5)
sin2(δ+

� − δ+
�+2)

+ 2(� + 1)(� + 2)

(2� + 1)(2� + 3)(2� + 5)
sin2(δ+

� − δ−
�+2)

)
. (22)

FIG. 8. The individual s-, p-, and d-wave contribution to the total
elastic cross sections (TCS).

Our cross sections from DCB, LCCSD, and CCSD calcula-
tions are presented and compared with available experimental
and theoretical data in Figs. 9–11, respectively. A dominant
feature of the integrated cross sections for electron-rare gas
scattering is the existence of Ramsauer-Townsend (RT) mini-
mum. The individual contributions from s-, p-, and d-waves to
the total cross sections are displayed in Fig. 8 to explain this.
The s-wave cross sections decrease to zero rapidly and then
rise as the energy increases. The minimum occurs when the
s-wave contribution is almost negligible and the contributions
from other partial waves are still small. The prediction of RT
minimum is a critical test for experiment and theory.

There have been a number of experimental and theoretical
total elastic and momentum transfer cross sections reported
for electron-argon system. To avoid cluttering the graph, the
presentation of data from other sources has been selective.

FIG. 9. The elastic cross section (in πa2
0) as a function of mo-

mentum (in a.u.) for low-energy electron-argon scattering.
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FIG. 10. The momentum transfer cross section (in πa2
0) as

a function of momentum (in a.u.) for low-energy electron-Ar
scattering.

Only some recent measurements covering the position of RT
minimum and the theoretical calculations showing the best
accordance with experimental data are depicted in Figs. 9 and
10. The displayed theoretical cross sections are the relativistic
COP calculation of McEachran and Stauffer [37], the BSR
calculation of Zatsarinny et al. [42], the model potential
calculation of Adibzadeh and Theodosiou [50], and the most
recent OPM calculation of Haque et al. [51]. Note that the
OPM calculations are performed in the energy range from
1 eV to 0.5 GeV. Their cross sections behave well at middle
and high energies but are significantly different from all other
data sets in the energy region discussed in this work.

In Fig. 9, the beam experiments of Kurokawa et al. [14],
Gibson et al. [22], Buckman and Lohmann [27], Ferch and
Raith [28], and the swarm derived results of Haddad and

FIG. 11. The viscosity cross section (in πa2
0) as a function of

momentum (in a.u.) for low-energy electron-Ar scattering.

O’Malley [34] are presented for comparison. The measure-
ment of Kurokawa et al. [14] has a relatively larger uncer-
tainties, which range from 10% to 30%, around the position
of RT minimum. The uncertainties decrease to only 1% or
2% at the energies far from the minimum, then one cannot
find the error bar in the figure. Gibson et al. [22] reported
their total cross sections, as well as momentum transfer cross
sections in Fig. 10, at the energies above the RT minimum
with an uncertainty of typically from 7% to 9%. The reported
uncertainties varies from 3% to 6% for the measurement
of Buckman and Lohmann [27], in which the uncertainties
decrease as the energy increases, and from 1% to 3% for Ferch
and Raith [28] where the largest uncertainty occurs around the
RT minimum. The error bars of both two sets of data are so
small that they are not displayed in the figure for the sake of
simplicity.

The cross sections show a steep increase as energies de-
crease below the RT minimum. Once again the absence of
target polarization in DCB model leads to quite different cross
sections and the difference tends to be smaller as the energy
increases. The inclusion of nonlinear terms in the CCSD
calculation gives the RT minimum at k = 0.145 a.u. (E =
0.286 eV) being slightly smaller than the LCCSD value of k =
0.177 a.u. (E = 0.426 eV). The LCCSD cross sections merge
into the CCSD results above 0.5 a.u.. Similar phenomenon
for DCB and LCCSD results can also be found in Figs. 10
and 11. There is a tendency for difference between theory and
experiment to vanish at energies above the RT minimum with
only one exception of Haque et al. [51]. This cancellation of
differences was also apparent in comparisons of momentum
transfer cross sections in Fig. 10. At the energies below the
RT minimum, the results of Adibzadeh and Theodosiou [50]
tend to obviously overestimate the cross sections, whereas the
CCSD, BSR [42], and relativistic COP [37] cross sections
are in a close agreement with experimental data. The most
obvious discrepancy occurs at the position of the RT min-
imum. Our CCSD value of 0.286 eV is close to 0.298 eV
for both the measurements of Haddad and O’Malley and the
BSR calculations, while other theoretical and experimental
RT minimum are at 0.323 eV for Ref. [14], 0.340 eV for
Ref. [27], 0.345 eV for Ref. [28], 0.310 eV for Ref. [37],
and 0.400 eV for Ref. [50], respectively. The theoretical
prediction of RT minimum is very sensitive to the fine details
of the projectile-target interaction, however, the CCSD, BSR,
and COP predictions exhibit a reasonable agreement. The
experimental values of RT minimum differ with each other
obviously and the measurements all have large uncertainties.
More measurements are needed to precisely determine the
location of the RT minimum.

The momentum transfer cross sections are compared with
the swarm derived results of Schmidt et al. [31], Suzuki et al.
[32], and Haddad and O’Malley [34], and the phase shift
derived results of Gibson et al. [22] in Fig. 10. A similar
situation with the case of total cross section can be found. The
CCSD RT minimum is at k = 0.125 a.u. (E = 0.213 eV) while
it is at k = 0.153 a.u. (E = 0.318 eV) in LCCSD cross sections.
The calculation of Adibzadeh and Theodosiou [50] once again
tends to overestimate the cross section at the energies below
the RT minimum, the OPM calculation of Haque et al. [51]
is an outlier, while the CCSD, BSR [42], and COP [37] cross
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sections are all in a close agreement with experimental data.
The CCSD RT minimum is close to 0.219 eV for both the
measurements of Haddad and O’Malley and the BSR calcula-
tions, while other theoretical and experimental RT minimum
are at 0.244 eV for Ref. [32], 0.230 eV for Ref. [37], and
0.400 eV for Ref. [50], respectively.

The viscosity cross sections plotted in Fig. 11 are also
of particular interest in many fields. For instance, it will be
encountered in the kinetic theory of viscous effects and it is
also necessary in the solutions of the Boltzmann Equation
going beyond the two-term approximation [53,54]. However,
this fact seems to have lacked adequate emphasis in the
literature. To the best of our knowledge, the viscosity cross
sections for electron-argon system are only reported from
beam experiments by Panajotovic et al. [55] above 10 eV,
and from a MERT analysis by Zigman and Milic [53] above
0.13 eV using phase shifts from the measurements of Williams
[30], respectively. A very sophisticated fitting procedure is
developed and the viscosity cross sections are reported in
a relativistic COP calculation from McEachran and Stauffer
[56]. More recently, the OPM calculation of Haque et al.
[51] also reported the viscosity cross sections from 1 eV to
0.5 GeV. However, the low-energy OPM cross sections are
significantly different from other sets of data. A good agree-
ment can be found between the CCSD and COP cross sections
[56], and both calculations lie within the uncertainties of the
cross sections obtained from the phase shifts of Williams [30],
where the uncertainties are given to be approximately 9%.
However, the position of RT minimum cannot be determined
from the experimental data. Once again an indication of the
impact of correlation effect and the nonlinear terms can be
gained from the comparison among our DCB, LCCSD and
CCSD cross sections that are very similar with the situation
in total elastic and momentum transfer cross sections. The
CCSD RT minimum is at k = 0.14 a.u. (E = 0.267 eV) being
slightly smaller than the LCCSD results of k = 0.168 a.u.
(E = 0.384 eV).

V. PERSPECTIVES AND CONCLUSIONS

In the present manuscript, the idea of box-variational
method are applied to the description of low-energy electron-
argon scattering by combining relativistic coupled-cluster
method considering all nonlinear and linear single-double
approximation. The phase shifts are extracted and then used
to obtain a further set of differential cross sections, total
elastic, momentum transfer, and viscosity cross sections. The
impact of the correlation effect at different energy regions is
revealed by the comparison among DCB, LCCSD, and CCSD
calculations in various cross sections. The cross sections are
proved to be very sensitive to the description of correlation
effect particularly at the energies below 5 eV.

The validity and accuracy of our method are verified by
the good agreement between the present CCSD data with
experiments. The CCSD DCS shows excellent agreement with
most of existing experimental data in both forward and central
angular regions, especially at the forward scattering where

the previous theoretical DCS significantly overestimated ex-
perimental data. In terms of the integrated cross sections,
our CCSD total elastic, momentum transfer, and viscosity
cross sections also exhibit a good agreement with the exper-
iments and the relativistic dynamic distortion calculations of
McEachran and Stauffer [37,56] and the BSR calculations of
Zatsarinny et al. [42] with the only exception being slight dif-
ference in the position of the Ramsauer-Townsend minimum.
The scattering length is an important parameter characterizing
the incident electron-target interaction at very low energies.
Our predicted scattering length differs by less than 2% with
the value derived from the analysis of the most recent beam
experiments [14].

Examination of the DCS at different energies reveals some
interesting features. Although the present CCSD DCS has
exhibited by far the best agreement with experiments, our
cross sections still obviously overestimated the experimental
data in the backward scattering. Another worth noting point
is at the phase shifts of higher � partial waves. At the lowest
energies for the higher � partial waves, one expects calculated
phase shifts to converge to the MERT formula. However, this
does not occur. The present CCSD d-wave and f -wave phase
shifts are slightly smaller than the MERT phase shifts. These
features do not have much impact on the cross sections. But
they do indicate that a theoretical methodology that includes
nonlinear terms of single and double excitations does not
capture 100% of the electron-atom polarization interaction.
A proper treatment of triple and higher order excitations is
needed.

The emphasis of the most recent electron scattering re-
searches has been focused on developing theories that do a
reasonable job of modeling excitation and ionization over
a large energy range rather than purely elastic scattering.
However, the very low-energy scattering is the most sensitive
to the fine details of the electron-atom interaction and it is
a critical test for theories. The application of the method to
more complex rare gas systems where spin-exchange effect is
more obvious would be straightforward. Modification of the
method aiming the application to energy regions where inelas-
tic events are possible is also developing. The present study
also paved a way to apply the box-variational method to low-
energy electron-molecule scattering. Obtaining accurate data
for low-energy electron-molecule scattering is a very chal-
lenging task, however, such information are indeed needed for
electron-impact chemistry [57]. The box-variational method
bypasses many complications in existing scattering calcula-
tions, and provides a relatively simple way to extract the
scattering information from accurate energies of discretized
continuum states of electron-molecule system which can be
solved using existing methods.
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