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We derive a general quantum-mechanical transition amplitude in the prior version of the three-body boundary-
corrected continuum-intermediate-state (BCIS-3B) method for single charge exchange in collisions of heavy
nuclei with atomic hydrogenlike targets. The obtained expression is valid for all the transitions from the initial
ground to any final hydrogenlike bound states (1s → nlm), where {n, l, m} is the usual triple of the quantum
numbers (principal, angular, magnetic). The outcome is semianalytical: a judicious combination of an analytical
calculation (as far as feasible) and the subsequent numerical computations (quadrature for integrals that could
not be reduced to closed formulas). The final results for the T -matrix elements are a compact double integration
computed by numerical quadratures over real variables in finite intervals. The ensuing total cross section is
a single numerical quadrature of the squared absolute value of this transition amplitude integrated over the
magnitude of the transverse momentum transfer vector. This can provide detailed information on the cross
sections for each individual subshell {n, l, m} of the newly formed hydrogenlike atom or ion comprised of a
projectile nucleus and the captured electron. Using these general expressions, we computed a large number of
state-selective and state-summed cross sections (both differential and total) for electron capture in the p-H, α-H,
and p-He collisions at intermediate and high impact energies. The energy dependence of the cross sections for
the individual shells and their subshells with the fixed quantum numbers n, {n, l}, and {n, l, m} are reported via
detailed tables and figures. Also, differential cross sections (state selective and summed) are computed for the
p-H collisions at 60, 125, and 5000 keV. All the present results from the BCIS-3B method are found to be in very
good agreement with the existing experimental data on differential and total cross sections, both state selective
(whenever available) and state summed. The provided cross-section database can find important applications in
several investigative fields ranging from plasma physics, astrophysics, and heavy-ion transport physics through
fusion research and technology to hadron therapy.
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I. INTRODUCTION

Abundant applications of different perturbative [1–6] and
nonperturbative [7–14] methods for studying the problem of
charge exchange in ion-atom collisions at intermediate and
high impact energies have a long history, dating back to the
pioneering work of Oppenheimer [15] as well as Brinkman
and Kramers [16]. The most significant developments with a
lasting effect to the current times have been carried out with
the methods fulfilling the correct boundary conditions in both
scattering channels. In a review paper [1], a long-standing
issue was resolved concerning the often misunderstood role of
the internuclear Coulomb interaction potential. This was made
possible by understanding and appreciating the importance
of the correct Coulomb boundary conditions as the working
solution of the well-known asymptotic convergence problem
[1,17,18].

Such conditions consist of a simultaneous requirement for
the correct asymptotic behaviors of the scattering wave func-
tions in the entrance as well as exit channels and the proper
introduction of the corresponding perturbation interactions

that produce the transitions from the initial to the final states
of the system. In other words, it is not permitted to choose
a total scattering wave function by ignoring its relationship
with the corresponding perturbation potential in the given
transition amplitude. Overlooking this provision resulted in
many misleading publications in the past, as reviewed in
Refs. [1–5]. In particular, Ref. [1] is known for several very
important results. Among these is the general proof that the
internuclear Coulomb potential does not contribute to the
exact eikonal total cross sections. Moreover, a notable byprod-
uct contained in the exact eikonal transition amplitude is the
three-body boundary-corrected first Born (CB1-3B) method.
The introduction of this proper first-order perturbation the-
ory from Ref. [1] conclusively resolved the well-known and
long-standing controversy about the Oppenheimer-Brinkman-
Kramers (OBK) versus Jackson-Schiff-Bates-Dalgarno (JS-
BD) first-order perturbative approximations for charge ex-
change. The former approximation has then been discarded
as being never adequate, whereas the latter one was finally
understood to be fortuitously correct only for a single case of
electron capture from atomic hydrogen by protons. Hereafter,
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the clause “eikonal” implies a dominant contribution from
forward-scattered heavy projectiles due to negligible electron-
to-nuclei mass ratios, ∼10−4 or smaller.

In the CB1-3B method, the boundary-correct scattering
state vectors �±

i, f are given by the product of the unperturbed
channel states �i, f and the logarithmic distortion phases L±

i, f
due to the Coulomb long-range remainders V ∞

i, f of the per-
turbation potentials Vi, f . These Coulomb phases L±

i, f for the
relative motions of heavy nuclei are consistent with the short-
range distorting potentials V (CB1-3B)

i, f = Vi, f − V ∞
i, f . Here, V ∞

i, f are
the asymptotic expressions of the channel perturbations Vi, f

when the scattering particles are located at infinite separations
R from each other. Thus, in the convenient notation of Ref. [5],
the prior and post transition amplitudes in the CB1-3B method
are given by the T -matrix elements:

Prior : T (CB1-3B)−
i f = 〈

�−
f

∣∣ξ (CB1-3B)+
i

〉
, ξ (CB1-3B)+

i = V (CB1-3B)

i �+
i ,

(1)

Post : T (CB1-3B)+
i f = 〈

ξ (CB1-3B)−
f

∣∣�+
i

〉
, ξ (CB1-3B)−

f = V (CB1-3B)

f �−
f ,

(2)

respectively. The CB1-3B method was successfully applied
to many single-capture collisions [19–39]. This method has
generally been found to be in very good agreement with the
existing experimental data at intermediate and high impact
energies, below the region where the classical Thomas dou-
ble scattering becomes important. Double scattering of the
electron with the two nuclei is not included in the CB1-3B
method, where capture is mediated by a single collisional
mechanism via direct encounters of the electron with the
projectile nucleus.

Among the second-order formalisms, the two-center three-
body continuum-distorted-wave (CDW-3B) method [18] is
very frequently employed. This is a high-energy, symmet-
ric, boundary-correct approximation. The CDW-3B method
shows a consistent success in a large number of tests against
measured total cross sections. Here, the unperturbed channel
states �i, f are distorted by the full continuum waves associ-
ated with the interactions of the electron with the projectile
and target nuclei in the entrance and exit channels, respec-
tively. The prior and post transition amplitudes in this method
are defined as T (CDW-3B)−

i f = 〈χ (CDW-3B)−
f |{Vi − V (CDW-3B)

i }χ (CDW-3B)+
i 〉

and T (CDW-3B)+
i f = 〈χ (CDW-3B)−

f {Vf − V (CDW-3B)

f }|χ (CDW-3B)+
i 〉, respec-

tively. The distorting potentials V (CDW-3B)

i, f are expressed as
the difference between the channel perturbations Vi, f and
the nonlocal potential operators U (CDW-3B)

i, f = �∇x,s ln ϕi, f · �∇s,x,

so that

Prior : T (CDW-3B)−
i f = 〈

χ (CDW-3B)−
f

∣∣ξ (CDW-3B)+
i

〉
,

ξ (CDW-3B)+
i = U (CDW-3B)

i χ (CDW-3B)+
i ,

(3)

Post : T (CDW-3B)+
i f = 〈

ξ (CDW-3B)−
f

∣∣χ (CDW-3B)+
i

〉
,

ξ (CDW-3B)−
f = U (CDW-3B)

f χ (CDW-3B)−
f . (4)

The associated distorted waves χ (CDW-3B)±
i, f are the products of

bound states ϕi, f and the two full Coulomb waves (one for
the electronic and the other for the nuclear motions). In the

eikonal mass limit for the relative motions of heavy nuclei,
the initial and final Coulomb waves due to the electrostatic
internuclear potential reduce to their asymptotic phases that
disappear from the total cross sections [1]. We see here that a
consistent application of the eikonal hypothesis has practical
advantages. One of them is that the full Coulomb waves for
the relative motion of heavy nuclei can safely be replaced
by their eikonal logarithmic phase factors, as also done in
the CB1-3B method as well as in other first- and second-
order theories.

The three-body boundary-corrected continuum-
intermediate-state (BCIS-3B) method is another second-order
theory which has recently been employed in Ref. [40] for
one-electron capture from the K shell of multielectron atomic
targets (carbon, nitrogen, oxygen, neon, and argon) by bare
projectiles (the nuclei of H, He, and Li) at intermediate
and high impact energies. In the transition amplitude of
the prior BCIS-3B method, the perturbation potential and
the distorted wave in the entrance channel are the same
as in the CB1-3B method, whereas the distorted wave
in the exit channel coincides with that of the CDW-3B
method. On the other hand, in the transition amplitude of
the post BCIS-3B method, the perturbation potential and
the distorted wave in the exit channel are the same as in the
CB1-3B method, whereas the distorted wave in the entrance
channel is identical to that of the CDW-3B method. As such,
the prior and post transition amplitudes in the BCIS-3B
method are defined as T (BCIS-3B)−

i f = 〈χ (CDW-3B)−
f |V (BCIS-3B)

i |�+
i 〉 and

T (BCIS-3B)+
i f = 〈�−

f |V (BCIS-3B)

f |χ (CDW-3B)+
i 〉, where V (BCIS-3B)

i, f = V (CB1-3B)

i, f ,

respectively. Thus,

Prior : T (BCIS-3B)−
i f = 〈

χ (CDW-3B)−
f

∣∣ξ (CB1-3B)+
i

〉
, (5)

Post : T (BCIS-3B)+
i f = 〈

ξ (CB1-3B)−
f

∣∣χ (CDW-3B)+
i

〉
. (6)

This writing, following Ref. [5], transparently shows that the
BCIS-3B method is a hybridization of the CDW-3B and CB1-
3B methods in either the prior or post transition amplitudes.

The forerunner of this formalism is the three-body
continuum-intermediate-state (CIS-3B) method for charge ex-
change between bare nuclei and hydrogenlike atomic sys-
tems [41]. The CIS-3B method satisfies the correct boundary
conditions in one channel (entrance or exit, depending on
whether the post or the prior form of the transition amplitude
is used). In the complementary channel (say, entrance, for
the prior form) with no electronic distortion, the CIS-3B
method replaces the boundary-correct distortion L+

i in �+
i

by the boundary-incorrect Coulomb logarithmic phase due to
the internuclear potential alone VP,T. As a consequence, the
initial perturbation Vi becomes a physically unjustifiable long-
range potential (the Coulomb electrostatic interaction between
the target electron and the projectile nucleus). The CIS-3B
method has been used in various applications [42–45], to cite
only a few. It has subsequently been renamed to the three-
body target-continuum-distorted-wave (TCDW-3B) method
[46–49]. A variant of the CIS-3B or, equivalently, TCDW-3B
method from Refs. [42–49] has recently been extended to
four-body systems and applied to various charge-exchange
collisions [50–52].
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In fact, it was first within four-body problems that
the one-center boundary-correct hybrid methods with
continuum intermediate states have been introduced. This was
the four-body boundary-corrected continuum-intermediate-
state (BCIS-4B) method for double-electron capture in col-
lisions of fast heavy nuclei with heliumlike atomic systems
[53]. Afterward, the BCIS-4B method has been adapted and
successfully applied to single-electron capture from heli-
umlike atomic systems by bare projectiles [54]. Thus far,
both the BCIS-3B [40] and BCIS-4B [53,54] methods have
been employed only in conjunction with the ground-to-
ground state capture. A large number of theoretical studies
have been performed using different four-body methods for
various one- and two-electron transitions in collisions of
completely stripped projectiles and heliumlike atomic sys-
tems or in collisions between two hydrogenlike atoms or
ions [3–5,55].

The main goal of this work is to generalize the BCIS-
3B method to single-electron capture by a bare projectile
from a ground-state hydrogenlike atomic system into the final
arbitrary hydrogenlike shells and subshells {n, l, m} of the
transferred electron. Another goal is to critically assess the
validity and utility of the BCIS-3B method by comparing
the obtained results with the available measurements, for
state-selective and total cross sections as well as for differen-
tial cross sections at intermediate and high impact energies.
We also compare some of our differential and total cross
sections with the corresponding results from the recent close-
coupling-type computations [9–11].

Especially at sufficiently high impact energies, classical
double Thomas scattering yields significant contributions and
it is, therefore, important to evaluate the pertinent predictions
by the BCIS-3B method. This is motivated by the fact that this
approximation contains a quantum-mechanical counterpart
of the Thomas classical billiard-type double scattering. An
important mechanism for a rearrangement collision is the
classical Thomas double scattering through two successive
elastic encounters of the electron on the two nuclei (both
through 60◦). A quantum-mechanical double scattering de-
scribed in the BCIS-3B method proceeds first by ionizing
the target electron and then capturing it from an on-shell
continuum state. The signature of double scattering, within
an angular distribution, is the second-order peak (the Thomas
peak) which at sufficiently high impact energies dominates
over the first-order, forward peak.

The outcomes of the present computations are from the
realm of a charge-changing cross-section database which is
of a notable practical interest not only to atomic collision
physics, but also to plasma physics, astrophysics, and heavy-
ion transport physics. Moreover, such databases can find use-
ful applications in other interdisciplinary areas, ranging from
fusion energy research [56–59] to medical physics (cancer
therapy by high-energy heavy ions) [60–68]. In all these
fields, charge-changing cross sections play an important role
in estimations of energy losses of ions during their passage
through matter of varying kind, including tissue of patients
during radiotherapy treatments.

Atomic units will be used throughout unless otherwise
stated.

II. THEORY

A. Purely three-body charge-exchange problems

We examine single-electron capture in collisions of a nu-
cleus P of mass MP and charge ZP (projectile) with hydrogen-
like atomic systems (target) consisting of an electron e bound
to the nucleus T of mass MT and charge ZT :

ZP + (ZT, e)i −→ (ZP, e) f + ZT, (7)

where the parentheses symbolize the bound states that are
presently taken as i = 1s (ground) and f = {n, l, m} (ground,
excited). The set {n, l, m} represents the usual triple of the hy-
drogenlike quantum numbers (principal, angular, magnetic).
Let �s and �x be the position vectors of the electron relative to
the nuclei P and T, respectively. Further, let �R = �x − �s be the
position vector of P with respect to T. Moreover, by �ri and �r f

we shall denote the position vectors of P and T with respect
to the center of mass of the systems (ZT, e)i and (ZP, e) f ,
respectively.

According to (5), the prior form of the transition amplitude
for (7) in the BCIS-3B method reads as

T (BCIS-3B)−
i f ≡ T (BCIS-3B)

i f = 〈χ−
f |Vi − V ∞

i |�+
i 〉 . (8)

Since the post form will not be used, the minus superscript
will hereafter be dropped from the transition amplitude and
cross sections, where Vi − V ∞

i is the distorting potential in the
entrance channel. This interaction has two long-range compo-
nents Vi = ZPZT/R − ZP/s and V ∞

i = ZP(ZT − 1)/R where the
latter is the asymptote (at R → ∞) of the former. The e-P
distance s reduces to the P-T distance R at infinitely large
values of R, so that

Vi − V ∞
i = ZPZT

R
− ZP

s
− ZP(ZT − 1)

R
= ZP

R
− ZP

s
. (9)

The Coulomb-distorted initial and final scattering wave func-
tions in the entrance and exit channels are

�+
i = ϕi(�x ) ei�ki ·�ri+iνi ln(vR−�v· �R ), (10)

χ−
f = ϕnlm(�s ) e−i�k f ·�r f −iνPT ln(vR+�v· �R )N−(νT )

× 1F1(−iνT, 1,−ivx − i�v · �x ), (11)

where νi = ZP(ZT − 1)/v, N−(νT ) = �(1 + iνT )eπνT/2, νT =
ZT/v, and νPT = ZPZT/v. Vector �v (directed along the Z axis

in a fixed XOYZ system, �̂v = �̂Z) is the velocity vector of the
projectile in the laboratory frame of reference. Symbols � and
1F1(a, b, z) denote the gamma and the confluent hypergeomet-
ric function [69,70]. Functions ϕi(�x ) and ϕnlm(�s ) represent the
bound-state wave functions of the one-electron atomic sys-
tems (ZT, e)i and (ZP, e) f with binding energies Ei = −Z2

T /2
and E f = −Z2

P /(2n2), where i = 1s, as stated. Quantities �ki

and �k f are the initial and final wave vectors. By definition, �ki

is the momentum of P with respect to (ZT, e)i, whereas �k f is
the momentum of (ZP, e) f relative to T. This convention yields

the initial and final plane waves ei�ki ·�ri and e−i�k f ·�r f , respectively.
The function ϕ−

�v (�x ) = N−(νT ) e−i�v·�x
1F1(−iνT, 1,−ivx − i�v ·

�x ) from (11) is the electronic continuum Coulomb wave
function due to the attractive electrostatic field VT = −ZT/x.
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It describes intermediate ionization of the electron e by the
impact of P onto the target. The plane wave e−i�v·�x from ϕ−

�v (�x )
does not explicitly appear in (11) because it is immersed into
the final plane wave e−i�k f ·�r f of the exit-channel unperturbed
state � f = ϕnlm(�s ) e−i�k f ·�r f . Using the eikonal hypothesis, the
product of the logarithmic Coulomb phases from the functions
�+

i and χ−
f can be reduced to a single �R-dependent phase

factor

eiνi ln(vR−�v· �R ){e−iνPT ln(vR+�v· �R )}∗
= (ρv)2iZP (ZT−1)/v (vR + �v · �R )iξ . (12)

Here, ξ = ZP/v and �ρ is the vectorial component of the
vector �R in the XOY plane (�ρ = �R − �Z, �ρ · �Z = 0). The
multiplying term (ρv)2iZP (ZT−1)/v comes from the Coulomb
repulsion between ZP and ZT − 1 that is V ∞

i = ZP(ZT − 1)/R.

This ρ-dependent phase does not contribute to the total cross
sections for any values ZP and ZT [68]. For a hydrogen atom as
a target (ZT = 1), the term (ρv)2iZP (ZT−1)/v is equal to unity. In
such a case, differential cross sections in the BCIS-3B method
become directly proportional the square of the absolute value
of the transition amplitudes. This obviates the need for the
numerically difficult Fourier-Bessel highly oscillatory inte-
gral (over ρ ∈ [0,∞]) in differential cross sections from the
BCIS-3B method. These obstacles are caused by the Bessel
functions arising from integration over the azimuthal angles
of the �ρ-dependent transition amplitude which itself is the
Fourier transform of the corresponding �η-dependent T -matrix
element [68]. By contrast, the Fourier-Bessel integration must
be performed numerically in the differential cross sections

from, e.g., the CDW-3B method for any value of the nuclear
charges, including ZP = 1 and/or ZT = 1 [1].

With the outlined setting, the prior form of the transition
amplitude (8) can be rewritten as

T (BCIS-3B)−
i f ≡ Ti f (�η )

= N−∗(νT )
∫∫

d�s d �R ϕ∗
nlm(�s )

(
ZP

R
− ZP

s

)
ϕi(�x )

× ei�β· �R−i�v·�s
1F1(iνT, 1, ivx + i�v · �x )(vR + �v · �R )iξ .

(13)

In the eikonal formalism for heavy-particle collisions,
the argument �ki · �ri + �k f · �r f in the plane-wave product

ei�ki ·�ri (e−i�k f ·�r f )∗ takes the following standard form which with
the full account of the electron translation factor

�ki · �ri + �k f · �r f = �β · �R − �v · �s = −�α · �R − �v · �x , (14)

�α = �η −
(

v

2
− 
E

v

)
�̂v , �β = −�η −

(
v

2
+ 
E

v

)
�̂v,

�α + �β = −�v , 
E = Ei − E f . (15)

Here, �η = (η cos φη, η sin φη, 0) is the transverse momentum
transfer vector (�η · �v = 0).
B. Analytical calculations of a part of the three-body transition

amplitude

For the confluent hypergeometric function 1F1(a, c, z), we
use its customary integral representation with the real variable
t [71]

1F1(a, c, z) = �(c)

�(a)�(c − a)

∫ 1

0
dt ta−1(1 − t )c−a−1 ezt , Re(c) > Re(a) > 0. (16)

The convergence condition Re(c) > Re(a) > 0 of this integral for the present case 1F1(iνT, 1, ivx + i�v · �x ) is secured by
redefining the Sommerfeld parameter νT as νT − iε. Here, ε > 0 is an infinitesimally small positive number, which is set to
zero once the calculation has been completed. Then, the transition amplitude (13) is calculated as

Ti f (�η ) = M
∫ 1

0
dτ f (τ )Ki f (τ ), (17)

f (τ ) = τ iνT−1(1 − τ )−iνT , M = N−∗(νT )

�(iνT )�(1 − iνT )
= eπνT/2

�(iνT )
, (18)

Ki f (τ ) =
∫

d �R ei�β· �R(vR + �v · �R )iξP ( �R ), (19)

P ( �R ) = ZP(ZT )3/2

√
π

∫
d�s ϕ∗

nlm(�s ) e−i�v·�s
(

1

R
− 1

s

)
e−ZTx+i(vx+�v·�x )τ . (20)

From here on, Ref. [28] will be closely followed. In Ref. [28], using the CB1-3B approximation for process (7), with any initial
i = {ni, l i, mi} and final f = {n f , l f , m f } hydrogenic quantum numbers, a general semianalytical method has been developed
to calculate the post and prior transition amplitudes T (CB1)±

i f . This original method has subsequently been extended to the four-
body boundary-corrected first Born (CB1-4B) approximation for one-electron capture by heavy nuclei from heliumlike atomic
targets [72].
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Thus, with the help of the Fourier transform e−ZTx+i(vx+�v·�x )τ = μτπ
−2

∫
d �q e−i �q·�x(q2

1 + μ2
τ )−2, where μτ = ZT − ivτ and

�q1 = �q + �vτ, we have

P ( �R ) = ZP

[
1

R
WR( �R ) − Ws( �R )

]
, (21)

WR( �R ) = μτ

√
Z3

T

π5

∫
d �q e−i �q· �R(

q2
1 + μ2

τ

)2 B, Ws( �R ) = μτ

√
Z3

T

π5

∫
d �q e−i �q· �R(

q2
1 + μ2

τ

)2 C, (22)

B =
∫

d�s e−i(�v+�q )·�sϕ∗
nlm(�s ) =

∫
d�s e−i(�v+�q )·�s

∫
d �q2 ei �q2·�sϕ̃∗

nlm(�q2), (23)

C =
∫

d�s e−i(�v+�q )·�s ϕ
∗
nlm(�s )

s
=

∫
d�s e−i(�v+�q )·�s

∫
d �q2 ei �q2·�sχ̃∗

nlm(�q2). (24)

The momentum-space wave functions ϕ̃nlm(�q2) and χ̃nlm(�q2) are the Fourier transforms of ϕnlm(�s ) and χnlm(�s ) = ϕnlm(�s )/s,
i.e., ϕ̃nlm(�q2) = (2π )−3

∫
d�s ei �q2·�sϕnlm(�s ) and χ̃nlm(�q2) = (2π )−3

∫
d�s ei �q2·�sχnlm(�s ). For the present calculation, the particularly

convenient form of the momentum distribution function ϕ̃nlm(�q2 ) is taken from Refs. [28,73] as

ϕ̃nlm(�q2 ) = (2π )−3NZP
f il

nr∑
p= 0

Cp
Ylm(�q2 )(

q2
2 + a2

f

)p+l+2 , (25)

χ̃nlm(�q2 ) = (2π )−3
NZP

f

2ZP

il
nr∑

p= 0

Cp
Ylm(�q2 )(

q2
2 + a2

f

)p+l+1 , (26)

NZP
f = 16πZP

[
a3

f

n

(n + l )!

nr!

]1/2
l!(4a f )l

(2l + 1)!
, (27)

Cp = (−nr )p(n + l + 1)p

(l + 3/2)p p!
a2p

f , nr = n − l − 1 , a f = ZP

n
. (28)

The regular solid harmonic denoted by Ylm is defined by Ylm(�q2 ) = ql
2Ylm( �̂q2), where Ylm( �̂q2) is the spherical harmonic, whereas

(a)k is the Pochhammer symbol (a)k = a(a + 1)(a + 2) . . . (a + k − 1) with (a)0 = 1. Now, the integrals B and C acquire
the forms

B = (2π )−3NZP
f (−i)l

nr∑
p= 0

Cp

∫
d �q2

Y∗
lm(�q2 )(

q2
2 + a2

f

)p+l+2

∫
d�s e−i(�v+�q−�q2 )·�s, (29)

C = (2π )−3
NZP

f

2ZP

(−i)l
nr∑

p= 0

Cp

∫
d �q2

Y∗
lm(�q2 )(

q2
2 + a2

f

)p+l+1

∫
d�s e−i(�v+�q−�q2 )·�s. (30)

Using the Dirac delta function and setting �q → �q + �β, the integrals WR( �R ) and Ws( �R ) are reduced to

WR( �R ) = μτ

√
Z3

T

π5
NZP

f (−i)l
nr∑

p= 0

CpG (2)
p ( �R ), (31)

Ws( �R ) = μτ

√
Z3

T

π5

NZP
f

2ZP

(−i)l
nr∑

p= 0

CpG (1)
p ( �R ) , (32)

G ( j)
p ( �R )=e−i�β· �R

∫
d �q e−i �q· �R Y∗

lm(�q − �α)(| �q − �α|2 + a2
f

)p+l+ j(| �q + �β1 |2 + μ2
τ

)2 ( j = 1, 2), (33)

where �β1 = �β + �vτ , �α + �β1 = −�v1, and �v1 = �v(1 − τ ). The two denominators in the integral (33) can be collected into a single
denominator by way of the usual Feynman parametrization integral [28]

1

AuBr
= (u + r − 1)!

(u − 1)!(r − 1)!

∫ 1

0
dt

tu−1(1 − t )r−1

[At + B(1 − t )]u+r
(u, r � 1), (34)

G ( j)
p ( �R ) = (p + l + j + 1)(p + l + j)

∫ 1

0
dt t p+l+ j−1(1 − t )U ( j)

p ( �R ) , (35)

U ( j)
p ( �R ) =e−i�β· �R

∫
d �q e−i �q· �R Y∗

lm(�q − �α)[(| �q − �α|2 + a2
f

)
t + (| �q + �β1 |2 + μ2

τ

)
(1 − t )

]p+l+ j+2

=e−i �Qβ · �R
∫

d �q e−i �q· �R Y∗
lm(�q + �Qα )

(q2 + 
2)p+l+ j+2
. (36)
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Here, we redefine �q as �q → �q + �Q, so that

�Q = �αt − �β1(1 − t ), �Qα = �Q − �α = (1 − t )�v1, (37)

�Qβ = �Q + �β = [(τ − 1)t − τ ]�v, 
2 = v2
1t (1 − t ) + a2

f t + μ2
τ (1 − t ). (38)

From the general results of a protracted analytical calculation in Ref. [28], we extract the presently relevant expressions for
i = {1, 0, 0} and f = {n, l, m}:

U ( j)
p ( �R) = π5/2

2n j−2n j!
e−i �Qβ · �R

l∑
λ1=|m|

(−i)λ1 (1 − t )λ2�(λ1, v )
B(
)

ν jλ1,−m( �R)


2n j−2λ1−1
, (39)

G ( j)
p ( �R )= π5/2

2n j−2(n j − 2)!

l∑
λ1=|m|

(−i)λ1�(λ1, v )
∫ 1

0
dt tn j−2(1 − t )λ2+1 e−i �Qβ · �R B(
)

ν jλ1,−m( �R)


2n j−2λ1−1
, (40)

λ1 + λ2 = l, ν j = n j − λ1 , n j = n + j − 2 , n = p + l + 3, (41)

�(λ1, v ) = (−1)m

√
4π

(λ1|lm)vλ2 (1 − τ )λ2 , (42)

(λ1|lm) =
[

(2l + 1)

(2λ1 + 1)

(l + m)!

(λ1 + m)!

(l − m)!

(λ1 − m)!(λ2!)2

]1/2

. (43)

Here, B(
)
ν jλ1,−m( �R) = k̂ν j−1/2(R
)Yλ1,−m( �R ) is the so-called B function [74] where k̂ν j−1/2(R
) = √

2/π (R
)ν j−1/2Kν j−1/2(R
)

is the reduced Bessel function and Kν j−1/2(R
) is the McDonald function [69]. Both k̂n±1/2(z) and Kn±1/2(z) are polynomials in
powers of 1/z (n = 0, 1, 2, . . .). The substitution of (40) into Eqs. (31) and (32), followed by the use of (21), maps Ki f (τ ) from
Eq. (19) into the expression

Ki f (τ ) = μτ ZP(ZT )3/2(−i)lNZP
f

nr∑
p= 0

Cp

2n−2(n − 2)!

l∑
λ1=|m|

(−i)λ1�(λ1, v )
∫ 1

0
dt

t p+l (1 − t )λ2+1


2n−2λ1−3

[
t


2
I (p,λ1 )
0 − n − 2

ZP

I (p,λ1 )
1

]
,

(44)

I (p,λ1 )
δ =

∫
d �R (vR + �v · �R )iξ e−i �Q· �RB(
)

ν2−δλ1,−m( �R )Rδ−1; δ = 0, 1. (45)

At last, a lengthy calculation of the integral I (p,λ1 )
δ from Ref. [28] gives the final result

I (p,λ1 )
δ = 4π (−1)λ1 (2i)λ1

(2{np − δ})!

(np − δ)!

np−δ∑
pr=0

(δ − np)pr

(2{δ − np})pr

2δ+pr−np

pr!

pr G(δ,
)

prλ1,−m( �Q ), (46)

G(δ,
)
prλ1,−m( �Q ) =

pδ∑
k= 0

λ1∑
l1=|m|

�kl1 (δ)Dl1,−m( �Q · �v ), (47)

np = n − λ1 − 1, pδ = pr + δ. (48)

The remaining quantities in Eq. (47) are defined by

Dl1,−m( �Q · �v ) = (l1|λ1m)(−iv)l2Yl1,−m( �Q ), (49)

(l1|λ1m) =
[

(2λ1 + 1)

(2l1 + 1)

(λ1 + m)!

(l1 + m)!

(λ1 − m)!

(l1 − m)!(l2!)2

]1/2

, (50)

�kl1 (δ) = (aδbδ ) 3F2(−kδ/2,−kδ/2 + 1/2, 1 − iγ1; k + λ1 + 1,−pδ − λ1; 1/A), (51)

aδ = �(1 + iξ )(λ1 + 1)pδ

(2D)pδ

(
2 + Q2)λ1
F , (52)

bδ = (1 + iξ )l1 (−iξ )l2

Bl2

(−pδ )k (iγ2)k

(λ1 + 1)k

(−1)kCk

k!
, (53)

3F2(−kδ/2 , −kδ/2 + 1/2 , 1 − iγ1; k + λ1 + 1 , −pδ − λ1 ; 1/A) =
[kδ/2]∑
u=0

(−kδ/2)u(−kδ/2 + 1/2)u(1 − iγ1)u

(k + λ1 + 1)u(−pδ − λ1)uu!

(
1

A

)u

, (54)
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A = 
2


2 + Q2
, B = 2(v
 − i �Q · �v )


2 + Q2
, C = v

B

− 1, (55)

D = A



, F = Biξ


2 + Q2
, (56)

kδ = pδ − k, l1 + l2 = λ1, γ1 = −ξ + il1, γ2 = −ξ − il2. (57)

Here, [kδ/2] is the largest integer contained in the fraction kδ/2. The symbol 3F2 denotes the Clausen generalized hypergeometric
function [75] 3F2(a1, a2, a3; b1, b2; z) = ∑∞

k=0{[(a1)k (a2)k (a3)k]/[(b1)k (b2)k]}zk/k! (|z| < 1) whose much simpler, polynomial
form (54) has been derived in Ref. [28].

With the outlined intermediate expressions, the transition amplitude Ti f , as the defining original six-dimensional integral, is
transformed into a two-dimensional integral over the real variables τ and t

Ti f (�η ) = N
∫ 1

0
dτ f (τ )μτ

nr∑
p= 0

l∑
λ1=|m|

(−2)λ1Cp�(λ1, v )
[
J (λ1,pr )

0 − J (λ1,pr )
1

]
, (58)

N = 16πZPZ
3/2
T (−i)l eπνT/2

�(iνT )
. (59)

Here, J (λ1,pr )
δ is a one-dimensional integral over t

J (λ1,pr )
δ = (2{np − δ})!NZP

f

2nZδ
P (n − 2 − δ)!(np − δ)!

np−δ∑
pr=0

(δ − np)pr

(2{δ − np})pr

2pr+δ−np

pr!

∫ 1

0
dt

tn−δ−2(1 − t )λ2+1


2n−2λ1−pr−2δ−1
G(δ,
)

prλ1,−m( �Q ) . (60)

The differential and total cross sections are defined by

dQi f

d�

(
a2

0

sr

)
= μ2

4π2
|Ti f (�η )|2, (61)

Qi f
(
πa2

0

) = 1

2π2v2

∫ ∞

0
dη η|Ti f (�η )|2, (62)

where μ = MPMT/(MP + MT ) is the reduced mass of MP and
MT. In the BCIS-3B method, neither the total nor differential
cross section depend on the sign of the magnetic quantum
number m. The two-dimensional Gauss-Legendre quadra-
tures, as two successive one-dimensional Gauss-Legendre
quadratures each with the known (tabulated) pivots and
weights, are utilized for the numerical integration over t
and τ . The Cauchy regularization was applied to the inte-
gration over τ [53,54] before applying the Gauss-Legendre
quadrature. The remaining Gauss-Legendre numerical inte-
gration over η is performed using a variable change η =
(1 + x)

√
2/(1 − x2), where x ∈ [−1,+1]. This change is

very important for heavy projectiles since it concentrates the
integration points near the forward cone, which gives the
dominant contribution to the total cross sections [29].

C. Effective three-body charge-exchange problems in
four-particle collisions

The entire analysis from Secs. II A and II B can only
minimally be modified to become directly applicable to single
charge exchange in purely four-body problems of the type

ZP + (ZT; e1, e2)1s2 → (ZP, e1) f1 + (ZT, e2) f2 , (63)

where f1 and f2 are the triples of the usual quantum numbers
(principal, angular, magnetic) of the two hydrogenlike atomic
systems (ZP, e1) f1 and (ZT, e2) f2 , respectively. Without resort-
ing to some simplifying assumptions, the BCIS-3B method,

as a purely three-body theory, is not instantly usable for the
four-particle process (63).

One such simplification of (63) is the frozen-core approx-
imation in which the noncaptured, passive electron (e2) is
assumed to occupy the same orbital before and after capture
of the active electron (e1). Even this assumption can further
be relaxed by eliminating altogether the explicit presence of
the passive electron through the introduction of an effective
hydrogenic model. In such a model, it is supposed that the hy-
drogenlike target (Zeff

T , e1)1s could be a reasonable surrogate
for describing the heliumlike atomic system (ZT; e1, e2)1s2 .
Here, Zeff

T is an effective charge of the target nucleus T.
Physically, the effective hydrogenic model for (63) means that
the passive electron e2 manifests its presence merely through
a shielding effect by which the original nuclear charge ZT is
screened.

This is customarily done by using Zeff
T = ZT − ZS in lieu

of ZT, where ZS is the Slater screening constant charge. The
extent of the Slater screening (i.e., the specific value of ZS) can
be estimated by minimizing the expectation value of the total
two-electron Hamiltonian (with the Coulomb potentials for
the three pairs ZT − e1, ZT − e2, and e1 − e2) of a heliumlike
atomic system in a set of any selected basis functions. For
example, the simplest two-electron basis set would be a single
element given by the product of the two ground-state hydro-
genlike wave functions with the same effective nuclear charge
Zeff

T . Then, for any ZT in the said Coulomb potentials from the
total heliumlike Hamiltonian, its minimal expectation value
would provide both ZS and Zeff

T as ZS = 5
16 and Zeff

T = ZT − 5
16 ,

respectively. Thus, the effective hydrogenic model, which is
used in many studies (including Ref. [40]), de facto replaces
the original process (63) by its one-electron counterpart

ZP + (
Zeff

T , e
)

1s → (ZP, e) f + Zeff
T , (64)
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where the charge e1 of the only electron (electron 1) is
relabeled as e. On the other hand, the charge e2 of the
passive electron (electron 2) from the original process (63)
with the target nuclear charge ZT is present in (64) only by
way of screening ZT as Zeff

T = ZT − 5
16 . Overall, process (63)

can be modeled by its hydrogenlike counterpart (64) through
the replacement of (ZT; e1, e2)1s2 and (ZT, e2) f2 by (Zeff

T , e)1s

and Zeff
T , respectively. This assumption reduces the BCIS-4B

method for the four-body process (63) with a heliumlike
target to the BCIS-3B method for an effective three-body
process (64) with a hydrogenlike target. As such, the general
expression for the T matrix in the BCIS-3B method for
(7) applies also straight to (63) modeled by (64). Lastly,
in order to connect the original and effective problems, it
remains to double the cross sections for (64) to account for
the presence of two electrons in the K shell of the original
target (ZT; e1, e2)1s2 in (63). This is done because either of
the two electrons (e1 or e2) from (ZT; e1, e2)1s2 in (63) can
be captured with equal probability in the presently adopted
spin-independent nonrelativistic formalism.

III. RESULTS AND DISCUSSION

A. List of processes and inclusion of excited states

Cross sections are numerically computed by using the prior
form of the BCIS-3B method for the following processes with
single-electron capture from the target ground states

p + H(1s) −→ H(nlm) + p, (65)

α + H(1s) −→ He+(nlm) + p, (66)

p + He(1s2) −→ H(nlm) + He+(1s), (67)

p + H(1s) −→ H(nl ) + p, (68)

α + H(1s) −→ He+(nl ) + p, (69)

p + He(1s2) −→ H(nl ) + He+(1s), (70)

p + H(1s) −→ H(n) + p, (71)

α + H(1s) −→ He+(n) + p, (72)

p + He(1s2) −→ H(n) + He+(1s), (73)

p + H(1s) −→ H(�) + p, (74)

α + H(1s) −→ He+(�) + p, (75)

p + He(1s2) −→ H(�) + He+(1s), (76)

where p and α denote protons and alpha particles (α ≡ He2+),
respectively. Here and throughout this study, the analysis is
limited to the initial ground state alone because in all the
experimental data to be presently used, the targets H, H2, He
have been prepared in their ground states.

For process (67), no explicit reference is made to any
two-electron transitions. In the literature, the final state of the
noncaptured electron in the He+ ion from (67) is often set to

be the ground state ( f2 = 1s). As stated earlier, even this is
further simplified in our modeling of (67) by (64) through
elimination of the explicit appearance of the noncaptured
electron whose presence in both the initial and final channels
is felt merely through the Slater screening ZS of ZT. For
helium, we have ZT = 2, so that Zeff

T = 1.6875.

Total cross sections (state selective and state summed) in
the BCIS-3B method have been obtained for all the processes
(65)–(76). In particular for ZT = 1, as mentioned, our general
computer code can also provide directly differential cross
sections without resorting to the cumbersome Fourier-Bessel
numerical quadrature. This possibility is exploited here for
computations of differential cross sections for (74).

B. Cross-section nomenclature and convergence
of numerical quadratures

At every considered impact energy, in computations of
state-summed total cross sections (Q�) for the genuinely
hydrogenlike processes (74) and (75) as well as for (76) in the
effective hydrogenic model (64) for (63) with Zeff

T = 1.6875,
all the excited states nlm have explicitly been included up
to n = 4. Also, referring to differential cross sections for
(74) the computations of (dQ/d�)� are performed by an
explicit inclusion of the levels n � 4 at E = 60 keV as well
as at 125 keV and n � 3 at E = 5000 keV. To account
approximately for the final hydrogenlike states with n � 5
for Q� and (dQ/d�)�, use is made of the Oppenheimer
n−3 scaling [15,27], borrowed from the first-order three-body
OBK method

Q� ≈ Q1 + Q2 + Q3 + 2.561Q4, (77)(
dQ

d�

)
�

≈
(

dQ

d�

)
1

+
(

dQ

d�

)
2

+
(

dQ

d�

)
3

+ 2.561

(
dQ

d�

)
4

,

(78)

respectively. As stated, (78) will be employed for (dQ/d�)�
at E = 60 and 125 keV. On the other hand, at E = 5000 keV,
the contributions from the states with n � 4 will be approxi-
mated by the following simpler Oppenheimer formula:(

dQ

d�

)
�

≈
(

dQ

d�

)
1

+
(

dQ

d�

)
2

+ 2.081

(
dQ

d�

)
3

. (79)

The reason for omitting the exact contribution from the n = 4
shell in this computation is in relatively small differences
already between the differential cross sections (dQ/d�)�
for n � 2 and n � 3 as will be illustrated graphically. The
theoretically predicted state-summed cross sections Q� (total)
and (dQ/d�)� (differential) are needed whenever no post-
collisional information on any final bound states is provided
by measurements.

The quantities Qn (total) in (77) as well as (dQ/d�)n

(differential) in (78) and (79) represent the cross sections
for processes (71)–(73) with capture into the given n shell,
summed over the subshells 0 � l � n − 1 and −l � m � l ,
respectively. Likewise, Qnl and (dQ/d�)nl are the corre-
sponding cross sections for processes (68)–(70) with capture
into the nl subshell, summed over the magnetic quantum
numbers m ∈ [−l,+l]. All these quantities belong to the
so-called partial cross sections, where the close “partial”
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emphasizes their explicit dependence on some of the three
quantum numbers {n, l, m}. Then, such partial cross sections
are written as

Qn =
n−1∑
l=0

Qnl , Qnl =
l∑

m=−l

Qnlm, (80)

(
dQ

d�

)
n

=
n−1∑
l=0

(
dQ

d�

)
nl

,

(
dQ

d�

)
nl

=
l∑

m=−l

(
dQ

d�

)
nlm

.

(81)

Further, Qnlm and (dQ/d�)nlm are the total and differential
cross sections, respectively, describing capture into the fixed
individual nlm state in processes (65)–(67). As to measure-
ments on single charge exchange, experimental data exist
for processes (68)–(70), (71)–(73), as well as for (74)–(76)
and these will be used for comparisons with the theoretical
predictions. For brevity, in the ordinates of all the figures
from our illustrations, we shall write Q or dQ/d� with no
subscripts. Nevertheless, with the provided captions and the
labels near the curves in the figures, no confusion should arise.

The Gauss-Legendre quadrature order NGL (the number
of the integration points) is varied between 368 and 1616
per each of the three integration axes to achieve a satisfac-
tory convergence for total cross sections, as well as for the
differential cross sections at intermediate energies of 60 and
125 keV. For each result, convergence to at least two decimal
places has been achieved. For differential cross sections at
E = 5 MeV, a larger number of integration points were re-
quired (up to NGL = 4000 for n = 3). This was necessary
in order to stabilize the results from the integrands whose
high oscillations are enhanced at increased impact energies.
All the numerical quadratures in the differential and total
cross sections (state selective and state summed) have been
performed using the same fixed-order NGL per integration
axis directly over the entire integration limits (i.e., with no
splitting of the integration intervals into a number of smaller
subintervals).

C. Electron capture from H(1s) by protons into any excited
states of hydrogen H(nlm)

The numerical values of the state-selective (Qnlm, Qnl , Qn)
and state-summed (Q�) total cross sections in the BCIS-3B
method for processes (65), (68), (71), and (74), respectively,
from our computations within the energy range 10 keV �
E � 1000 keV are presented in Table I. To complement this
information, our results are also shown in Figs. 1–3. Both
tabular and graphical presentations are deemed useful for en-
abling the readily accessible, parallel displays and analysis.

The cross sections Q1s, Q2s, and Q2p for capture into the
1s, 2s, and 2p states for process (68) are in Fig. 1. Therein,
Fig. 1(a) is for Q1s and Q2s, whereas Fig. 1(b) is for Q2p.

Further, Q3s, Q3p, and Q3d for capture into 3s, 3p, and 3d
states are in Fig. 2. Moreover, Q4s, Q4p, Q4d , and Q4 f for
capture into the 4s, 4p, 4d , and 4 f states are in Fig. 3. The
adequacy of these state-selective cross sections Qnl is assessed
in relation to the available experimental data [76–88]. Impor-
tantly, various experimental data from Figs. 1–3 for capture

into the spherically symmetric states (2s, 3s, 4s) are in very
good mutual accord. The experimental data measured with a
molecular hydrogen target H2 (cross sections per molecule)
are transformed to their counterparts corresponding to an
atomic hydrogen target H (cross sections per atom) following
Ref. [89] while using the measured energy-dependent cross-
section ratios QH2/QH.

The present results from Figs. 1–3 for capture into the
2s, 3s, and 4s states exhibit excellent agreement with the ex-
perimental data throughout the displayed intermediate energy
range (10–300 keV). This is all the more remarkable given that
the BCIS-3B method is, by construction, a high-energy theory.
Generally, some discrepancies between the BCIS-3B method
and measurements are, therefore, expected at intermediate
energies. However, there are none for capture into the 2s, 3s,
and 4s states (Figs. 1–3). For example, agreement between
theory and experiments is excellent even down to 10 keV for
capture into the 3s state (Fig. 2).

Also of interest is to compare our findings with those from
other theoretical methods. To assess the lowest-energy validity
limit of the perturbative formalisms, such as the BCIS-3B
approximation, it is useful to recall the results from some
nonperturbative methods [7–9] because these usually provide
reliable cross sections especially at lower-to-intermediate en-
ergies. This is exemplified in Fig. 1 for electron capture in
the process H+ + H(1s) → H(nl ) + H+ with nl = 1s as well
as nl = 2s on Fig. 1(a) and nl = 2p on Fig. 1(b). Here, the
considered nonperturbative theories are the Sturmian-state ex-
pansion (SSE) [7], the time-dependent Schrödinger equation
(TDSE) [8], and the semiclassical convergent close-coupling
(SC-CCC) methods [9]. It is deemed useful, as well, to refer
here to the pertinent results from one of the most impor-
tant high-energy perturbative theories, the CDW-3B method
(nl = 1s [18], nl = 2s, 2p [1,89]).

Remarkably good agreement is seen for resonant capture
(nl = 1s) in Fig. 1(a) when juxtaposing the perturbative
BCIS-3B and CDW-3B methods to the nonperturbative SSE
and TDSE methods. The BCIS-3B and CDW-3B methods
closely follow each other at 40 � E � 1000 keV. Moreover,
Q(SSE)

1s and Q(TDSE)

1s are also highly concordant at the energies
of overlap E � 200 keV (the latter cross sections extend to
630 keV).

Figure 1(a) deals with nonresonant capture (nl = 2s), as
well. In this case, advantageously, several sets of measured
cross sections are available (albeit only at moderately inter-
mediate energies, E � 180 keV). Here, excellent agreement is
recorded between the BCIS-3B method and the experimental
data at 20 � E � 150 keV. It is also clear that the BCIS-3B
and CDW-3B methods are very coherent with each other at
50 � E � 1000 keV. In Fig. 1(a), in addition to the SSE
and TDSE methods, we refer to the SC-CCC method, as
well. At 20 � E � 200 keV, the BCIS-3B and SSE methods
are in excellent agreement. Moreover, the BCIS-3B method
agrees very well with the SC-CCC and TDSE methods at
20 � E � 170 keV and 40 � E � 170 keV, respectively. At
E � 40 keV, the predictions with the TDSE method are below
those due to the BCIS-3B method by at most a factor of 1.3.

Uncustomarily, at E > 170 keV, the cross sections by the
TDSE method abruptly fall off exhibiting a large departure
from the other theoretical results. For example, at 300 keV,
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TABLE I. State-selective total cross sections (in 10−16 cm2) for processes (65), (68), and (74) as a function of impact energy E (keV) of
protons for electron capture from H(1s) into the final bound states of atomic hydrogen with n � 4. The column labeled by nlm refers to the
state-selective (or partial) cross sections Qnlm and Qnl for (65) and (68), respectively. The row denoted by � represents the cross sections Q�,

summed over all the final bound states of the H(nlm) atom, by using Eq. (77). Notation X [Z] implies X × 10Z .

nlm\E (keV) 10 20 30 50 80 100

100 1.28[+1] 4.97 2.24 6.34[−1] 1.52[−1] 7.05[−2]
200 2.04[−1] 3.78[−1] 2.82[−1] 1.10[−1] 2.87[−2] 1.33[−2]
210 1.02[−1] 2.05[−1] 1.52[−1] 5.28[−2] 1.13[−2] 4.61[−3]
211 1.66[−2] 3.60[−2] 2.44[−2] 7.43[−3] 1.41[−3] 5.49[−4]
2p 1.35[−1] 2.77[−1] 2.01[−1] 6.76[−2] 1.41[−2] 5.71[−3]
300 3.41[−2] 8.89[−2] 7.74[−2] 3.35[−2] 9.10[−3] 4.24[−3]
310 1.92[−2] 5.05[−2] 4.52[−2] 1.81[−2] 4.11[−3] 1.70[−3]
311 2.43[−3] 8.46[−3] 6.97[−3] 2.44[−3] 4.95[−4] 1.95[−4]
3p 2.40[−2] 6.75[−2] 5.92[−2] 2.30[−2] 5.10[−3] 2.09[−3]
320 1.58[−3] 4.16[−3] 3.61[−3] 1.29[−3] 2.40[−4] 8.84[−5]
321 3.82[−4] 1.53[−3] 1.30[−3] 4.17[−4] 7.01[−5] 2.46[−5]
322 4.79[−5] 1.89[−4] 1.49[−4] 4.42[−5] 6.96[−6] 2.37[−6]
3d 2.44[−3] 7.60[−3] 6.50[−3] 2.21[−3] 3.94[−4] 1.42[−4]
400 1.18[−2] 3.42[−2] 3.16[−2] 1.42[−2] 3.93[−3] 1.83[−3]
410 7.00[−3] 1.97[−2] 1.88[−2] 7.98[−3] 1.85[−3] 7.69[−4]
411 8.00[−4] 3.24[−3] 2.86[−3] 1.06[−3] 2.20[−4] 8.72[−5]
4p 8.60[−3] 2.62[−2] 2.46[−2] 1.01[−2] 2.29[−3] 9.43[−4]
420 7.67[−4] 2.11[−3] 1.96[−3] 7.47[−4] 1.44[−4] 5.33[−5]
421 1.66[−4] 7.54[−4] 6.97[−4] 2.39[−4] 4.15[−5] 1.47[−5]
422 1.96[−5] 9.27[−5] 7.89[−5] 2.50[−5] 4.07[−6] 1.40[−6]
4d 1.14[−3] 3.81[−3] 3.52[−3] 1.28[−3] 2.35[−4] 8.55[−5]
430 2.23[−5] 6.82[−5] 6.12[−5] 2.03[−5] 3.18[−6] 1.04[−6]
431 6.83[−6] 3.27[−5] 3.10[−5] 9.84[−6] 1.44[−6] 4.55[−7]
432 1.39[−6] 8.27[−6] 7.29[−6] 2.12[−6] 2.85[−7] 8.72[−8]
433 1.51[−7] 8.14[−7] 6.73[−7] 1.85[−7] 2.40[−8] 7.21[−9]
4 f 3.90[−5] 1.52[−4] 1.39[−4] 4.46[−5] 6.67[−6] 2.14[−6]
� 1.32[+1] 5.96 3.02 9.36[−1] 2.26[−1] 1.03[−1]

nlm\E (keV) 150 200 300 500 800 1000

100 1.51[−2] 4.56[−3] 7.37[−4] 6.17[−5] 5.47[−6] 1.67[−6]
200 2.74[−3] 7.88[−4] 1.19[−4] 9.16[−6] 7.68[−7] 2.30[−7]
210 7.28[−4] 1.70[−4] 1.85[−5] 9.20[−7] 5.00[−8] 1.21[−8]
211 8.00[−5] 1.78[−5] 1.84[−6] 8.80[−8] 4.75[−9] 1.15[−9]
2p 8.88[−4] 2.06[−4] 2.22[−5] 1.10[−6] 5.95[−8] 1.44[−8]
300 8.68[−4] 2.48[−4] 3.68[−5] 2.80[−6] 2.32[−7] 6.93[−8]
310 2.70[−4] 6.27[−5] 6.78[−6] 3.33[−7] 1.79[−8] 4.31[−9]
311 2.88[−5] 6.40[−6] 6.60[−7] 3.14[−8] 1.69[−9] 4.09[−10]
3p 3.27[−4] 7.55[−5] 8.10[−6] 3.95[−7] 2.13[−8] 5.13[−9]
320 1.09[−5] 2.08[−6] 1.65[−7] 5.27[−9] 1.86[−10] 3.65[−11]
321 2.81[−6] 5.10[−7] 3.82[−8] 1.16[−9] 4.01[−11] 7.80[−12]
322 2.59[−7] 4.54[−8] 3.29[−9] 9.78[−11] 3.38[−12] 6.63[−13]
3d 1.71[−5] 3.19[−6] 2.48[−7] 7.80[−9] 2.73[−10] 5.35[−11]
400 3.75[−4] 1.07[−4] 1.58[−5] 1.19[−6] 9.88[−8] 2.94[−8]
410 1.22[−4] 2.84[−5] 3.06[−6] 1.49[−7] 8.02[−9] 1.93[−9]
411 1.29[−5] 2.87[−6] 2.96[−7] 1.40[−8] 7.53[−10] 1.82[−10]
4p 1.48[−4] 3.41[−5] 3.65[−6] 1.78[−7] 9.52[−9] 2.29[−9]
420 6.64[−6] 1.26[−6] 1.00[−7] 3.19[−9] 1.12[−10] 2.20[−11]
421 1.69[−6] 3.07[−7] 2.30[−8] 7.02[−10] 2.41[−11] 4.69[−12]
422 1.54[−7] 2.72[−8] 1.97[−9] 5.88[−11] 2.03[−12] 3.98[−13]
4d 1.03[−5] 1.93[−6] 1.50[−7] 4.71[−9] 1.65[−10] 3.22[−11]
430 1.00[−7] 1.55[−8] 8.92[−10] 1.84[−11] 4.24[−13] 6.74[−14]
431 4.13[−8] 6.17[−9] 3.41[−10] 6.78[−12] 1.53[−13] 2.42[−14]
432 7.43[−9] 1.07[−9] 5.60[−11] 1.06[−12] 2.33[−14] 3.66[−15]
433 5.94[−10] 8.33[−11] 4.27[−12] 7.97[−14] 1.76[−15] 2.80[−16]
4 f 1.99[−7] 3.02[−8] 1.69[−9] 3.42[−11] 7.81[−13] 1.24[−13]
� 2.13[−2] 6.24[−3] 9.73[−4] 7.86[−5] 6.83[−6] 2.07[−6]
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FIG. 1. State-selective total cross sections Q1s, Q2s, and Q2p in
cm2 as a function of impact energies E (keV) for electron capture
by protons from H(1s), as per process (68). The solid curves are
the present results from the BCIS-3B method, whereas the star
symbols (�) are for Qnl from the CDW-3B method [1,18]. The
dotted-dashed, dotted, and dashed curves are from the SSE [7],
TDSE [8], and SC-CCC methods [9], respectively. Experimental data
with atomic hydrogen targets: ◦ (Q2s ) Ryding et al. [76], • (Q2s )
Bayfield [77], � (Q2s ) Morgan et al. [78], � (Q2p) Stebbings et al.
[79], � (Q2p) Morgan et al. [80], ♦ (Q2p) Kondow et al. [81].
Experimental data with molecular hydrogen targets (converted to
atomic hydrogen targets following Ref. [89]): � (Q2s ) Ryding et al.
[76], � (Q2s, Q2p) Andreev et al. [82], 	 (Q2s ) Bayfield [83], 
 (Q2s )
Hughes et al. [84].

FIG. 2. State-selective total cross sections Q3s, Q3p, and Q3d in
cm2 as a function of impact energies E (keV) for electron capture
by protons from H(1s), as per process (68). The curves are the
present results from the BCIS-3B method. Experimental data with
atomic hydrogen targets: ◦ (Q3s ) Hughes et al. [85]. Experimental
data with molecular hydrogen targets (converted to atomic hydrogen
targets following Ref. [89]): 	 (Q3s, Q3p, Q3d ) Hughes et al. [87],
� (Q3s, Q3p, Q3d ) Ford and Thomas [88]. Both the theoretical and
experimental results are divided by a factor: Q3p by 102 and Q3d

by 104.

the TDSE method underestimates the BCIS-3B and SC-CCC
methods by a factor of 7 and 4, respectively. Although above
E > 170 keV to about 850 keV, Q(SC-CCC)

2s lie below Q(BCIS-3B)

2s , the
shapes of the corresponding solid and dashed curves are rea-
sonably concordant. Unfortunately, for quantitative testings of
the theories against experiments, there are no measured cross
sections Q2s above 200 keV. Further, from 850 to 1000 keV, a
reversed pattern exists for formation of H(2s), in which case
Q(SC-CCC)

2s begins to overestimate Q(BCIS-3B)

2s , albeit very slightly.
Regarding capture into the 2p state, Fig. 1(b) shows that

at 30 � E � 1000 keV, the BCIS-3B and CDW-3B methods
are in a remarkably good agreement. Also, reasonable-to-very
good agreement is observed at 20 � E � 200 keV between
the BCIS-3B and SSE methods. Below 130 keV, Q(BCIS-3B)

2p lies
above Q(TDSE)

2p and Q(SC-CCC)

2p . Conversely, Q(TDSE)

2p and Q(SC-CCC)

2p are
above Q(BCIS-3B)

2p at E > 130 keV and E > 300 keV, respectively.
Here, Q(TDSE)

2p exhibits an unusual sudden slope change at
300 keV and from thereon shows a fast decline with increased
energy. This experimentally unobserved pattern runs contrary
to the smoothly behaving cross sections Q(BCIS-3B)

2p , Q(CDW-3B)

2p ,
and Q(SC-CCC)

2p at higher energies. At, e.g., 200 keV, Q(TDSE)

2p

overestimates Q(SSE)

2p by a factor of 2. The TDSE and SC-CCC
methods are in good agreement at 20 � E � 100 keV, but
differ very significantly at higher energies. For example at
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NENAD MILOJEVIĆ et al. PHYSICAL REVIEW A 102, 012816 (2020)

FIG. 3. State-selective total cross sections Q4s, Q4p, Q4d , and Q4 f

in cm2 as a function of impact energies E (keV) for electron capture
by protons from H(1s), as per process (68). The curves are the
present results from the BCIS-3B method. Experimental data with
molecular hydrogen targets (converted to atomic hydrogen targets
following Ref. [89]): ◦ (Q4s ) Hughes et al. [86]. The theoretical
results for Q4p, Q4d , and Q4 f are divided by 10.

280 keV, it is seen that Q(TDSE)

2p ≈ 3.5Q(SC-CCC)

2p , while at this same
energy we have Q(SC-CCC)

2p ≈ Q(BCIS-3B)

2p .

From 20 to 200 keV, we note that Q(SC-CCC)

2p < Q(BCIS-3B)

2p and
the difference between these two cross sections is within a
factor of 2. On the other hand, a more favorable agreement
at the same energies (20 � E � 200 keV) is seen between
the BCIS-3B and SSE methods. Above 280 keV, a strong
pattern reversal occurs between the SC-CCC and BCIS-3B
methods Q(SC-CCC)

2p > Q(BCIS-3B)

2p , such that at, e.g., 1000 keV,
there is factor of 10 difference Q(SC-CCC)

2p ≈ 10Q(BCIS-3B)

2p . This
should be compared to a near coincidence of Q(BCIS-3B)

2p and
Q(CDW-3B)

2p . In fact, it is mainly the lack of experimental data
on Q2p above 35 keV, coupled with an order-of-magnitude
discrepancy between the SC-CCC and BCIS-3B methods at
high energies that motivates bringing the CDW-3B method
into the presentation. For the other electronic transitions, we
shall not pursue any further with the presentations of the
results from the CDW-3B method, as the interested reader can
consult, e.g., Refs. [1,89].

At the highest displayed energies in Fig. 1(b), the discrep-
ancy between Q(BCIS-3B)

2p and Q(SC-CCC)

2p , toward the tails of the
two curves (above 300 keV), is more pronounced than that in
Fig. 1(a) between Q(BCIS-3B)

2s and Q(SC-CCC)

2s (above 850 keV). This
implies that the neglected ionization channel in the SC-CCC
method influences more significantly capture to the 2p than
to the 2s subshells of the n = 2 level in atomic hydrogen.
Ionization dominates over capture at higher energies where

it is important to include electron continuum states as an in-
termediate channel prior to capture. It is such an intermediate
ionization effect which places the BCIS-3B method into the
category of the second-order perturbative theories. This is
contrary to first-order theories such as the CB1-3B method
where the purely electronic continuum intermediate states are
absent from the onset.

As to the existing experimental data for Q2p, they are
scarce, unfortunately. Moreover, they do not extend to ener-
gies above 35 keV. Further, it is seen in Fig. 1(b) that the
measured Q2p from Refs. [79,81] are not fully concordant
with each other. A similar discrepancy within a factor of 2
also exists between the measured Q2p from Refs. [80,82].
For example, one finds that 1.99 � QRef.[82]

2p /QRef.[80]

2p � 2.1 and
1.4 � QRef.[79]

2p /QRef.[81]

2p � 1.9. It is clear that both Q(BCIS-3B)

2p and
Q(SSE)

2p are in very good agreement with the experimental data
from Refs. [79,82], while showing an overestimation of the
measured cross sections from Refs. [80,81]. On the other
hand, Q(SC-CCC)

2p agrees very well with the measured findings
from Refs. [80,81], but underestimates the experimental data
from Refs. [79,82]. At these limited sets of the existing
experimental data, the cross sections Q(TDSE)

2p are in-between
Q(BCIS-3B)

2p and Q(SC-CCC)

2p , with the TDSE method being closer to
the SC-CCC than to the BCIS-3B or SSE methods.

Figure 2 deals with capture into the n = 3 level with the
three pertinent subshells 3s, 3p, and 3d. Therein, the three
sets of measurements [85,87,88] for Q3s are in very good
agreement. These measured cross sections are excellently
reproduced by the BCIS-3B method at all energies, 10–300
keV. As to the experimental data for Q3l from the same
Refs. [87,88], they are seen to be scattered for both l = 1 and
2. The BCIS-3B method for Q3p excellently coheres with the
measured cross sections from Ref. [88] at 75–125 keV, but
underestimates them above 125 keV. However, the trend of
the two measured cross sections at 150 and 250 keV [88] does
not follow the data at 75–125 keV from the same experiment.
The experimental data for Q3p from Ref. [87] are overesti-
mated by the BCIS-3B method at 30–100 keV. Similarly, the
measured cross sections Q3p from Ref. [87] underestimate
those from experiments in Ref. [88] at the overlapped energies
(70–100 keV). The results for Q3d by the BCIS-3B method
are in excellent agreement with the experimental data from
Ref. [87] at all energies (30–100 keV). Moreover, Q3d agrees
very well with the measured cross sections from Ref. [88] at
E � 150 keV. Also seen in Fig. 2 is that, above 150 keV, the
BCIS-3B method for capture into the 3d state underestimates
the just mentioned experimental data [88]. However, these
latter recorded data for Q3d at 250 and 300 keV are clearly
out of line relative to those at 75–150 keV from the same
measurement [88]. New measurements on Q3p and Q3d would
be desirable to settle the issue of the existing disparity in the
two measurements [87,88] and to help solidify the assessment
of the performance of the theory for capture into the 3p and
3d states.

Cross sections Q4s, Q4p, Q4d , and Q4 f from the BCIS-3B
method are given in Fig. 3. Comparison of the theory and mea-
surement deals with Q4s alone since there are no experimental
data for Q4l (l = 1, 2, 3) at intermediate and high energies.
It is observed in this figure that the BCIS-3B method for Q4s
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FIG. 4. State-summed total cross sections Q� (cm2) as a function
of impact energies E (keV) for electron capture into all the final
bound states H(�) from the ground state of atomic hydrogen by
protons. Theories: various curves. The solid curve: the present result
Q� from the BCIS-3B method with Q� � Q1 + Q2 + Q3 + 2.561Q4

using (77); the dotted curve: Q� from the TDSE method [8] with
Q� � Q1 + 1.616Q2; and the dashed curve: Q1 ≡ Q1s from the off-
shell AOCC method [11]. The cross sections Q� � Q1 + 1.616Q2

from the SSE method [7] (not plotted) are very close to Q� from the
TDSE method [8]. Experimental data with atomic hydrogen targets:
◦ Fite et al. [90], 	 McClure [91], � Gilbody and Ryding [92], •
Wittkower et al. [93], 
 Bayfield [77], � Hvelplund and Andersen
[94]. Experimental data with molecular hydrogen targets (converted
to atomic hydrogen targets following Ref. [89]): ♦ Stier and Barnett
[95], � Barnett and Reynolds [96], � Welsh et al. [97], � Schryber
[98], � Toburen et al. [99].

is able to excellently reproduce the corresponding measured
cross sections from Ref. [86] at all the energies (30–125 keV).
For completion, despite the said lack of measurements on
Q4p, Q4d , and Q4 f , these cross sections are also plotted on
Fig. 3.

The total cross sections Q(BCIS-3B)

� from the BCIS-3B method
are displayed in Fig. 4 as the solid curve. These cross sections
are summed over all the final bound states by means of the
Oppenheimer scaling rule (77). In Fig. 4, the experimental
data from the great majority of the existing measurements
[90–99] appear to be in very good mutual accord. Here too,
as was the case with the state-selective (state-resolved) cross
sections, experimental data measured on molecular hydrogen
targets are converted to the corresponding atomic hydrogen
targets following Ref. [89]. As is clear from this figure,
the BCIS-3B method is in excellent agreement with all the
measured cross sections throughout the wide energy range
from 20 to 1000 keV, within which the cross sections vary
by some seven orders of magnitude. Also plotted in Fig. 4

are the cross sections Q(TDSE)

� [8] and those from the off-shell
atomic-orbital close-coupling (AOCC) method [11]. Cross
sections Q(TDSE)

nl are available up to 600, 300, and 400 keV
for nl = 1s, 2s, and 2p, respectively [8]. These provide
Q(TDSE)

� up to 300 keV using the usual Oppenheimer-scaled
formula Q(TDSE)

� = Q(TDSE)

1s + 1.616[Q(TDSE)

2s + Q(TDSE)

2p ]. It is noted
that Q(BCIS-3B)

� and Q(TDSE)

� are in perfect agreement at 30 � E �
300 keV. Very good agreement exists as well between the
BCIS-3B and the off-shell AOCC method at 20 � E � 200
keV. Above 200 keV, where intermediate ionization channels
become dominant, the off-shell AOCC method overestimates
the experimental data. Conceivably, that inclusion of coupling
to ionization channels would bring the cross sections from
the off-shell AOCC method closer to the measured data at
E > 200 keV, as indeed was the expectation expressed in
Ref. [11].

We shall now analyze theoretical (present, Ref. [11]) and
measured angular distributions [100–102] of scattered projec-
tiles (differential cross sections) that are shown in Figs. 5–7.
Specifically, Figs. 5 and 6 are for the intermediate energies
Ecm = 60 and 125 keV, respectively, whereas Fig. 7 deals
with a high impact energy Elab = 5 MeV. To avoid clutter,
the state-selective cross sections (dQ/d�)n for 1 � n � 4 and
the state-summed cross sections (dQ/d�)� are shown on two
separate panels, (a) and (b), respectively, in Figs. 5 and 6.
On the other hand, at 5 MeV in Fig. 7, all the curves are
sufficiently transparent when plotting together (dQ/d�)n for
1 � n � 3 and (dQ/d�)�.

Figures 5(a) and 6(a) show that the dominant contribution
to (dQ/d�)� comes from (dQ/d�)1. Therein, all the curves
for (dQ/d�)n with 1 � n � 4 and (dQ/d�)1 have similar
shapes with no minima. As seen in Figs. 5(b) (60 keV) and
6(b) (125 keV), the BCIS-3B method is in good agreement
with the experimental data [100,101]. Moreover, in these
figures, the BCIS-3B method and experimental data exhibit
similar curvature changes near 1 mrad. In the BCIS-3B
method, this is a consequence of a competition between two
different mechanisms, one stemming from electronic and the
other from nuclear motions. The electron-nucleus interac-
tion underlies the former mechanism, whereas the basis of
the latter mechanism is the nucleus-nucleus elastic Ruther-
ford scattering. The electron-nucleus component dominates at
smaller angles (near the forward cone, i.e., close to θ = 0).
Its prominent signature for decreasing θ is a sharp rise of
the differential cross section which eventually culminates as
the forward peak (θ ≈ 0). The nucleus-nucleus Rutherford
component is negligible in the vicinity of the forward cone,
but prevails at larger θ. In the Rutherford mechanism, the
differential cross sections are not peaked. Quite the contrary,
the associated curve has an extended tail as a function of θ .
Since these two component curves possess different slopes
(not shown), their interference yields the curvature change in
the composite result, displayed in the BCIS-3B method by the
solid curves on panels (a) and (b). Such features persist at both
60 keV (Fig. 5) and 125 keV (Fig. 6).

Also depicted on Figs. 5(b) and 6(b) are the differential
cross sections from the on- and off-shell AOCC methods
[11] as the dashed and dotted curves, respectively. It is ob-
served that the BCIS-3B and off-shell AOCC methods agree
well with each other as well as with the experimental data

012816-13
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FIG. 5. Differential cross sections (dQ/d�)n and (dQ/d�)�
(in cm2/sr) as a function of scattering angle θ (in mrad) at the
impact energy E = 60 keV for electron capture by protons from
H(1s) into the state-selective states of H(n) and into all the states
of H(�). Both the cross sections and the scattering angles are in
the center-of-mass system. (a) Only the present results from the
BCIS-3B method for (dQ/d�)n with 1 � n � 4 and (dQ/d�)� =
(dQ/d�)1 + (dQ/d�)2 + (dQ/d�)3 + 2.561(dQ/d�)4. (b) The
solid curve (present) from the BCIS-3B method for (dQ/d�)�,

whereas the dashed and dotted curves are from the off- and on-shell
AOCC methods [11], respectively. Experimental data with atomic
hydrogen targets: • Martin et al. [100], 
 Park [101].

[100,101]. On the other hand, the dotted curves for the on-
shell AOCC method have minima at 0.9 and 0.7 mrad at 60
keV (Fig. 5) and 125 keV (Fig. 6). There are no minima in
the experimental data nor in the BCIS-3B and the off-shell-
AOCC methods.

For proton-hydrogen charge exchange, the CB1-3B, BCIS-
3B, as well as the AOCC methods share the same potential
comprised of the nucleus-nucleus and electron-projectile in-
teractions (1/R − 1/s). It is well known that an infinitely deep
minimum (a dip) always appears in (dQ/d�)(CB1-3B)

nlm for any
fixed triple nlm, as illustrated in Ref. [26] for 1 � n � 9.

This is due to a nearly complete vanishing of the potential
1/R − 1/s at the so-called dark angle (da), θda, located at
1.1, 0.9, and 0.7 mrad for 25, 60, and 125 keV, respectively
(the larger the impact energy, the smaller the dark angle)

FIG. 6. The same as in Fig. 5, except for the impact energy
E = 125 keV and for only one set of the measured cross sec-
tions. Experimental data with atomic hydrogen targets: • Martin
et al. [100].

[26]. In other words, around θ ≈ θda, the contributions from
the repulsive (1/R) and attractive (−1/s) potentials in the
composite interaction 1/R − 1/s are almost equalized. At the
given impact energy, the values of θda in the CB1-3B method
are slightly shifted for different nlm. This partially masks
the dips in the state-selective cross sections when summing
over lm to obtain (dQ/d�)(CB1-3B)

n . Further fillings of the dips
from each individual state take place after performing the
summation over n to compute (dQ/d�)(CB1-3B)

� . As a result,
the infinitely low-lying dips are partially filled in the cross
sections summed over n using n = 1 and 2 [26]. Still, the
unphysical minimum is not smoothed out even by enlarg-
ing the said sum

∑2
n=1(dQ/d�)(CB1-3B)

n with the addendum∑9
n=3(dQ/d�)(CB1-3B)

n nor in (dQ/d�)(CB1-3B)

� with all the final
bound states n > 1 [26].

This is opposite to both the BCIS-3B and the off-shell
AOCC methods where, as stated, no minima appear. In the
BCIS-3B method, near cancellations of the two potentials in
the initial perturbation interaction (1/R − 1/s) are entirely
masked by the constructive interference terms of highly os-
cillatory behavior of the electronic full Coulomb wave func-
tion (for the on-shell continuum intermediate state) in the
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FIG. 7. Differential cross sections (dQ/d�)n and (dQ/d�)�
(in cm2/sr) as a function of scattering angle θ (in mrad) at the
impact energy E = 5 MeV for electron capture by protons from
H(1s) into the state-selective states of H(n) and into all the states
of H(�). Both the cross sections and the scattering angles are in
the laboratory system. Theory: only the present results from the
BCIS-3B method. The dashed, dotted-dashed, and dotted curves
are for the state-selective cross sections (dQ/d�)1, (dQ/d�)2, and
(dQ/d�)3, respectively, whereas the solid curve is for the state-
summed cross section (dQ/d�)� using Eq. (79). Experimental data
with atomic hydrogen targets: • Vogt et al. [102].

integrand of the transition amplitude. In the off-shell AOCC
method, the interaction 1/R − 1/s is not annulled either due
the presence of the important effects from the included vir-
tual transitions. The infinitely low-lying dips at varying θda,

typical of the CB1-3B method, are absent from the on-shell
AOCC method. Instead of these experimentally undetected
dips, the on-shell AOCC predicts one minimum per impact
energy located at 1.1, 0.9, and 0.7 mrad for 25, 60, and
125 keV, respectively [11]. The two such situations are also
seen in the dotted curves on Fig. 5(b) (0.9 mrad, E = 60 keV)
and Fig. 6(b) (0.7 mrad, E = 125 keV).

High-energy theoretical (present) and measured [102] an-
gular distributions are compared in Fig. 7 at Elab = 5 MeV
and a remarkably good agreement is observed. The BCIS-3B
method contains the usual second-order effect through double
scattering of the captured electron on the two nuclei. This
is a quantum-mechanical counterpart of the Thomas classical
two-step, billiard-type P − e − T collisions. As stated, in the
classical picture, the electron collides first on the projectile nu-
cleus and then on the target nucleus to finally become bound
to the projectile. Kinematics of the Thomas double classical
scattering is determined by the conservation laws of energy
and momenta. As a net result, the projectile itself is deflected
through the critical Thomas angle for double scattering (ds),
θds = (1/MP )

√
3/2, in the laboratory system. This critical

angle does not depend on either the projectile velocity nor the
target mass. In the case of a proton impact, θds is located at
�0.47 mrad (lab). The same angle θds is also predicted by
the second-order quantum-mechanical theories, such as the

BCIS-3B and CDW-3B methods. For proton-hydrogen charge
exchange, this prediction has been experimentally confirmed
most clearly at 5 MeV [102]. The agreement seen in Fig. 7
at 5 MeV between the BCIS-3B method and the experimental
data [102] is especially favorable around the forward and the
Thomas peaks. All the state-to-state differential cross sections
in the BCIS-3B method also yield the Thomas peaks at the
same critical angle θds. This is shown in Fig. 7 through
the three components {(dQ/d�)n}n=1,2,3 of (dQ/d�)�. Sim-
ilarly to the two discussed intermediate energies (60 and
125 keV), here too, at 5 MeV, it is noted that (dQ/d�)1

provides the dominant contribution to (dQ/d�)�. Again, just
like the pattern already discussed with Figs. 5 and 6, all the
curves for {(dQ/d�)n}n=1,2,3 and (dQ/d�)� possess very
similar shapes.

Note that between the forward and the Thomas peak, both
the experimental data [102] and the BCIS-3B method exhibit
a minimum in the angular distribution at 5 MeV (Fig. 7).
However, from the theoretical standpoint, this minimum is
of an entirely different nature from the minima near the dark
angles appearing at intermediate energies 60 keV (Fig. 5) and
125 keV (Fig. 6), respectively. The experimentally detected
minimum is reproduced in second-order theories by the mech-
anism of a destructive interference from the first- and second-
order collisional events. The first-order effects produce the
forward peak (θ ≈ 0), through a single scattering of the
projectile nucleus with the target electron. The second-order
effects, via a double scattering of the same target electron
on two nuclei, give the Thomas peak at the critical angle,
θds. It is seen in Fig. 7 that the presently predicted position
of the dip is slightly shifted relative to the corresponding
angle from the measurement [102]. In the BCIS-3B method,
this is not due to adding the contributions from all the final
excited states {n, l, m} as evident in Fig. 7 by inspecting
the components {(dQ/d�)n}n=1,2,3 of (dQ/d�)�. The cross
sections (dQ/d�)�, computed in the BCIS-3B method using
(79), have fully converged as a function of increasing n for all
the scattering angles θ, including those near and farther away
from the minimum. The minimum between the forward and
the Thomas peak can only partially be filled by convolving the
theoretical cross section (dQ/d�)� with the experimentally
estimated folding function [102], as done earlier in Ref. [2]
with different second-order methods, e.g., the CDW-3B [18],
CB2-3B (the boundary-corrected second Born) [103], and
RIA (the reformulated impulse approximation) [104]. Such a
convolution has not been made in this work.

The CDW-3B method predicts an experimentally unob-
served splitting of the Thomas peak [2]. This splitting into
the two adjacent Thomas peaks occurs near the critical angle,
θds. The reason for this drawback is in the destructive inter-
ference effects between the two electronic Coulomb waves
from the intermediate ionization channel (one wave in the
entrance and the other in the exit channel) [105]. Such an
unphysical splitting of the customary Thomas peak can be
completely avoided by switching off one of the two electronic
Coulomb wave functions while, of course, fully preserving
the correct initial and final boundary conditions, as done
in the BCIS-3B method. Generally, for angular distributions
and their integrated counterparts, the interference effects can
both decrease and increase the cross sections depending on
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TABLE II. State-selective total cross sections (in 10−16 cm2) for processes (66), (69), and (75) as a function of impact energy E (keV/amu)
of α particles for electron capture from H(1s) into the final states (n � 4) of singly charged positive helium ion He+(nlm). The columns labeled
by nlm refer to the state-selective (or partial) cross sections Qnlm and Qnl for (66) and (69), respectively. The rows denoted by � represent the
cross sections Q�, summed over all the final bound states of the He+(nlm) ion, by using Eq. (77). Notation X [Z] implies X × 10Z .

nlm\E (keV/amu) 10 20 30 50 80 100

100 1.52[+1] 5.34 2.60 9.40[−1] 3.23[−1] 1.83[−1]
200 1.55 1.17 7.52[−1] 3.38[−1] 1.25[−1] 7.06[−2]
210 5.80 4.91 2.99 1.08 2.86[−1] 1.34[−1]
211 1.41 1.08 5.99[−1] 1.86[−1] 4.24[−2] 1.85[−2]
2p 8.62 7.08 4.19 1.45 3.71[−1] 1.71[−1]
300 7.94[−2] 2.20[−1] 2.02[−1] 1.12[−1] 4.50[−2] 2.57[−2]
310 1.63[−1] 6.39[−1] 6.61[−1] 3.53[−1] 1.12[−1] 5.44[−2]
311 2.39[−2] 1.06[−1] 1.06[−1] 5.07[−2] 1.42[−2] 6.55[−3]
3p 2.11[−1] 8.52[−1] 8.73[−1] 4.55[−1] 1.40[−1] 6.75[−2]
320 6.27[−2] 2.90[−1] 2.87[−1] 1.26[−1] 3.03[−2] 1.27[−2]
321 2.34[−2] 1.18[−1] 1.11[−1] 4.40[−2] 9.42[−3] 3.73[−3]
322 3.04[−3] 1.52[−2] 1.36[−2] 5.00[−3] 9.99[−4] 3.83[−4]
3d 1.16[−1] 5.56[−1] 5.36[−1] 2.24[−1] 5.11[−2] 2.09[−2]
400 1.43[−2] 7.00[−2] 7.77[−2] 4.85[−2] 2.02[−2] 1.16[−2]
410 2.58[−2] 1.75[−1] 2.30[−1] 1.48[−1] 5.09[−2] 2.53[−2]
411 3.04[−3] 2.62[−2] 3.42[−2] 2.00[−2] 6.17[−3] 2.91[−3]
4p 3.19[−2] 2.27[−1] 2.98[−1] 1.88[−1] 6.33[−2] 3.11[−2]
420 1.03[−2] 8.59[−2] 1.15[−1] 6.52[−2] 1.77[−2] 7.62[−3]
421 3.09[−3] 3.18[−2] 4.20[−2] 2.17[−2] 5.26[−3] 2.15[−3]
422 3.39[−4] 3.85[−3] 4.85[−3] 2.33[−3] 5.32[−4] 2.12[−4]
4d 1.71[−2] 1.57[−1] 2.09[−1] 1.13[−1] 2.93[−2] 1.24[−2]
430 1.22[−3] 1.26[−2] 1.66[−2] 7.94[−3] 1.67[−3] 6.26[−4]
431 5.86[−4] 6.95[−3] 9.01[−3] 4.03[−3] 7.83[−4] 2.82[−4]
432 1.35[−4] 1.76[−3] 2.17[−3] 8.98[−4] 1.62[−4] 5.61[−5]
433 1.33[−5] 1.73[−4] 2.04[−4] 8.06[−5] 1.40[−5] 4.76[−6]
4 f 2.69[−3] 3.03[−2] 3.93[−2] 1.80[−2] 3.59[−3] 1.31[−3]
� 2.60[+1] 1.65[+1] 1.08[+1] 4.46 1.35 6.83[−1]

nlm\E (keV/amu) 150 200 300 500 800 1000

100 5.84[−2] 2.35[−2] 5.57[−3] 7.08[−4] 8.51[−5] 2.92[−5]
200 2.08[−2] 7.60[−3] 1.53[−3] 1.57[−4] 1.59[−5] 5.10[−6]
210 2.73[−2] 7.61[−3] 1.04[−3] 6.48[−5] 4.13[−6] 1.06[−6]
211 3.37[−3] 8.77[−4] 1.11[−4] 6.55[−6] 4.10[−7] 1.05[−7]
2p 3.41[−2] 9.37[−3] 1.26[−3] 7.79[−5] 4.95[−6] 1.27[−6]
300 7.58[−3] 2.73[−3] 5.31[−4] 5.22[−5] 5.10[−6] 1.61[−6]
310 1.14[−2] 3.16[−3] 4.20[−4] 2.52[−5] 1.56[−6] 3.95[−7]
311 1.26[−3] 3.30[−4] 4.17[−5] 2.42[−6] 1.49[−7] 3.82[−8]
3p 1.39[−2] 3.82[−3] 5.04[−4] 3.01[−5] 1.86[−6] 4.71[−7]
320 1.97[−3] 4.33[−4] 4.11[−5] 1.58[−6] 6.36[−8] 1.31[−8]
321 5.27[−4] 1.10[−4] 9.76[−6] 3.55[−7] 1.38[−8] 2.82[−9]
322 5.13[−5] 1.03[−5] 8.83[−7] 3.12[−8] 1.22[−9] 2.51[−10]
3d 3.12[−3] 6.73[−4] 6.24[−5] 2.35[−6] 9.37[−8] 1.92[−8]
400 3.44[−3] 1.23[−3] 2.37[−4] 2.29[−5] 2.21[−6] 6.97[−7]
410 5.38[−3] 1.49[−3] 1.97[−4] 1.17[−5] 7.11[−7] 1.79[−7]
411 5.70[−4] 1.51[−4] 1.90[−5] 1.10[−6] 6.73[−8] 1.72[−8]
4p 6.52[−3] 1.79[−3] 2.35[−4] 1.38[−5] 8.46[−7] 2.14[−7]
420 1.22[−3] 2.70[−4] 2.56[−5] 9.75[−7] 3.89[−8] 7.99[−9]
421 3.15[−4] 6.63[−5] 5.94[−6] 2.15[−7] 8.38[−9] 1.71[−9]
422 2.97[−5] 6.07[−6] 5.26[−7] 1.87[−8] 7.31[−10] 1.51[−10]
4d 1.91[−3] 4.14[−4] 3.85[−5] 1.44[−6] 5.72[−8] 1.17[−8]
430 7.51[−5] 1.33[−5] 9.09[−7] 2.22[−8] 5.79[−10] 9.65[−11]
431 3.15[−5] 5.38[−6] 3.50[−7] 8.22[−9] 2.09[−10] 3.46[−11]
432 5.89[−6] 9.63[−7] 5.93[−8] 1.32[−9] 3.26[−11] 5.35[−12]
433 4.85[−7] 7.76[−8] 4.66[−9] 1.02[−10] 2.55[−12] 4.23[−13]
4 f 1.51[−4] 2.62[−5] 1.74[−6] 4.15[−8] 1.07[−9] 1.77[−10]
� 1.69[−1] 5.65[−2] 1.08[−2] 1.13[−3] 1.21[−4] 4.00[−5]
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the considered impact energies. For example, in the CDW-
3B method, below 100 keV/amu, the values of Q(CDW-3B) are
systematically increased by the constructive interference ef-
fects from the two electronic Coulomb waves. As a result,
therein, there is a large departure of the CDW-3B method from
the associated experimental data. This failure too is foreign
to the BCIS-3B method on account of dealing with only
one electronic Coulomb wave. Moreover, as opposed to the
CDW-3B method, the initial total scattering state in the prior
BCIS-3B method is normalized at all interparticle distances.
Further, Q(BCIS-3B) is usually peaked near the Massey maximum,
while Q(CDW-3B) keeps on rising with decreased impact energy, at
variance with measurements. The Massey peak occurs when
the projectile velocity v matches the average velocity ve of
the electron on the shell from which capture takes place. As
per, e.g., Fig. 1(a), this occurs around 25 keV for the resonant
electron-transfer process H+ + H(1s) → H(1s) + H+.

D. Electron capture from H(1s) by α particles into any excited
states of the helium ion He+(nlm)

Next, we pass to processes (66), (69), (72), and (75).
Table II reports on the state-selective total cross sections in the
BCIS-3B method for α-H charge exchange at impact energies
10 keV/amu � E � 1000 keV/amu. Using some of these re-
sults, Fig. 8 deals particularly with Q2s and Q2p in relation
to process (69) for n = 2 with l = 0 and 1, respectively. The
literature has no reported data on Q2p. On the other hand,
measured data on Q2s are available [106] and are seen in

FIG. 8. State-selective total cross sections Q2s and Q2p in cm2

as a function of impact energies E (keV/amu) for electron capture
by alpha particles from H(1s), as per process (69). The curves are
the present results from the BCIS-3B method. Experimental data
with atomic hydrogen targets: ◦ (Q2s) Shah and Gilbody [106]. The
theoretical results for Q2p are divided by 102.

FIG. 9. State-selective total cross sections Q4s, Q4p, Q4d , and Q4 f

in cm2 as a function of impact energies E (keV/amu) for electron
capture by alpha particles from H(1s), as per process (69). The
curves are the present results from the BCIS-3B method. Experimen-
tal data with atomic hydrogen targets: ◦ (Q4s, Q4p, Q4d , Q4 f ) Frieling
et al. [107]. Both the theoretical and experimental results are divided
by a factor: Q4p by 10, Q4d by 102, and Q4 f by 103.

Fig. 8 to be in excellent agreement with the BCIS-3B method.
This accord persists throughout the overlapped region even at
energies as low as E = 8 keV/amu, which is unprecedented
within the category of high-energy theories to which the
BCIS-3B method belongs.

Formations of some of the higher excited states via
He+(nl ) and He+(n) for n = 4 in processes (69) with l =
0, 1, 2, 3 and (72) are considered in Figs. 9 and 10, respec-
tively. Qualitatively, Fig. 9 shows a concordant behavior of
the line shapes of the theoretical and experimental data for
Q4p, Q4d , and Q4 f . Quantitatively, the BCIS-3B method and
measurement are in very good agreement for Q4p and Q4 f . As
to Q4s and Q4d , the theory underestimates and overestimates,
respectively, the corresponding experimental data. However,
when the theoretical cross sections Q4s, Q4p, Q4d , and Q4 f

are summed up, the predictions of Qn for n = 4 in the BCIS-
3B method are found in Fig. 10 to excellently reproduce the
measured data [107] for Q4 at all energies.

The symbols (open circles) plotted in Figs. 9 and 10 refer
to the same experiment from Ref. [107]. In fact, in Ref. [107]
only the cross sections Qn for n = 4 summed over all the
subshells 0 � l � 3 have been measured. On the other hand,
none of the individual cross sections Q4s, Q4p, Q4d , nor
Q4 f has been measured in Ref. [107]. Instead, they were
computationally estimated in Ref. [107] from the measured
data for Q4 by an extrapolation procedure, which might be
prone to inaccuracies. This limitation should be kept in mind
when revisiting Fig. 9, where the data from Ref. [107] on
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FIG. 10. State-selective total cross sections Q4(cm2) as a func-
tion of impact energies E (keV/amu) for electron capture by alpha
particles from H(1s), as per process (72). The curve is the present
result from the BCIS-3B method. Experimental data with atomic
hydrogen targets: ◦ Frieling et al. [107].

Q4s, Q4p, Q4d , and Q4 f (open circles) are compared with
the theoretical findings. Note that in Figs. 9 and 10 both the
experiment [107] and the BCIS-3B method refer to hydrogen
atoms as the targets.

For process (75), the theoretical total cross sections Q�,

summed over all the excited states using the Oppenheimer
n−3 scaling rule (77), are shown in Fig. 11 together with
the measured findings [94,106,108–114]. Some of the dis-
played experimental data are on H2 as the target and these
are converted to atomic hydrogen targets by the prescription
of Ref. [89]. Nearly all the experimental data available in
the literature are plotted in this figure. It is evident that the
experimental data on Q� for hydrogen targets impacted by
alpha particles (Fig. 11) versus those by protons (Fig. 4)
are more dispersed for the former than for the latter pro-
jectiles. For example, significant deviations from the joint
trend of the other measured Q� are seen on Fig. 11 below
40 keV/amu and above 250 keV/amu in the experimental data
from Refs. [111] and [112], respectively. Nevertheless, most
experimental data seen in Fig. 11 are mutually concordant.
Moreover, they are in excellent agreement with Q� from
the BCIS-3B method. This observation coheres with the like
conclusion on the p-hydrogen collisions for both total and
differential cross sections.

E. Electron capture from He(1s2) by protons into any excited
states of hydrogen H(nlm)

In this section, we proceed with tackling processes (67),
(70), (73), and (76). These are approximated by their effective
hydrogenlike substitutes generated from the prototype:

p + (
Zeff

T , e
)

1s → H(nlm) + Zeff
T , (82)

which coincides with (7) when ZT is replaced by Zeff
T . As

mentioned, in the effective charge Zeff
T , the target nuclear

charge ZT is shielded by the Slater screening ZS = 5
16 giving

FIG. 11. State-summed total cross sections in Q� (cm2) as a
function of impact energies E (keV/amu) for electron capture into
all the final bound states He+(�) from the ground state of hydrogen
by alpha particles, as per process (75): α + H(1s) −→ He+(�) + p.
The curve is the present result from the BCIS-3B method for Q� �
Q1 + Q2 + Q3 + 2.561Q4 from (77). Experimental data with atomic
hydrogen targets: ◦ Bayfield and Khayrallah [108], 	 Olson et al.
[109], � Shah and Gilbody [106], ♦ Hvelplund and Andersen [94], �
Sant’Anna et al. [110]. Experimental data with molecular hydrogen
targets (converted to atomic hydrogen targets following Ref. [89]):
• Allison [111], 
 Pivovar et al. [112], � Bayfield and Khayrallah
[113], � Hvelplund et al. [114].

Zeff
T = ZT − ZS = 1.6875. This is one of the two remainders

of the original four-body problem in the p-He collisions with
single charge exchange. The other remainder is a factor of 2 by
which the effective three-body cross sections for (82) should
be multiplied to account for an equal chance of capturing
either e1 or e2 via the original process (63), whose examples
are (67), (70), (73), and (76).

Experimental data are available for Q2s, Q2p, Q3s,

Q3p, Q3d , Q4s, and Q� [84,86,88,97,115–126]. Generally,
the existing measured cross sections are mutually in very
good accord for Q2s, Q3s, Q3p, Q4s, and Q�. Thus far, no
measurement has been reported on Q4p, Q4d , and Q4 f for
process (70) with n = 4.

The theoretical state-selective total cross sections within
the energy range 10 keV � E � 1000 keV are stored in Ta-
ble III. In order to illustrate these cross sections graphically,
Figs. 12–15 are presented for processes (70) and (76) at ener-
gies overlapping those from the experimental data. Regarding
the process (70), we allocate Fig. 12 for Q2s, Q2p, Fig. 13 for
Q3s, Q3p, Q3d , and Fig. 14 for Q4s, Q4p, Q4d , Q4 f . Figure 15
is for process (76).

Since we are dealing with the inherently four-body pro-
cesses (67), (70), (73), and (76), that we presently treat as
the effective three-body collisions, some discrepancies are
expected between the BCIS-3B method and experiments.
However, as one can see from Figs. 12–14, at all the consid-
ered impact energies, the present theoretical predictions are
in excellent agreement with the experimentally determined
cross sections for spherically symmetrical final hydrogenlike
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TABLE III. State-selective total cross sections (in 10−16 cm2) for processes (67), (70), and (76) as a function of impact energy E (keV) of
protons for single-electron capture from He(1s2) into all final states of atomic hydrogen with n � 4. The columns labeled by nlm refer to the
state-selective (or partial) cross sections Qnlm and Qnl for (67) and (70), respectively. The rows denoted by � represent the cross sections Q�,

summed over all the final bound states of the H(nlm) atom, by using Eq. (77). Notation X [Z] implies X × 10Z .

nlm\E (keV) 10 20 30 50 80 100

100 1.28[−1] 5.49[−1] 8.24[−1] 7.15[−1] 3.64[−1] 2.26[−1]
200 4.62[−3] 1.74[−2] 3.90[−2] 5.85[−2] 4.16[−2] 2.86[−2]
210 1.13[−3] 3.88[−3] 6.06[−3] 8.94[−3] 6.71[−3] 4.59[−3]
211 4.50[−5] 3.18[−4] 9.68[−4] 1.57[−3] 1.05[−3] 6.76[−4]
2p 1.22[−3] 4.52[−3] 8.00[−3] 1.21[−2] 8.81[−3] 5.94[−3]
300 1.14[−3] 4.12[−3] 9.44[−3] 1.57[−2] 1.20[−2] 8.40[−3]
310 3.26[−4] 1.18[−3] 1.76[−3] 2.72[−3] 2.21[−3] 1.56[−3]
311 1.31[−5] 7.85[−5] 2.57[−4] 4.70[−4] 3.41[−4] 2.26[−4]
3p 3.52[−4] 1.34[−3] 2.27[−3] 3.66[−3] 2.89[−3] 2.01[−3]
320 8.88[−6] 4.82[−5] 6.55[−5] 7.81[−5] 5.90[−5] 4.04[−5]
321 1.22[−6] 4.40[−6] 1.18[−5] 2.62[−5] 2.09[−5] 1.38[−5]
322 3.72[−8] 4.16[−7] 1.67[−6] 3.35[−6] 2.40[−6] 1.53[−6]
3d 1.14[−5] 5.78[−5] 9.24[−5] 1.37[−4] 1.06[−4] 7.10[−5]
400 4.52[−4] 1.61[−3] 3.71[−3] 6.37[−3] 4.99[−3] 3.53[−3]
410 1.33[−4] 5.01[−4] 7.34[−4] 1.15[−3] 9.60[−4] 6.83[−4]
411 5.47[−6] 3.10[−5] 1.04[−4] 1.98[−4] 1.48[−4] 9.87[−5]
4p 1.44[−4] 5.63[−4] 9.41[−4] 1.54[−3] 1.25[−3] 8.81[−4]
420 4.86[−6] 2.74[−5] 3.73[−5] 4.43[−5] 3.43[−5] 2.37[−5]
421 6.75[−7] 2.42[−6] 6.29[−6] 1.46[−5] 1.20[−5] 8.06[−6]
422 2.06[−8] 2.15[−7] 8.86[−7] 1.86[−6] 1.38[−6] 8.87[−7]
4d 6.25[−6] 3.27[−5] 5.17[−5] 7.72[−5] 6.11[−5] 4.16[−5]
430 3.78[−8] 3.16[−7] 4.97[−7] 5.54[−7] 3.82[−7] 2.50[−7]
431 1.04[−8] 4.90[−8] 9.02[−8] 2.07[−7] 1.82[−7] 1.21[−7]
432 8.37[−10] 4.42[−9] 1.95[−8] 5.32[−8] 4.31[−8] 2.76[−8]
433 2.39[−11] 4.64[−10] 2.30[−9] 5.41[−9] 4.03[−9] 2.51[−9]
4 f 6.03[−8] 4.24[−7] 7.21[−7] 1.08[−6] 8.40[−7] 5.53[−7]
� 1.37[−1] 5.82[−1] 8.95[−1] 8.25[−1] 4.45[−1] 2.82[−1]

nlm\E (keV) 150 200 300 500 800 1000

100 7.58[−2] 2.98[−2] 6.56[−3] 7.39[−4] 7.97[−5] 2.62[−5]
200 1.07[−2] 4.34[−3] 9.62[−4] 1.06[−4] 1.10[−5] 3.56[−6]
210 1.60[−3] 5.93[−4] 1.09[−4] 8.70[−6] 6.41[−7] 1.73[−7]
211 2.13[−4] 7.37[−5] 1.24[−5] 9.08[−7] 6.29[−8] 1.66[−8]
2p 2.03[−3] 7.40[−4] 1.34[−4] 1.05[−5] 7.67[−7] 2.06[−7]
300 3.22[−3] 1.32[−3] 2.93[−4] 3.20[−5] 3.32[−6] 1.07[−6]
310 5.63[−4] 2.11[−4] 3.90[−5] 3.12[−6] 2.29[−7] 6.15[−8]
311 7.36[−5] 2.58[−5] 4.39[−6] 3.22[−7] 2.23[−8] 5.88[−9]
3p 7.10[−4] 2.63[−4] 4.77[−5] 3.76[−6] 2.73[−7] 7.33[−8]
320 1.34[−5] 4.53[−6] 6.91[−7] 4.03[−8] 2.09[−9] 4.70[−10]
321 4.19[−6] 1.33[−6] 1.87[−7] 9.94[−9] 4.83[−10] 1.06[−10]
322 4.36[−7] 1.33[−7] 1.77[−8] 8.87[−10] 4.12[−11] 8.92[−12]
3d 2.26[−5] 7.46[−6] 1.10[−6] 6.20[−8] 3.14[−9] 7.00[−10]
400 1.37[−3] 5.62[−4] 1.25[−4] 1.36[−5] 1.41[−6] 4.55[−7]
410 2.50[−4] 9.42[−5] 1.75[−5] 1.40[−6] 1.02[−7] 2.75[−8]
411 3.26[−5] 1.15[−5] 1.96[−6] 1.44[−7] 9.94[−9] 2.62[−9]
4p 3.16[−4] 1.17[−4] 2.14[−5] 1.68[−6] 1.22[−7] 3.28[−8]
420 7.96[−6] 2.72[−6] 4.16[−7] 2.43[−8] 1.26[−9] 2.83[−10]
421 2.49[−6] 7.95[−7] 1.12[−7] 5.98[−9] 2.91[−10] 6.39[−11]
422 2.57[−7] 7.92[−8] 1.06[−8] 5.32[−10] 2.48[−11] 5.36[−12]
4d 1.34[−5] 4.47[−6] 6.61[−7] 3.73[−8] 1.89[−9] 4.22[−10]
430 7.42[−8] 2.25[−8] 2.79[−9] 1.17[−10] 4.21[−12] 7.87[−13]
431 3.50[−8] 1.02[−8] 1.19[−9] 4.67[−11] 1.61[−12] 2.96[−13]
432 7.39[−9] 2.05[−9] 2.24[−10] 8.11[−12] 2.63[−13] 4.73[−14]
433 6.44[−10] 1.74[−10] 1.83[−11] 6.36[−13] 2.00[−14] 3.54[−15]
4 f 1.60[−7] 4.73[−8] 5.66[−9] 2.27[−10] 8.00[−12] 1.48[−12]
� 9.68[−2] 3.82[−2] 8.38[−3] 9.30[−4] 9.90[−5] 3.23[−5]
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FIG. 12. State-selective total cross sections Q2s and Q2p in cm2

as a function of impact energy E (keV) for single-electron capture by
protons from He(1s2), as per process (70). The curves are the present
results from the BCIS-3B method with the effective hydrogenic
model (see the main text). Experimental data: 	 (Q2s, Q2p) Hughes
et al. [84], ◦ (Q2s, Q2p) Cline et al. [115], � (Q2p) Hippler et al. [116],
� (Q2p) Hippler et al. [117]. Both the theoretical and experimental
results for Q2p are divided by 10.

FIG. 13. State-selective total cross sections Q3s, Q3p, and Q3d

in cm2 as a function of impact energy E (keV) for single-electron
capture by protons from He(1s2), as per process (70). The curves
are the present results from the BCIS-3B method with the effective
hydrogenic model (see the main text). Experimental data: ◦ (Q3s,
Q3p, Q3d ) Ford et al. [88], 	 (Q3s) Conrads and Nichols [118], �
(Q3s, Q3p, Q3d ) Brower and Pipkin [119], � (Q3s) Cline et al. [115],
• (Q3p, Q3d ) Cline et al. [120], 
 (Q3d ) Edwards and Thomas [121].
Both the theoretical and experimental results are divided by a factor:
Q3p by 10 and Q3d by 103.

FIG. 14. State-selective total cross sections Q4s, Q4p, Q4d , and
Q4 f in cm2 as a function of impact energy E (keV) for single-electron
capture by protons from He(1s2), as per process (70). The curves
are the present results from the BCIS-3B method with the effective
hydrogenic model (see the main text). Experimental data: 	 (Q4s)
Hughes et al. [86], ◦ (Q4s) Doughty et al. [122], � (Q4s) Brower and
Pipkin [119]. The theoretical results for Q4 f are multiplied by 10.

states (l = 0), such as Q2s (E ∈ [25, 115] keV), Q3s (E ∈
[25, 700] keV), and Q4s (E ∈ [20, 150] keV). For nonspher-
ical states (l �= 0), the theory and experiments are also in
excellent agreement for Q2p (E ∈ [50, 200] keV), Q3p (E ∈
[50, 300] keV), and Q3d (E ∈ [70, 250] keV). On the other
hand, it is apparent from Figs. 12 and 13 that the BCIS-3B
method significantly underestimates the experimental data
below 50 keV (Q2p, Q3p) and below 70 keV (Q3d ).

Another way to compute any state-selective cross sections
(including Q3p and Q3d in order to readdress the said underes-
timation issue) could be to apply the BCIS-4B method directly
to the original four-body problem (63) instead of tackling its
substitute (82), which is the three-body effective problem.
Such a more flexible approach would permit the use of a
better ansatz than the simplest one-parameter uncorrelated
ground-state closed-shell (1s2) helium wave function given by
Hylleraas [127]. This is what has been done in the CB1-4B
method [72] by employing the two-parameter highly radi-
ally correlated open-shell (1s1s′) ground-state helium wave
function of Silverman et al. [128]. However, while dealing
with, e.g., Q3p and Q3d , the CB1-4B method for the purely
four-body problem (63) has also been found [72] to exhibit
precisely the same pattern as the mentioned underestimation
in the BCIS-3B method for the effective three-body prob-
lem (82).

This coheres with the earlier findings in, e.g., the four-body
continuum-distorted-wave (CDW-4B) method [129,130]. For
instance, in Ref. [129], the 35-parameter configuration-
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FIG. 15. State-summed total cross sections Q� (cm2) as a func-
tion of impact energy E (keV) for single-electron capture into all the
final bound states H(�) from the ground state of helium by protons,
as per process (76). The curves are the present results from the BCIS-
3B method for Q� � Q1 + Q2 + Q3 + 2.561Q4 from (77) with the
effective hydrogenic model (see the main text). Experimental data:
	 Welsh et al. [97], ◦ Williams [123], � Martin et al. [124], � Shah
and Gilbody [125], ♦ Shah et al. [126].

interaction (CI) ground-state helium wave function of Weiss
[131] has been used, with 99% of electron correlation energy.
Therein, it has been shown that, as opposed to low and high
energies, the static interelectron correlations in the ground
state of helium play only a minor role at intermediate energies.
Hence, a better helium wave function would hardly be able
to significantly reduce the extent of underestimation of the
measured Q3p and Q3d by perturbative theories. Rather, hope-
fully, some new measurements would have a better chance
to help clarify the situation with, for example, Q3p and Q3d ,

especially given that the existing experimental data for, e.g.,
Q3d at 250 keV (open circle) [88] in Fig. 13 are quite far off
the trend of the remaining experimental data.

More generally, what is much needed for a more thor-
ough benchmarking of the existing perturbative theories are
some additional experiments on Qnl from about 100 to 500–
700 keV. Often, these theories (for both p-H and p-He charge
exchange) are in significant disagreement especially for non-
spherical final states [1]. We are well aware of the fact that
at higher energies, measurements on Qnl for l �= 0 are very
difficult. Customarily, energies of barely a few tens of keV are
outside the primary applicability domain of most perturbative
theories. Nevertheless, according to our computations, the
BCIS-3B method appears to handle quite well (admittedly
with some exceptions) even the region of a few tens of keV at
least for the collisional systems under study. It remains to be
seen, however, whether this appealing feature of the BCIS-3B
method would systematically persist also for other scattering
aggregates beyond the present investigations.

Finally, in Fig. 15, the experimental data on Q� for process
(76) are compared with the cross sections from the BCIS-3B
method. The pertinent theoretical results on Q� for any final
bound state, obtained by means of Eq. (77), refer to the

effective hydrogenic model problem:

p + (
Zeff

T , e
)

1s → H(�) + Zeff
T , (83)

with Zeff
T = 1.6875 in place of the bare helium nuclear charge

ZT = 2 which appears in the original process (76). The BCIS-
3B method is seen in Fig. 15 to be in perfect agreement with
the experimental data over a wide range of impact energies,
40 � E � 1000 keV. This extends the applicability domain
of the present theory even below its lower-energy limit of
anticipated validity.

IV. CONCLUSION

Single charge exchange in collisions between fast bare
projectiles and hydrogenlike atomic systems is investigated
by means of the prior version of the three-body boundary-
corrected continuum-intermediate-states (BCIS-3B) method.
In this second-order method, from the category of high-energy
theories, the transient ionization channel is included through
the electronic continuum intermediate states. Such states,
in the prior transition amplitude, are described by the full
Coulomb wave function centered on the target nuclear charge
ZT. Here, the underlying two-step mechanism is mediated by
this intermediate channel, which allows the electron to be
captured from an on-shell continuum state of the target.

This study is focused on developing a general computer
code in the BCIS-3B method for one-electron capture by
a heavy projectile nucleus of an arbitrary charge ZP from
the ground state of a hydrogenlike target ZP + (ZT, e)1s →
(ZP, e)nlm + ZT, where {n, l, m} is the usual triple of quantum
numbers (principal, angular, magnetic). For this goal, we
designed a semianalytical procedure consisting of two stages.
First, the results of four successive integrals from the original
six-dimensional integration for the transition amplitude are
calculated by analytical means yielding the explicit exact
closed forms. The remaining two integrals are computed ac-
curately by numerical quadratures over real variables in finite
intervals. One of these two integrals is a smooth Feynman
parametrization integral which is suitable for robust numerical
computations. The other integral comes from the usual inte-
gral representation of the Kummer confluent hypergeometric
function with two branch-point singularities at 0 and 1 (the
two ends of the integration interval). Both singularities are
integrable by using the standard Cauchy regularization of the
integrand performed simultaneously for the points 0 and 1.
This renders the Kummer integral smoother and, as such,
amenable to a precise numerical quadrature.

With these semianalytical findings at hand, the cross sec-
tions integrated over all the scattering angles (or over the
transverse momentum transfer), i.e., total cross sections Qnlm,
are reduced to a three-dimensional numerical quadrature. All
the numerical integrations are carried out by using the Gauss-
Legendre quadrature rule. For the outermost integration over
the transverse momentum transfer in total cross sections,
we use the adaptive Gauss-Legendre quadrature where the
integration variable is scaled to acknowledge the dominant
contribution arising from the vicinity of the forward cone for
scattering angles. To monitor the accuracy of the numerical
work, the integration order (the number of pivots and weights
per each quadrature axis) is systematically augmented until
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full convergence to two decimal places has been achieved in
all the presently reported computations.

The ensuing computer code for the BCIS-3B method,
based upon the expounded semianalytical procedures, refers
to the 1s → nlm transitions in collisions of bare nuclei with
hydrogenlike atomic systems. It gives the total cross sections,
both state-selective (Qnlm, Qnl , Qn) and state-summed (Q� )
for any triple nlm. Explicit computations are carried out for
1 � n � nmax, including all the sublevels l and m (presently,
we set nmax = 4). To account for all the higher excited states
with n > nmax, use is made of the Oppenheimer n−3 scaling
rule in estimating Q�. Both colliding particles are considered
with their arbitrary nuclear charges and this permits an exten-
sion which can encompass multielectron targets (heliumlike
and more involved atomic systems). To simplify, we presently
resort to the frozen-core approximation combined with the
effective hydrogenic model for a multielectron target. The
frozen-core approximation assumes that only one electron in
the target is active, while the other electrons are passive and
occupying the same orbitals before and after the collision. The
effective hydrogenic model eliminates altogether the passive
electrons through the replacement of a multielectron target
by the corresponding hydrogenlike atomic system with the
Slater-screened nuclear charge Zeff

T = ZT − 5
16 in lieu of ZT.

This reduces the original many-body problem to an effec-
tive three-body problem to which the foregoing analysis is
directly applicable.

We employ this code to compute the state-selective as well
as state-summed total cross sections (Qnlm, Qnl , Qn, Q� )
and likewise for the differential cross sections
[(dQ/d�)nlm, (dQ/d�)nl , (dQ/d�)n, (dQ/d�)�]. These
observables are for electron capture in the p-H, α-H, and

p-He collisions at impact energies varying over three orders
of magnitudes, 10 keV/amu � E � 1000 keV/amu. The
obtained comprehensive sets of the results are reported in
the two complementary forms (tabular and graphical) that
are deemed to be useful for further explorations by other
authors. Within the said wide impact energy interval, the
corresponding total cross sections summed through all the
final bound states Q� extend over five or seven orders
of magnitudes, depending on the colliding aggregates.
The state-selective and state-summed angular distributions
are computed and presented for the p-H charge-exchange
collisions at 60, 125, and 5000 keV. Overall excellent
agreement is recorded between the BCIS-3B method and
the available experimental data for total {Qnl , Qn, Q�}
and differential cross sections (dQ/d�)� . In particular, for
capture into the spherically symmetrical s states (l = 0),
this accord within Qnl occurs toward the lower edges of the
intermediate range (descending to about 20 keV/amu). In the
case of the final hydrogenlike p and d states with nonzero
angular momentum (l = 1 and 2), the BCIS-3B method for
Qnl is in excellent agreement with the measured cross sections
down to 50 keV/amu. This is remarkable for a high-energy
theory, such as the BCIS-3B method.
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[31] Dž. Belkić, Phys. Scr. 1989, 106 (1989).
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(Elsevier, Amsterdam, 2013), p. 203.

[64] R. D. Rivarola, M. E. Galassi, P. D. Fainstein, and C.
Champion, in Theory of Heavy Ion Collision Physics in Hadron
Therapy, edited by Dž. Belkić (Elsevier, Amsterdam, 2013),
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