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The simple single-channel static-exchange approximation completely ignores correlation between the con-
tinuum and molecular ion electrons. In molecular systems with symmetry equivalent atoms, the single-channel
approximation can seriously fail in core ionization when using delocalized orbitals to represent the core hole
states. We present cross sections and molecular frame photoelectron angular distributions with both localized
and delocalized core orbitals in CF4 F (1s) ionization. We show that only a full coupled-channel calculation can
recover an accurate description of the physics of inner-shell photoionization when using delocalized orbitals,
whereas nearly the same result can be obtained from independent single-channel static-exchange calculations
when localized core orbitals are used. A grid-based variational method described here makes such single-channel
calculations possible on larger systems without local-exchange approximations. Illustrative calculations on the
core ionization of SF6 are presented to illustrate the power of the grid-based method.
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I. INTRODUCTION

The amplitude for photoionization of an atom or molecule
is proportional to the matrix element of the dipole operator
between the initial state and a continuum wave function for
electron-ion scattering. It has been known for some time
that in general the accurate calculation of molecular pho-
toionization cross sections requires a close-coupling treatment
of the electron-ion scattering wave function in which the
ionization channels producing the ion in different electronic
states are coupled [1–3]. In recent decades the develop-
ment of experimental momentum imaging observations of
ion fragments and electrons in coincidence have allowed
the measurement of molecular frame photoelectron angular
distributions (MFPADs) [4,5], and has provided increasingly
strict tests of theoretical predictions. In that context it has
been observed that, while a coupled channels treatment is fre-
quently necessary for valence photoionization of molecules,
the single-channel static-exchange approximation can provide
accurate results for core ionization or inner-shell ionization
when the ionized state is not degenerate or nearly degenerate.
Using this simpler approximation, which ignores correlation
between the continuum and bound electrons, combined ex-
perimental and theoretical studies have uncovered “imag-
ing” and “anti-imaging” angular distributions in core and
inner-shell ionization [6–9] and explored the consequences of
core-hole localization in molecules with symmetry equivalent
atoms [10–13].

*Corresponding author: rlucchese@lbl.gov

In earlier studies [8,10] it was found that when the ion
channels defined by the removal of a core electron from
degenerate orbitals arising from symmetry equivalent atoms,
for example, the F 1s orbitals in CF4 [10] or carbon 1s in
ethane [8], channel coupling changed the MFPADs greatly
and was necessary to reproduce the experimental angular
distributions. On the other hand, for similar molecules, like
1,1-difluoroethylene [8] where both fluorines are on the same
carbon, making the carbon atoms inequivalent, the single-
channel static-exchange treatment was entirely sufficient.

In the present study we demonstrate that, in cases with
equivalent atoms, the approximation of uncoupling degener-
ate channels can generally misrepresent the physics of core
ionization, strongly affect the integral cross sections, and even
break the molecular symmetry expected in the body-frame
angular distribution of photoelectrons. Moreover, the results
of single-channel calculations depend on which equivalent
definition of the degenerate channels is used. The sum of the
photoionization cross sections for degenerate channels is not
invariant to a unitary transformation of the degenerate orbitals
from which the ionization takes place. We will discuss the
origin of these effects and also propose a procedure that mini-
mizes channel coupling and allows the treatment of both delo-
calized and localized core hole formation in photoionization
in single-channel calculations. This idea is applicable to large
systems where coupled channel photoionization calculations
may not be feasible.

We explore these questions here using the complex Kohn
variational method, which is well established in the literature
[14–17], but which in its previous implementation is limited
to smaller systems. To extend that method to larger systems
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FIG. 1. Schematic representation of an overset grid for calcula-
tions on the SF6 molecule. The actual central and subgrids are denser
and radially adaptive.

we have recently introduced an “overset-grid” implementa-
tion of the complex Kohn method [18] for electron-molecule
scattering making use of a grid-based discrete variable rep-
resentation of the continuum wave function that replaces
its expansion in the analytic basis functions of the earlier
implementations. Here we also describe the further extension
of that approach to photoionization, and its application to F
K-edge ionization in SF6, which is out of reach of the previous
complex Kohn coupled-channel approach and at the limits
of the iterative Schwinger variational approach using single
center expansions [19,20] for single-channel calculations with
which we also compare.

Photoionization calculations on larger systems without
local exchange or correlation approximations require both
a numerical representation of the continuum components of
the wave function and a way to operate with exchange po-
tentials and exchange coupling operators. The overset-grid
implementation of the complex Kohn method [18] provides
both of those attributes by effectively expanding the scatter-
ing wave function simultaneously about multiple centers, as
indicated in Fig. 1. As explained in Sec. II, to extend this
approach to photoionization we must overcome the fact that it
is based on repeated applications of the free-particle Green’s
function and does not naturally apply Coulomb boundary
conditions.

In the following section and in the Appendixes we briefly
summarize the complex Kohn variational method and the ex-
tension of its overset-grid implementation to photoionization,
and provide a benchmark example. In Sec. III we demon-
strate the breakdown of the single-channel static-exchange
approximation for F K-edge ionization of CF4 using delo-
calized orbitals and with that example explore the effects
of channel coupling with both localized and delocalized
core hole calculations. A principal result of this analysis is
a way to avoid the necessity of channel coupling in such
cases, no matter how many symmetry equivalent atoms the
molecule contains. In Sec. IV we present results on both

sulfur and fluorine core ionization in SF6 using the overset-
grid approach, and in Sec. V we summarize our principal
conclusions.

II. COMPLEX KOHN VARIATIONAL METHOD
FOR PHOTOIONIZATION AND ITS EXTENSION

TO OVERSET GRIDS

A. Complex Kohn variational formalism

We begin by briefly describing the complex Kohn vari-
ational method for electron-molecule and electron-ion col-
lisions, focusing on how the trial function treats the colli-
sion physics while avoiding details of the working equations
[16–18]. The traditional implementation, originally developed
in the late 1980s [21], uses a mixture of Gaussian and contin-
uum analytic basis functions to form the trial wave function.
The more recently developed overset-grid implementation
avoids the limitations of using Gaussian basis functions to
describe the interaction region, but requires an extension to
treat photoionization, which we describe for the first time
below and in Appendix A.

For single-channel elastic scattering, the Kohn stationary
functional for the scattering T matrix, T +S

k′,k, is a functional of

the trial functions, ψ
(+)t
k and ψ

(−)t
k′ ,

T +S
k′,k = T +t

k′,k + (2π )−
3
2
〈
ψ

(−)t
k′

∣∣Ĥ − E
∣∣ψ (+)t

k

〉
, (1)

where T +t
k′,k specifies the asymptotic form of the trial function,

ψ
(+)t
k . The two T matrices in Eq. (1) are labeled by asymptotic

momenta, and the continuum states are δ3(k′ − k) normal-
ized. Importantly for our discussion here, this variational
expression is related to a similar one for the photoionization
amplitude [22] that is discussed in Appendix B. Expanding
the wave functions with incoming (−) and outgoing (+)
boundary conditions in partial waves as in Ref. [18]

ψ
(±)
k (r) =

√
2

π

∑
l,m

ilψ
(±)
klm (r)Y ∗

l,m(k̂), (2)

where Ylm denotes a spherical harmonic, produces a partial
wave version of Eq. (1)

T +S
k,l ′,m′,l,m = T +t

k,l ′,m′,l,m + 〈
ψ

(−)t
kl ′m′

∣∣Ĥ − E
∣∣ψ (+)t

klm

〉
, (3)

where l and m denote the angular momentum quantum num-
bers. The basis set implementation of the complex Kohn
method expands the wave function in a combination of the
Gaussian basis functions of quantum chemistry, ϕi, and Bessel
functions,

ψ
(±)t
klm (r) =

∑
i

c(±)
i ϕi(r) + 1

kr

[
ĵl (kr)Ylm(r̂)

+
∑
l ′,m′

T ±t
k,l ′,m′,l,mh̃±

l ′ (kr)Yl ′m′ (r̂)

]
. (4)

In Eq. (4) ĵl (kr) denotes the regular Riccati-Bessel function,
and h̃±

l (kr)
r→∞−−−→ ĥ±

l (kr) is a function regular at the origin
that becomes the outgoing Riccati-Hankel function asymptot-
ically. To apply this method to electron ion scattering, and
thus to photoionization, the Bessel functions in Eq. (4) are
replaced by Coulomb functions Fl (k, r) and Hl (k, r) with the
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asymptotic forms given in Eq. (A4) of Appendix A. In either
case the variational parameters in the trial function, namely
the coefficients, c(±)

i , and the T -matrix elements, T ±S
k,l ′,m′,l,m,

are found by solving linear equations and the stationary
approximation to the T matrix, T +S

k′,k, is constructed from them
in a simple matrix expression given in Refs. [16–18,21].

The multichannel version of the trial function is formed
by antisymmetrizing the product of continuum functions
like that in Eq. (2) and the bound channel eigenfunc-
tions, �� (r1 · · · rN ) describing electronic states of the target
molecule or molecular ion,

�
(±)t
�0,k�0

= A
∑

�

�� (r1 · · · rN )ψ (±)
�,�0,k�0

(rN+1)

+
∑

μ

d
�0,k�0
μ 	μ(r1 · · · rN+1), (5)

where the unscattered state has the photoelectron with mo-
mentum k�0 in the field of the target ��0 and where we
have added closed channel and correlating contributions
	μ(r1 · · · rN+1). The working equations now additionally

include the linear variational parameters, d
�0,k�0
μ , but still

retain the same overall form as for the single-channel case
[16,17,23].

The fully differential photoionization cross section for a
fixed direction of the polarization vector is related to the
dipole matrix element between the neutral and electron-ion
scattering wave functions via the relation

d2σ�0

d�k̂�0
d�n̂

= 8πω

3c

∣∣〈�0|n̂ · μ
∣∣� (−)

�0,k�0

〉∣∣2
, (6)

which defines the cross section for linear polarization n̂ and
ejected electron momentum k�0 leaving the ion in state �0.
The complex Kohn scattering calculation produces the final
state wave function �

(−)S
�0,k�0

in this expression. If the matrix
element in Eq. (6) is evaluated with the Kohn trial function
using its variationally determined parameters, it is itself a
variational approximation to the photoionization amplitude, as
pointed out by Orel and Rescigno [22] and further explained
in Appendix B.

The overset-grid representation begins by constructing a
compact grid basis of products, φn(r)Ylm(θ, φ), of spherical
harmonics multiplied by radial discrete variable representa-
tion (DVR) functions, φn(r), around each atomic center of
the molecule. These “subgrids” do not overlap one another,
as indicated in the sketch in Fig. 1 of the overset grid. The
subgrids are overlapped by a central grid of the same form
that oversets them and reaches to the asymptotic region. The
key point of the complex Kohn trial function in Eq. (4) is
that it explicitly applies the correct outgoing (or incoming)
asymptotic boundary conditions, and that property of the
trial function is essential to the working equations. The grid
representation does not apply those boundary conditions, so
we must do it by another means.

The overset-grid trial function ψ t is constructed by expand-
ing it in a set of functions that are constructed on the grid by
operating with the free-particle Green’s function, Ĝ+

0 , which
here denotes the Green’s function for outgoing boundary con-
ditions Ĝ+

0 ≡ (E − T̂ + iε)−1, where T̂ is the kinetic-energy

operator. Expanded in that basis, the trial function analogous
to that in Eq. (4) is

ψ
(±)t
klm (r) = φ0

klm(r) +
N∑

i=1

ci φ
(±)
i,klm(r), (7)

φ
(±)
i,klm(r) ≡ (Ĝ±

0 V̂ )iφ0
klm(r), (8)

with φ0
klm(r) = ĵl (kr)Ylm(θ, φ)/kr being the incoming wave

defined on the central grid. Here, for simplicity, we have
written the equations for a single channel case where the po-
tential is denoted by V . This form of the trial function imposes
the correct boundary conditions, when the potential does not
behave asymptotically as a Coulomb potential, because all the
functions in the expansion of the trial wave function, except
for φ0, satisfy outgoing wave boundary conditions (φ(+)

i,klm)

or incoming wave boundary conditions (φ(−)
i,klm) due to the

asymptotic form of Ĝ±
0 . However, in the present study we are

considering the problem of scattering from an ion, which does
have a long-range Coulomb potential, for which Ĝ±

0 does not
have the correct asymptotic form. In the next section we will
discuss how we apply this approach to the problem where the
interaction has a Coulomb tail.

The numerical properties of the overset-grid implementa-
tion are explored at length in Ref. [18]. In particular, it is
shown there that using the iterative basis given in Eq. (7) in
the complex Kohn variational expression leads to a sequence
of scattering T matrices, where for each N the computed
T matrix is equivalent to a [(N − 1)/N] Padé approximant
to the scattered portion of the T matrix. Maintaining that
property, which leads to particularly advantageous numerical
properties, in the present application is essential.

B. Extension of the overset-grid implementation
to photoionization

A key idea of the overset-grid approach is that the contin-
uum portion of the scattering wave function is expanded in
partial waves simultaneously about the centers of the central
grid and of all the subgrids. This expansion is dramatically
more compact than a single-center expansion in spherical har-
monics, particularly for larger molecules. To apply scattering
boundary conditions we rely on the fact that the result of
operating with the free particle Green’s function Ĝ±

0 in Eq. (8)
produces a function with outgoing (or incoming) boundary
conditions. Because Ĝ±

0 is translationally invariant, we can
operate with it in the local coordinates of each subgrid, and
that is a central simplification that makes the overset-grid
approach practical.

The Coulomb Green’s function does not have that prop-
erty so we take another approach. We solve the electron-ion
scattering problem truncated at a distance r0 in the central
grid radius at which we can neglect shorter range forces
and the Coulomb potential alone dominates the interaction
of the continuum electron with the target ion. We can then
easily match that solution to the correct Coulomb boundary
conditions as described in Appendix A. We have found that
more terms in the sum given in Eq. (7) are generally required
for convergence with ionic targets than with neutral ones in
this procedure, but that the overall computational effort is not
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increased by more than about a factor of two over a similar
sized neutral problem. In the terminology of Ref. [18], more
terms in Eq. (7) are equivalent to more Born-Arnoldi iterations
in the solution of the linear equations of the Kohn method.

The static-exchange potential for the scattering of an elec-
tron from an ion described by a single configuration which
contains one singly occupied orbital has the form

VSE = Vnuc +
∑

d

(2Ĵd − K̂d ) + Ĵs ± K̂s, (9)

where the sum over d is over doubly occupied orbitals, Ĵ
and K̂ are direct and exchange operators, and s refers to the
singly occupied orbital for which the sign depends on whether
overall singlet or triplet coupling is used for the scattering
wave function. The potential Vnuc is the nuclear attraction
potential. In the special case of a closed shell target (for
which the operators defined by the singly occupied orbital
are absent), and if the orbitals are Hartree-Fock orbitals, the
continuum solution of the Schrödinger equation with this
potential is automatically orthogonal to the occupied orbitals.
That result derives from the fact that the occupied orbitals are
eigenfunctions of the same (Fock) operator as the continuum
orbital. However, in all open shell cases orthogonality of
the continuum solution to the doubly occupied orbitals is
not automatic and must be explicitly enforced. In the basis-
set Kohn implementation of electron ion scattering the trial
function is made orthogonal to doubly occupied orbitals by
construction.

In the extension of the overset-grid approach to photoion-
ization, the needed orthogonality constraint can be applied
by a change in the definition of the potential. Applying the
constraint that the scattered orbital be orthogonal to the doubly
occupied orbitals in that manner retains the Padé property
of the Kohn variational expression for the T matrix that
underlies its rapid convergence with respect to the number of
terms in Eq. (7). The procedure and its working equations are
explained in Appendix C.

C. Numerical tests of the overset-grid implementation
for photoionization

Although it is much more slowly convergent with respect
to partial waves, the iterative Schwinger variational method
based on a single center expansion [19,20] can be system-
atically improved, and so we first compare the overset-grid
results for the test case of CF4 with that approach. Figure 2
compares the integral cross sections and β parameters for ion-
ization of the carbon 1s level in the static-exchange approx-
imation from a converged overset-grid calculation with the
results of the Schwinger single-center expansion calculation
using various numbers of partial waves. The calculation using
the overset grid, whose central grid consists of concentric
spherical shells of DVR functions, has been converged with
respect to the DVR functions, and has a maximum angular
momentum of l = 30, while the subgrids centered on fluorines
have a maximum angular momentum of l = 3. The central
grid component of the overset grid consists of 42 finite ele-
ments (FEM) in a box of 19 Å, in which DVR radial functions
are expressed in terms of Legendre polynomials of degree
11 (462 grid points in total). Similarly, each subgrid has 18

FIG. 2. Integral cross section (top) and β parameter (bottom) for
the angular distribution of the photoelectron relative to polarization
direction for ionization of the carbon 1s orbital in CF4, comparing
the converged overset-grid results with those using the single-center
expansion Schwinger iterative method.

FEM in a box of 0.6 Å, which is a distance that insures that
the subgrids do not overlap with each other. The underlying
DVR quadrature is the same as the central grid, that leads to a
total of 198 grid points for each subgrid. The single center
expansion results converge towards the overset-grid values
as the number of partial waves is increased, verifying the
convergence of the overset-grid algorithm for photoionization
to the correct result.

In Fig. 3 we compare the results of a basis-set Kohn
calculation with those of the overset-grid calculation for
the integral cross section for C(1s) ionization in CF4. The

FIG. 3. Integral cross section for C(1s) ionization in CF4 com-
paring basis-set Kohn variational calculations in both length (L)
and velocity (V) gauges with converged overset-grid results. The
breakdown seen in the basis-set Kohn calculations at energies above
40 eV is due to the limited basis set used in the expansion in Eq. (4).
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FIG. 4. PA-MFPADs for carbon 1s ionization of CF4 at 4 eV
(left) and 13 eV (right scaled by 2.3). The “anti-imaging” angular
dependence on the left is essentially identical to the basis-set Kohn
result in Fig. 5 of Ref. [8], where it is compared with experiment.

basis-set Kohn calculations used a maximum of l = 6 in
trial function in Eq. (4) and a triple-zeta with polarization
basis set [24,25] with three additional s-type Gaussians, with
exponents 0.08, 0.04, and 0.02, and two p-type Gaussians,
with exponents 0.05 and 0.01, at the center of the molecule,
for a total of 109 contracted Gaussian basis functions. The
differences between the converged overset-grid and basis-set
Kohn results for kinetic energies below about 40 eV are
primarily the result of inadequacies of the Gaussian basis
used in Eq. (4). Also small contributions from higher partial
waves are neglected in the basis-set calculations, which would
require high angular momentum basis functions not found in
typical quantum chemistry packages. However, the spurious
features in the basis-set Kohn results at higher kinetic energies
are more serious, and likely arise because combinations of the
Gaussian functions that would be coupled to higher angular
momenta, were they present in the calculation, are partially
decoupled from the continuum and thus appear as spurious
resonancelike features. On the other hand, the overset grid can
be improved systematically by increasing the density of radial
DVR functions as well as the number of angular momenta
used in the subgrids and central grid so that the overset-grid
calculations can be easily extended to kinetic energies of
hundreds of eV.

While there are some differences between the overset-
grid and basis-set Kohn results for integral cross sections,
differences in the angular distributions seen in the computed
MFPADs are hardly visible. In Fig. 4 we show polarization
averaged MFPADs (PA-MFPADs) for carbon ionization. It is
the average over polarization directions that frequently shows
the “imaging” behavior or “anti-imaging” (in which electrons
appear ejected between the bonds) that have been studied
previously [6–9]. These figures are essentially identical to
those produced by the basis-set Kohn calculation, differing
only slightly in overall magnitude.

Finally we compare MFPADs at a photoelectron energy of
3.0 eV with a fixed polarization direction from overset-grid
and basis-set complex Kohn single-channel calculations in the
top and middle panels of Fig. 5 at the F K edge to produce an
F(1s) hole localized on one of the fluorines. Again there are
minimal differences at this energy. However, as one considers
lower energies near the Cooper minimum, shown in the basis-
set complex Kohn and overset grid integral cross section in
Fig. 6, the computed MFPADs are sensitive to the value of
the photoelectron energy relative to the location of the Cooper
minima in the two calculations. However, when the MFPADs

FIG. 5. MFPADs of CF4 for a 3 eV photoelectron from ion-
ization by linear polarization along a CF bond (two-headed green
arrow) for the creation of F(1s) hole localized on the F atom on the
polarization axis, which is shown in red. All three calculations used
the localized orbitals with one orbital corresponding to the localized
F(1s) hole state and the other three F(1s) orbitals being delocalized
on the other F atoms. The top panel shows the results from the
single-channel overset-grid calculation. The middle panel shows the
results from the single-channel basis-set Kohn calculation and the
bottom panel shows the basis-set Kohn results with all four F(1s)
ionization channels coupled.

at the respective minima, as shown in Fig. 7 for a different
polarization direction and without averaging, are compared
we again see very good agreement between the overset-grid
and basis-set complex Kohn methods.

From the results shown in Fig. 2, with the single-center
result converging to the overset-grid result, we are convinced
that the overset-grid result is well converged. We have not
attempted to converge the basis-set Kohn calculation with
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FIG. 6. Total cross sections for F K-edge photoionization in CF4

from basis-set Kohn calculations in the length gauge summed over
the four channels. Curves labeled delocalized have channels defined
as vacancies in the four orbitals of a1 and t2 symmetry in tetrahedral
symmetry. Curves labeled “localized” have one channel defined as a
F(1s) vacancy and the other three as vacancies in the remaining a1

and e symmetry in C3v symmetry. The curves labeled “F(1s)” are four
times the cross section for a single channel defined as a vacancy in
one fluorine 1s orbital. The overset-grid result for the F(1s) channel
is also shown.

respect to the size of the basis, so that of the overset-grid
results are most likely the most accurate single-channel static-
exchange results given here.

III. USE OF LOCALIZATION TO IMPROVE THE
SINGLE-CHANNEL STATIC-EXCHANGE

APPROXIMATION FOR CORE IONIZATION

To explore the validity of the single-channel static-
exchange approximation for core ionization we first compare
the results of several calculations on F K-edge ionization of
CF4. In a Hartree-Fock calculation on the neutral molecule at
its equilibrium tetrahedral geometry, the F 1s orbitals form

four effectively degenerate molecular orbitals: one a1 and
three t2 orbitals. If the electronic states of CF+

4 are defined
as single configurations in which an electron is removed from
a Hartree-Fock spin orbital, those orbitals define the static-
exchange potentials for four single-channel photoionization
calculations or the four channels of a coupled channel treat-
ment. We can see the answer to the question of whether chan-
nel coupling is important with this definition of the channels
in Fig. 6, where the results of such calculations using the
basis-set Kohn method are plotted. The coupled channel result
is labeled “Delocalized coupled” in that figure. Comparing
with the result from the single-channel calculations labeled
“Delocalized uncoupled” shows the first effect of making
the static-exchange approximation with uncoupled channels.
The total cross sections for ionization summed over the four
channels differ substantially at low energies, and the Cooper
minimum essentially disappears in the uncoupled approxima-
tion.

In an earlier study on the observation of the localization
of the F(1s) hole we performed calculations with one orbital
defined as a F 1s orbital, and the other three transforming
with the a1 and e irreducible representations of the resulting
C3v symmetry. Such calculations can be done simply by
performing a unitary transformation on the orbitals in Td

symmetry or by very slightly displacing one CF bond distance
and allowing the Hartree-Fock calculation to converge to a
localized 1s orbital for one of the core molecular orbitals.
If the photoionization cross section is calculated with the
four resulting channels coupled, the result for the total cross
section is the same as if the close-coupling calculation is
performed with the orbitals from tetrahedral symmetry, as the
points labeled “Localized coupled” in Fig. 6 show.

Also shown in Fig. 6 is the result of multiplying the single
channel result for the channel defined as a vacancy in a single
F 1s orbital by four. It is essentially identical to the total
cross section computed with the four channels coupled for
either definition of the channels. Even more striking is the
fact that the resulting MFPAD for the F(1s) channel from
this single-channel calculation, shown in Fig. 5, is essentially
identical to the result for that channel from a four-channel

FIG. 7. Comparison of calculated MFPADs for F(1s) ionization of CF4 by linearly polarized light, with the polarization direction indicated
by the two headed green arrows. On the left, the results of a basis-set complex Kohn method at its Cooper minimum (2.18 eV), from a coupled
four channel calculation with the MFPAD summed over all four channels. On the right, a single channel overset-grid calculation at its Cooper
minimum (1.5 eV), where the F(1s) hole is localized on one F atom and the MFPAD is summed over four such single-channel calculations
with the F(1s) hole being localized on the different F atoms.
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FIG. 8. Partial photoionization cross sections of CF4 for each of
the four channels from coupled-channel basis-set Kohn calculations
with one channel defined as a F(1s) vacancy and the other three as
vacancies in the remaining C3v symmetry orbitals. The cross sections
from the two different e symmetry orbitals are the same. The single-
channel (uncoupled) results for the F (1s) hole are shown as symbols
alone, and are seen to be nearly identical to the F(1s) coupled channel
results.

close coupling calculation. So it appears that localizing that
vacancy essentially eliminated that channel’s coupling to the
other three.

To make sense of this result and to understand its general
significance, we examine the contributions of the four chan-
nels to the total cross section for coupled-channel calculations
with one hole localized on a single fluorine. In Fig. 8 we
show the cross sections of the four resulting channels (with
holes in the F 1s, a1, and e orbitals). The sum of these
different cross sections (with the cross section for the hole
in the e symmetry core orbital multiplied by two) is shown
in Fig. 6, where it is labeled “Localized coupled” and is seen
to be the same as the coupled channel calculation using the
totally delocalized Td orbitals. Thus the total cross section in
a coupled channel calculation is invariant to the definition of
the degenerate channels. Additionally, in Fig. 8 we see that
the partial cross sections for ionizing to produce an F(1s)
vacancy are virtually identical in both the coupled-channel
and single-channel calculations when the F(1s) vacancy is
localized on one center.

The symmetry breaking in single channel calculations with
degenerate channels is seen strikingly in Fig. 9 which shows
PA-MFPADs for F K-edge ionization. When the four channels

(a) (b)

(c) (d)

FIG. 9. Calculated PA-MFPADs from delocalized and localized hole states for ionization from the F K-edge in CF4 2 eV above threshold.
(a) The total PA-MFPAD summed over all four channels (a1 and t2 orbitals) in tetrahedral symmetry coupling the four channels using
delocalized hole states, (b) the same calculation using delocalized hole states with the four channels uncoupled, showing broken symmetry
from the single-channel treatment, (c) the same calculation (from the overset-grid implementation) in the full Td symmetry using delocalized
hole states, recovering the symmetry but not the correct coupled channel result, and (d) the PA-MFPAD (times 2.75) for ionization of the
localized F(1s) hole on the F atom pointing towards the viewer from the single-channel calculation, which when rotated onto the other three
CF directions and summed reproduces (a).
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are defined as vacancies in a1 and t2 orbitals in tetrahedral
symmetry, and used in a close-coupling calculation, the re-
sulting PA-MFPAD reflects the tetrahedral symmetry of the
molecule, as it must. However, when the same channels
are uncoupled using only the C2v point group, and the four
single-channel results are summed, the broken symmetry is
evident. However, we also show in Fig. 9(c) the results of
single-channel calculations, using the overset-grid method,
where the full Td point group is employed. This calculation
displays the correct Td symmetry in the PA-MFPAD, although
not the correct result. In particular, we note that the single-
channel Td result has four large lobes in the direction of the C3

symmetry axes of the molecule opposite to the location of the
F atoms on those axes, whereas the correct coupled-channel
result shown in Fig. 9(a) has six lobes along the three C2

axes that bisect the F-C-F bond angles. In the single-channel
Td symmetry calculations, the couplings between the three
components of the t2 orbital are included through the use of
symmetry; however, the coupling between the a1 and t2 hole
states is still neglected.

Nonetheless, if single-channel calculations are performed
for ionization from localized F 1s orbitals on the four fluorines
separately, the resulting PA-MFPADs, one of which is shown
in Fig. 9(d), can be added together to recover the correct
coupled channels result shown in Fig. 9(a). Defining the
channels using the four ion states formed from localized F
1s orbitals thus effectively eliminates the coupling between
them.

To see why that is the case we can write the operator Ĥ − E
in the coupled channel version of Eq. (1), specializing for clar-
ity to the case of single configuration channel eigenfunctions

Ĥ − E =
[

T̂ − E + Vnuc +
∑

o

(2Ĵo − K̂o)

]
1 + V̂CC, (10)

where o is summed over all of the doubly occupied orbitals
in the initial state. The form of the channel coupling potential
between single configuration hole states is then [3]

V̂ CC
i, j = −Ĵi, j + 2K̂i, j, (11)

where the coupling operator V̂ CC
i, j between channel i, with

only one electron in orbital ϕi, and channel j, with only one
electron in orbital ϕi, operating on the continuum function
ψk(r1) has the form

V̂ CC
i, j ψk(r1) = −

∫
ϕ∗

i (r2)ϕ j (r2)

r12
dr2 ψk(r1)

+ 2
∫

ϕ∗
i (r2)ψk(r2)

r12
dr2 ϕ j (r1). (12)

A unitary transformation among the four orbitals obviously
leaves the diagonal first term in Ĥ − E , defined in Eq. (10),
unchanged. Transforming the matrix of potential operators
redefines the channels, but cannot break the symmetry of the
coupled-channels equations, because the potential matrix has
the symmetry of the molecule. That is why the total cross
section and PA-MFPADs remain unchanged by such a redef-
inition of the channels. On the other hand, neglecting all the
off-diagonal coupling potentials V̂ CC

i, j , as is done in the single-
channel calculations, and making such a transformation

on the orbitals produces a diagonal matrix of static exchange
potentials that need not reflect the symmetry of the molecule.
Two holes might be localized and the other two appear in
linear combinations of the remaining two F 1s orbitals, for
example, with no compensating redefinition of the couplings.
This observation explains the symmetry breaking in single-
channel calculations in the case of ionization from degenerate
core levels.

The result of making the specific unitary transformation
that localizes all four of the F 1s orbitals, and then neglecting
the coupling between those channels, can be seen from the
definition of the coupling potential. If the two orbitals ϕi

and ϕ j are 1s orbitals on different fluorines their product
is effectively zero and so the first term in Eq. (12) coming
from the Ĵi j operators, the direct coupling, vanishes. The
matrix elements of the exchange coupling, the second term
in Eq. (12), are minimized because the products of these
two nonoverlaping core orbitals with continuum functions in
their respective channels produces two distributions that are
strictly localized on the atoms, and which are separated by the
distance between the atoms. In contrast, when the hole states
are delocalized there will be strong interchannel coupling
coming from significant nonzero off-diagonal Ĵi j terms.

Thus the separated, single-channel approximation for
channels defined in terms of localized orbitals constructed
from degenerate core levels is expected to be better than for
other choices of channel definitions. Our results here suggest
that this choice is in general a very good approximation. Most
interestingly, the results of a coupled channel calculation that
defines the channels as delocalized symmetry orbitals can be
retrieved from the single-channel calculations by transforming
the electron-ion scattering T -matrix or photoionization ampli-
tudes back to the symmetry orbital definition of the channels.
That fact will make it possible to perform calculations of core
photoionization on larger molecules with many equivalent
atoms as single-channel static-exchange calculations, but only
with the channels defined as localized vacancies.

IV. CORE IONIZATION IN SF6

For the case of the SF6 molecule, the close coupling
calculations with the basis-set Kohn is out of range, because
for the F(1s) holes, whether localized or in symmetry orbitals,
prohibitively large Gaussian basis sets are required to produce
unitary results. Thus, while the basis-set Kohn implementa-
tion can treat sulfur core ionization in this molecule, close
coupling calculations with that method would be prohibitive
for fluorine core ionization.

Nevertheless, the overset-grid implementation does not
have this problem with producing unitary results, given the
fact that the radial basis is expressed in terms of DVR func-
tions. Therefore, it can be used on this molecule with localized
F(1s) vacancies defining the channels, and then treating them
in single-channel calculations.

For the sake of consistency, we first explore 1s and 2s
ionization of the sulfur atom to demonstrate the convergence
properties of the overset-grid implementation, for which other
theoretical results have been previously reported [9,20]. First
we note that the ionization potential of the S 1s orbital is
2490 eV [26]. Thus the wavelength of the light needed to
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FIG. 10. Photoionization cross section (top) and β parameter
(bottom) of SF6 from the S(1s) orbital, computed with the single
center expansion for different values of the maximum angular mo-
mentum � and the converged overset-grid result.

ionize from this orbital is λ � 4.98 Å, which is on the order of
the bond length R(S-F) = 1.561 Å, so that one might expect
significant nonzero nondipole effects. However, computed
nondipole parameters have shown that these effects are only
a few percent of the dipole-allowed parameters [27]. Thus the
present results for the dipole MFPAD should be quite close
to the MFPADs one would obtain if nondipole effects were
included. In Fig. 10, the total photoionization cross section
and the β asymmetry parameter, both in the length gauge, are
shown for the S(1s) photoionization. Several results computed
with the single-center expansion for several maximum angular
momenta � = 15, 25, 45, 65 clearly point to convergence to
the actual result, computed with the overset grid using a
moderate value of maximum �. In a similar way that we did
for CF4 in previous sections, a maximum angular momentum
� = 30 for the central grid and � = 3 for the subgrids located
at the fluorine atoms were enough in order to converge the
overset-grid calculations with respect to the angular basis. The
central grid is expanded in a 7.7 Å spherical box, which is
divided in 88 FEM with 440 grid points in total; meanwhile,
each subgrid is enclosed in a 0.7 Å box with 170 grid points
distributed in 34 FEM. The degree of the underlying Legendre
polynomials is 11.

A comparison between the photoionization from the S(1s)
and S(2s) orbitals is shown in Fig. 11. First we note that the
magnitudes of the cross sections are different, with the S(1s)
cross section being approximately 2.5 time smaller than the
S(2s) cross section, which is presumably due to the fact that
the S(1s) core has a much smaller radial extent than the S(2s)
orbital. However, the shapes of the two cross sections are very
similar. Both show nearly the same shape resonance around
55 eV in photoelectron energy, which is due to the adiabatic
potential corresponding to a partial wave of � = 9 (see [20] for
more details). The β parameters are almost identical, which
indicates that the differential cross sections will also differ

FIG. 11. Comparison of the photoionization of SF6 from the
S(1s) and S(2s) orbitals, for the cross section (top) and β parameter
(bottom). The cross section corresponding to the S(1s) photoioniza-
tion has been resized by a factor of 2.5 to compare better the energy
dependence.

roughly by the ratio of the total cross sections. The fact that
the β parameters are nearly the same was also found by Toffoli
et al. [27]. We note that in an atomic system the expected value
of β for ionization from an s orbital, excluding relativistic
effects and assuming that other shells of degenerate atomic
orbitals are fully occupied, is β = 2 [28]. Thus all of the
structure seen in the β parameters in Fig. 11 must be due
to scattering of the photoelectron by the other parts of the
molecule. The fact that the (1s)−1 and (2s)−1 photoelectron
asymmetry parameters are so similar indicates that scattering
of the photoelectron by the framework of F atoms must be
nearly the same in these two cases.

Considering the static-exchange calculation for the S(2s),
Fig. 12 shows several MFPADs corresponding to different
energies around the 55 eV shape resonance for a fixed po-
larization direction along the main molecular axis. These
MFPADs would be almost the same as the S(1s) MFPADs
at the same photoelectron energies, but with a different nor-
malization factor. For energies well below the resonance, the
photoelectron also has a high probability to be emitted in
several directions other than the polarization one. But, when
the energy increases and goes through the resonance, the
angular distribution changes dramatically to being strongly
peaked along the polarization direction consistent with the
high, l = 7, decay channel for the shape resonance in this
system [20].

In order to describe the photoionization from the F K edge
in SF6, we stretched one of the S-F bonds slightly from equi-
librium, resulting in one molecular orbital that consists exclu-
sively of the 1s orbital on that fluorine and five others, de-
generate and delocalized. This modification of the molecular
structure changes the point group symmetry from Oh to C4v ,
and summing the results of six such calculations, given that
in each calculation the hole is located in a different fluorine
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45 eV 50 eV

52 eV 54 eV

60 eV 65 eV

FIG. 12. Calculated MFPADs corresponding to different photo-
electron energies (shown in the insets), for the SF6 photoionization
from the S(2s) orbital, with a linearly polarized field along one of the
main molecule axes.

atom (either stretching the different bonds or properly rotating
the matrix elements), produces the result to be expected if
no core-hole localization is observed, as shown previously
for CF4. The total cross section and several MFPADs for a
fixed polarization along the main molecular axis are shown
in Fig. 13. The cross section computed with the single-center
Schwinger method required a very high maximum angular
momentum � = 195 in order to converge the result to the one
computed with the overset grid. Dividing the cross section
into the two photoelectron continuum components, it is clear
that the resonance around 19 eV is due to the a1 component,
whilst the e component only contributes as a flat background
at energies near the resonance. In addition to the resonance
shown in Fig. 13, we find at least two additional shape
resonances in the F(1s) ionization—one at 55 eV in the a1

symmetry, which is very similar to the resonance seen in the 1s
and 2s ionization of S seen above, and a resonance at 5 eV in
the e continuum. Analyzed in terms of a Fano resonance line
shape [29], the cross section of the resonance at 19 eV has a
large q ≈ 60 with a large background cross section that is not
coupled to the resonance. In such a situation, one expects that
the transition amplitudes will be symmetric about the peak in
the cross section. This symmetry is seen in Fig. 13 with the
MFPADs corresponding to 17 eV and 22 eV, which are nearly
symmetrically displaced from the peak in the cross section
which occurs at 19.2 eV. The ionization along the polarization
direction is enhanced at the resonant energy indicative of the
shape of the MFPAD due to the resonance, whereas away from
the resonance, e.g., at 35 eV, broader MFPADs are found.

FIG. 13. Total MFPADs corresponding to a fixed polarization di-
rection along the principal molecular axis, for several photoelectron
energies (shown in insets) around the shape resonance peak displayed
on the top-left panel, obtained adding up the 6 SF6 photoionization
channels that leave the parent ion with a localized 1s hole on each
fluorine atom.

V. SUMMARY

Our results show that photoionization coupled-channel cal-
culations, with channels defined using delocalized symmetry
orbitals for equivalent core holes in the parent ions, can be
reproduced with a single-channel calculation by transforming
the degenerate delocalized orbitals into localized equivalent
hole states. This transformation makes the coupling between
different channels almost negligible. This observation would
suggest that the model with localized hole states for a system
with symmetry equivalent atoms provides the best zeroth-
order picture for core ionization in these systems. The ap-
proach proposed here for core photoionization calculations is
related to the one-center nonorthogonal configuration inter-
action with single substitutions (1C-NOCIS) method which
has been proposed for the study of metastable core-excited
states [30]. In the NOCIS method, nonorthogonal configura-
tions based on localized orbitals provide a superior reference
basis in which to describe electron correlation in an isolated
molecule, while here such configurations provide a better
reference from which to describe channel coupling in the pres-
ence of the photoelectron, which is also an electron correlation
effect. The one center version for core excitation, 1C-NOCIS,
limits the configuration interaction wave function to include a
single core-hole state much as our one-channel localized hole
photoionization calculations only include a single core hole
state.

The extension of the overset-grid approach to photoion-
ization, together with the approach to core ionization of
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equivalent atoms that allows it to be treated in single-channel
calculations, have proven to be successful, and can be used in
combination with momentum imaging experiments to explore
the question of core-hole localization in larger symmetric
molecules such as hexafluorobenzene (C6F6) and the other
symmetric fluorinated benzenes. Extension of the idea of
using localized core holes to simplify core ionization calcu-
lations is currently being pursued for the Cl 2p ionization
of CCl4, for which experimental recoil frame angular distri-
butions have been measured [31] in a manner similar to the
measurements that revealed core hole localization in CF4 [10].
For core ionization of symmetry nonequivalent atoms, the
Hartree-Fock orbitals are naturally localized on those atoms
and the single-channel static-exchange approximation should
also be sufficient.

The localization of core holes in a core ionization calcula-
tion is presented here as a better choice for the ion-state basis
set because it minimizes the coupling matrix elements be-
tween the different ionization channels. At geometries where
the atoms are symmetry equivalent, the canonical Hartree-
Fock orbitals are in general delocalized over the symmetry
equivalent atoms. When constructing single-configuration ion
state wave functions, by removing an electron from one of the
initial state orbitals, the Hamiltonian matrix elements between
the different resulting (N − 1)-electron ion states are equal
to the matrix elements of the Fock operator between orbitals
from which the electrons have been removed. In the case
of the canonical Hartree-Fock orbitals all such off-diagonal
matrix elements are zero. In contrast, when a unitary trans-
formation is performed on the orbital basis to obtain localized
orbitals, the resulting ion states are now connected by nonzero
Hamiltonian matrix elements due to the fact that the Fock
operator is not diagonal in the new set of orbitals. Note
that the Hamiltonian matrix elements between the different
localized ion states are proportional to the orbital energy
splitting of the delocalized canonical orbitals from which the
localized orbitals are constructed. Thus, in the absence of
the photoelectron, localizing the hole states induces nonzero
Hamiltonian matrix elements between the ion states, although
those matrix elements will be small if the canonical orbitals
that are being mixed are nearly degenerate. Thus the utility of
the core-hole localization approach is based on two facts—the
small Hamiltonian matrix elements between the localized ion
states and the dramatic reduction of the continuum-continuum
interchannel coupling. These two effects are also essential
prerequisites to the observation in the photoionization of
systems with weakly interacting equivalent core holes, where
the lifetime with respect to asymmetric fragmentation is short
compared to the hole-hopping time, that the hole does appear
to be initially localized at one site, e.g., in the case of (1s)−1

ionization of Ne dimer [32,33].
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APPENDIX A: MATCHING TO COULOMB
BOUNDARY CONDITIONS

To construct the photoionization amplitude in Eq. (6)

A(k) = 〈�0|n̂ · μ|� (−)
k 〉, (A1)

written here for a single channel for simplicity, we require the
partial wave expansion of �

(−)
k (r) with Coulomb boundary

conditions. Applying the overset-grid approach for neutrals
[18] unchanged, we effectively solve for �

(−)
k by cutting off

the interaction potential at the distance r0 that marks the limit
of the central grid beyond the subgrids and beyond all but the
Coulomb potential in the interaction of the continuum electron
with the ion. We can change those boundary conditions after
the fact by matching to Coulomb boundary conditions at r0.
To perform that matching we first note that the electron-ion
scattering wave function with Coulomb boundary conditions
can be formally expanded in partial waves as

�
(−)
k =

(
2

π

)1/2 ∑
l,m,l0,m0

il0 e−iηl0

kr
ψ

(−)
l,m,l0,m0

(r)

×Yl,m(r̂)Y ∗
l0,m0

(k̂), (A2)

with

ψ
(−)
l,m,l0,m0

(r) → Fl0 (k, r)δl,l0δm,m0 + T SR
lm,l0m0

H (−)
l (k, r), (A3)

where T SR
lm,l0m0

is the T matrix due to the short range potential
in V = V SR − Z/r, where Z is the residual charge of the
ion (not necessarily equal to one), ηl is the Coulomb phase
shift, and l0, m0 labels the regular Coulomb function which is
the incoming wave in the asymptotic form and the Coulomb
functions satisfy

Fl (k, r) → sin

(
kr + Z

k
ln 2kr − π l

2
+ ηl

)
,

H (−)
l (k, r) → exp

[
−i

(
kr + Z

k
ln 2kr − π l

2
+ ηl

)]
. (A4)

The dipole matrix element in Eq. (A1) can be written in
terms of this single-center expansion of the scattering wave
function as

A(k) =
(

2

π

)1/2 ∑
l0,m0

il0 e−iηl0 Al0,m0Y
∗

l0,m0
(k̂), (A5)

with

Al0,m0 ≡
〈
�0

∣∣∣∣∣n̂ · μ

∣∣∣∣∣
∑
l,m

ψ
(−)
l,m,l0,m0

(r)

kr
Yl,m(r̂)

〉
. (A6)
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We can see that photoionization amplitude is determined by
the partial wave amplitudes Al0,m0 corresponding to angular
momenta that contribute to the asymptotic part of the electron-
ion scattering wave function, which are the “incoming waves”
in the asymptotic form in Eq. (A3). That is in general a much
smaller number of partial waves than would be necessary
in a single-center expansion of the complete electron-ion
scattering wave function.

That observation allows us to use the free-particle Green’s
function in the Born-Arnoldi iterates, (G0V )n, in Eq. (8) to
solve the complex Kohn equations up to radius of the central
grid, r0, where by doing so we will have applied the boundary
conditions

ψ̃
(−)
l,m,l0,m0

(r0) = ĵl (kr0)δl,l0δm,m0 + T̃lm,l0m0 ĥ(−)
l (kr0) (A7)

at the point r0, where the tilde on ψ̃
(−)
l,m,l0,m0

(r0) denotes that
this is the wave function solved with short-range boundary
conditions at r0 and the tilde on T̃lm,l0m0 indicates the varia-
tional T matrix computed using the complex Kohn variational
expression for the cutoff potential. Therefore, at r0 the radial
wave functions from such a calculation are combinations of
incoming and outgoing Coulomb functions:

ψ̃
(−)
l,m,l0,m0

(r0)

= Fl (k, r0) αl m,l0 m0 + H (−)
l (k, r0) βl m,l0 m0 . (A8)

The matrices αl,m,l0,m0 and βl,m,l0,m0 can be calculated simply
from matching the value and derivative of the wave function;
denoting ∂/∂r by primes, we first define

WH (−)
l

( fl ) = H (−)′
l fl − f ′

l H (−)
l

H (−)′
l Fl − F ′

l H (−)
l

∣∣∣∣
r0

= −1

k

(
H (−)′

l fl − f ′
l H (−)

l

)∣∣∣∣
r0

, (A9)

where we used the Wronskian of the Coulomb functions. Then
using the corresponding expression for Fl , we easily find that

αlm,l0m0 = WH (−)
l

( ĵl )δl,l0δm,m0 + T̃lm,l0m0WH (−)
l

(ĥ(−)
l ), (A10)

βlm,l0m0 = WFl ( ĵl )δl,l0δm,m0 + T̃lm,l0m0WFl (ĥ
(−)
l ). (A11)

Note that αl,m,l0,m0 and βl,m,l0,m0 are written in terms of two
quantities that only depend on the value of r0 and k and the
variational T̃ so that both α and β are variational.

Now if we define the right inverse of the matrix α by∑
l ′,m′

αl m,l ′ m′ α−1
l ′ m′,l0 m0

= δl,l0δm,m0 , (A12)

we can transform (rotate) the outgoing waves so that they have
Coulomb boundary conditions∑

l ′0,m
′
0

ψ̃
(−)
l,m,l ′0,m

′
0
(r0) α−1

l ′0 m′
0,l0 m0

= Fl (k, r0) δl,l0δm,m0 + H (−)
l (k, r0) T SR

l m,l0 m0
,

T SR
l m,l0 m0

≡
∑
l ′0,m

′
0

βl m,l ′0 m′
0

α−1
l ′0 m′

0,l0 m0
. (A13)

A similar expression for the photoionization amplitudes
can be written in terms of the dipole matrix elements calcu-

lated with ψ̃ using cutoff-potential boundary conditions,

Ãl0,m0 =
〈
�0

∣∣∣∣∣n̂ · μ

∣∣∣∣∣
∑
l,m

ψ̃
(−)
l,m,l0,m0

(r)

kr
Yl,m(r̂)

〉
(A14)

can be transformed directly using

Al0,m0 =
∑
l ′0,m

′
0

Ãl ′0,m
′
0
(r0) α−1

l ′0 m′
0,l0 m0

, (A15)

and these transformed amplitudes are the ones that appear in
Eq. (A6) for the correct photoionization amplitudes.

APPENDIX B: KOHN VARIATIONAL PRINCIPLE
FOR PHOTOIONIZATION AMPLITUDE

From the discussion in Appendix A, we can conclude that
a variational estimate of the transition matrix elements Al0,m0

can be obtained if we can compute the variational T̃lm,l0m0

and a variational estimate of the transition moment with the
cutoff potential Ãl ′0,m

′
0
. It has been shown [22] that the complex

Kohn variational method can be used to compute a transition
moment involving a scattering state. In particular, a variational
expression for Ã(k) can be written as

ÃS(k) = 〈�0|n̂ · μ
∣∣�̃ (−)t

k

〉 + 〈 f̃ (+)t |n̂ · μ
∣∣�̃ (−)t

k

〉
, (B1)

where �̃ (−)t is a variational trial function to �̃ (−) and f̃ (+)t is
a variational trial function for f̃ (+), which is the solution of
the equation

(Ĥ − E )| f̃ (+)〉 + (n̂ · μ)|�0〉 = 0. (B2)

Then as long as

f̃ (+)t −−−→
r→∞

∑
l ′m′

ĥ(+)
l ′ (r)Zl ′m′Yl ′m′ (r̂), (B3)

Eq. (B1) is indeed variational.
One can then show that, if �̃

(−)t
k and f̃ (+)t are written as

linear variational functions with the same basis functions, the
expression in Eq. (B1) can be written as

ÃS(k) = 〈�0|n̂ · μ
∣∣�̃ (−)S

k

〉
, (B4)

where �̃ (−)S is the linear trial function where the expansion
coefficients yield a stationary T matrix.

APPENDIX C: ORTHOGONALITY CONSTRAINTS
REQUIRED FOR OPEN SHELL TARGETS

A crucial element needed to apply the present photoion-
ization calculation scheme is to enforce the orthogonality
between the occupied orbitals of the target |φi〉 and the elec-
tronic scattering states |ψ (−)

klm〉, which we achieve introducing
a pseudopotential Ṽ . Defining the projector operator Q over
all the occupied orbitals,

Q =
n∑
i

|φi〉〈φi|, (C1)

we restrict the Schrödinger equation for the scattering states
to the constrained form

(1 − Q)(Ĥ − E )(1 − Q)|ψ (−)
klm〉 = 0. (C2)
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Developing the left-hand side of (C2) and substituting
Ĥ = T̂ + V , we end up expressing the constrained
Schrödinger equation as

(T̂ + Ṽ − E )|ψ (−)
klm〉 = 0, (C3)

where the effective potential Ṽ , known as a Phillips-Kleinman
pseudopotential [34,35], is given by

Ṽ = V − Q(Ĥ − E ) − (Ĥ − E )Q + Q(Ĥ − E )Q. (C4)

It is important to notice that the way we have introduced
the orthogonality constraints through a modified effective
potential Ṽ ensures that the Krylov basis defined in Eq. (8)
is also orthogonal to the occupied orbitals, without losing
the Padé approximant feature of the trial function ψ

(±)t
klm (r)

in Eq. (7). Due to the fact that the aforementioned Krylov
space basis leads to a solution in a form of Padé approximants
(see [18] and the references therein), a fast convergence rate
is achieved.
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