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Hyperfine structure in the HD molecule
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We investigate interactions between the proton spin, the deuteron spin, and the orbital angular momentum
in the electronic ground state of the HD molecule. These interactions lead to hyperfine splittings of molecular
energy levels. Our numerical results for the first rotational level agree well with the currently most accurate
measurement performed by Ramsey et al. [Phys. Rev. 112, 1929 (1958)] in the 1950s. Knowledge of the
hyperfine structure of other levels is necessary for the accurate determination of rovibrational transition energies
in spectroscopic measurements. We present theoretical predictions and share the numerical code used to perform
numerical calculations. This paper sets the groundwork for high-precision spectroscopic tests of hyperfine
interactions in molecular systems. In particular we determine the value of the deuteron quadrupole moment
Q = 0.2856(2) fm2 and give an outlook for improving its accuracy by three orders of magnitude.
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I. INTRODUCTION

Current theoretical predictions for the hyperfine structure
(hfs) in simple molecules are far less accurate than the exper-
imental values obtained in original microwave measurements
by Ramsey and coworkers [1,2] half a century ago. For HD
these measurements were performed, regrettably, only for
the lowest rotational level. On the other hand, theoretically
predicted hyperfine structure (hfs) of many other molecular
levels is necessary for a contemporary determination of tran-
sition frequencies, due to the complexity of the line shape.
For instance, several recent measurements [3–5] of a specific
transition frequency in HD significantly disagree with each
other, presumably because of a different line-shape modeling
that has been employed. Therefore, the knowledge of the
hyperfine splitting and corresponding individual transition
rates is of crucial importance in a correct interpretation of
precision molecular spectroscopy.

The first step in this direction is the recent work of Dupré
[6], which presents results for low-lying vibrational levels
with the rotational number J = 1, however without any uncer-
tainties. In this paper we present a systematic derivation and
numerical calculation of leading hyperfine interactions for all
molecular levels in the HD molecule, including individual hfs
transition rates between them, within the Born-Oppenheimer
(BO) approximation. Due to this approximation our results
will have about 10−3 relative accuracy, which nevertheless is
sufficient for the current experimental precision of rovibra-
tional transitions. Moreover, we present hyperfine splittings
for an arbitrary rovibrational level of HD in terms of a freely
available computer code [7]. As well as application in molec-
ular spectroscopy, our results could also be useful in precision
tests of hyperfine interactions in the HD molecule, provided
the theory for relativistic and quantum electrodynamic cor-
rections is developed.

Considering theory for the leading molecular hyperfine
structure [8], there are three angular momenta in the ground
electronic state of the HD molecule: the proton spin �Ip, that
of the deuteron �Id , and the rotational angular momentum �J .
All of them interact with each other, and using the Ramsey
notation (e.g., Ref. [9]) the effective Hamiltonian describing
these interactions reads

Hhfs = −cp �Ip · �J − cd �Id · �J + 5 d1

(2 J − 1)(2 J + 3)

×
[

3

2
(�Ip · �J ) (�Id · �J ) + 3

2
(�Id · �J )(�Ip · �J ) − (�Ip · �Id ) �J 2

]

+ 5d2

(2J − 1)(2J+3)

[
3(�Id · �J )2+ 3

2
(�Id · �J )−�I 2

d
�J 2

]
.

(1)

One observes the lack of a separate �Ip · �Id coupling. The
direct scalar nuclear spin-spin interaction vanishes, while the
electron-mediated nuclear spin-spin interaction is of higher
order in the fine-structure constant α. Namely, it is α2 times
smaller than the above tensor interactions and therefore is
neglected here as are all the other α2 corrections.

The above coefficients cp, cd , d1, and d2 are related,
respectively, to the interactions between the proton spin and
molecular rotation, the deuteron spin and rotation, the proton
and deuteron spins, and the electric quadrupole moment of the
deuteron with the electric-field gradient. All of these constants
depend on the molecular level, identified by the vibrational v

and the rotational J quantum numbers.
In the following sections, we present a short derivation of

all the constants, followed by their numerical calculation as
functions of the internuclear distance R. Their values for a
particular molecular state are obtained by averaging with the
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nuclear wave function χv,J :

Hhfs(v, J ) = 〈v, J|Hhfs(R)|v, J〉. (2)

This is an approximate treatment that relies on the BO ap-
proximation, but it is a good starting point for future more
accurate nonadiabatic calculations. Ramsey, in his monograph
on molecular beams [10], presented a basic theory of nuclear
and rotational magnetic moment coupling. Here, we present
a concise and rigorous derivation of all molecular hfs interac-
tions, which can also be a basis for the derivation of relativistic
as well as QED corrections.

II. NUCLEAR SPIN-ROTATION CONSTANTS cp AND cd

The following derivation of the spin-rotation constant is
based on our former work [11], from which we adopt the
notation. Let us consider a Hamiltonian for a particle with
charge e, mass M, spin I , and a gyromagnetic factor g,
interacting with the electromagnetic field (h̄ = c = 1):

H = �π2

2 M
+ e A0 − e g

2 M
�I · �B

− e (g − 1)

4 M2
�I · ( �E × �π − �π × �E ), (3)

where �π = �p − e �A. If this particle is the proton or deuteron,
then e coincides with the elementary charge. The gyromag-
netic factors

gp = μp

μN Ip
= 5.585 695 . . . , (4)

gd = μd

μN Id

md

mp
= 1.714 025 . . . (5)

are related to the magnetic moment of the proton
μp = 2.792 847 344 63(82) μN and the deuteron μd =
0.857 438 2338(22) μN , respectively [12]. The g factor is a
dimensionless quantity which is more convenient to use in
formulas than the magnetic moment. If the electromagnetic
field comes from the other nucleus or from the electron, it is
of the form

�E = − e

4 π

�r
r3

, (6)

Ai = e

4 π

[
1

2 r

(
δi j + ri r j

r2

)
pj − g

2 M
�I × �r

r3

]
, (7)

where i, j are Cartesian indices, and, in the case of an electron
g = 2, M becomes the electron mass m. Inserting the above
formulas into Eq. (3) one obtains the general spin-orbit Hamil-
tonian

δH =
∑
α,β

eα eβ

4 π

1

2 r3
αβ

[
gα

mα mβ

�Iα · �rαβ × �pβ

− (gα − 1)

m2
α

�Iα · �rαβ × �pα

]
, (8)

where the indices α and β go over both electrons and nuclei.
In particular, the coupling of the nuclear spin �I = �IA to the

molecular rotation is

δAH =
∑

b

eA e

4 π

�I
2 r3

Ab

[
gA

mA m
�rAb × �pb − (gA − 1)

m2
A

�rAb × �pA

]

+ eA eB

4 π

�I
2 r3

AB

·
[

gA

mA mB
�rAB× �pB − (gA−1)

m2
A

�rAB× �pA

]
.

(9)

For convenience, following Ref. [11], we chose the reference
frame centered at the considered nucleus A and introduced the
notation �R = �rAB, �P = −ı �∇R, and �xb = �rbA = �rb − �rA. For the
�+

g electronic state considered here, δAH takes the form

δAH = �Q1 · �I + �Q2 × �P · �I, (10)

�Q1 = −
∑

b

eA e

4 π

gA

2 m mA

�xb × �pb

x3
b

, (11)

�Q2 = −
∑

b

eA e

4 π

1

2 m2
A

�xb

x3
b

− eA eB

4 π

1

2 mA

[
gA

mB
+ (gA − 1)

mA

] �R
R3

, (12)

where we neglected terms of the higher order in the electron-
nucleus mass ratio. We make use of BO approximation, and
the total wave function ψ is represented as a product

ψv,J,M = φel(�xa) χv,J (R)YJ,M (�n) (13)

of the electronic wave function φel(�xa), the nuclear one
χv,J (R), and the spherical harmonic YJ,M (�n), where �n = �R/R.
The electronic wave function φel for the ground �+ state
is a scalar function, and thus depends only on interparticle
distances.

The expectation value of 〈φel| �Q1|φel〉 vanishes and the
�Q1 operator contributes only through the nonadiabatic matrix
element [11]

〈 �Q〉(1)
el = − �R × �P

mn R2
〈φel|J j

el

1

(Eel − Hel )′
Q j |φel〉, (14)

where �Jel is the electronic angular momentum operator, and
1/mn = 1/mA + 1/mB, so that the total spin-rotation constant
cA can be inferred from

−cA �I · �J = − �I · �J
mn R2

〈φel| �Jel
1

(Eel − Hel )′
�Q1|φel〉

+ 〈φel| �Q2|φel〉 × �P · �I. (15)

The expectation value of the first term in �Q2 [Eq. (12)] can
alternatively be expressed in terms of a derivative of the BO
energy, namely,

〈φel|
∑

b

eA e

4 π

�xb

x3
b

|φel〉 = �n
(

∂Eel

∂R
+ eA eB

4 π

1

R2

)
, (16)
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and cA in atomic units [eX = −ZX e, α = e2/(4 π )] becomes

cA = α2

[
1

R2

ZA gA

2 mn mA
〈φel|

∑
a

�xa × �pa
1

(Eel − Hel )

∑
b

�xb × �pb

x3
b

|φel〉 + 1

R

1

2 m2
A

∂Eel

∂R
+ 1

R3

ZA ZB gA

2 mn mA

]
. (17)

In the particular case of the proton and the deuteron in the HD molecule, we arrive at

cp = α2

2 R2 mn mp

[
gp 〈φel|

∑
a

�xa × �pa
1

(Eel − Hel )

∑
b

�xb × �pb

x3
b

|φel〉 + gp

R
+ mn

mp
R

∂Eel

∂R

]
, (18)

cd = α2

2 R2 mn md

[
gd 〈φel|

∑
a

�xa × �pa
1

(Eel − Hel )

∑
b

�xb × �pb

x3
b

|φel〉 + gd

R
+ mn

md
R

∂Eel

∂R

]
, (19)

where the sum goes over two electrons in the HD molecule. These formulas coincide with those derived originally in Ref. [13].

III. SPIN-SPIN CONSTANT d1

The nuclear spin-spin direct interaction comes from the
third term in Eq. (3) and is of the form

δH = eA eB

4 π

gA gB

4 mA mB

Ii
A I j

B

R3

(
δi j − 3

Ri R j

R2

)
. (20)

Using the fact that for the � states of a diatomic molecule
�n · �J|J, MJ〉 = 0, the matrix elements of the angular part (in
parentheses) in states with definite angular momentum J can
be expressed in terms of this J as

〈J, MJ |δi j − 3
Ri R j

R2
|J, M ′

J〉

= 〈J, MJ |3 Ji J j + 3 J j Ji − 2 δi j �J2

(2 J − 1) (2 J + 3)
|J, M ′

J〉. (21)

So, for such states, this interaction takes the form (in atomic
units)

δH = α2 gp gd m2
e

4 mp md

1

R3

× 3 (�Ip · �J ) (�Id · �J )+3 (�Id · �J ) (�Ip · �J )−2 (�Ip · �Id ) �J2

(2 J − 1) (2 J + 3)
(22)

and the d1 constant is

d1 = α2 gp gd m2
e

10 mp md

1

R3
. (23)

IV. QUADRUPOLE CONSTANT d2

The interaction of a particle possessing the electric
quadrupole moment with the gradient of the electric field is
given by

δH = − e

6
Qi j ∂ jE

i. (24)

For a particle with a definite spin I � 1, the Qi j , as a traceless
and symmetric tensor, can be expressed in terms of a single
scalar electric quadrupole moment Q defined by

Qi j = Q

I (2I − 1)

(
3

2
I i I j + 3

2
I j I i − δi j �I2

)
. (25)

This definition is such that Q corresponds to the expectation
value of Q33 in a state with the maximum value of MI , namely,

Q = 〈I, I|Q33|I, I〉. (26)

The electric field is produced by the other nucleus and all the
electrons. Let us introduce q, which is an averaged value of
the gradient of the molecular electric field:

q ≡ 1

3
〈φel|e ∂ jE

i|φel〉
(

δi j − 3
Ri R j

R2

)

= 〈φel| ∂2V

∂Ri
d∂R j

d

(
Ri R j

R2
− δi j

3

)
|φel〉, (27)

where V is the Coulomb interaction potential. Then, the
traceless part of the electric-field gradient is

〈φel|e ∂ jE
i|φel〉 = q

2

(
δi j − 3

Ri R j

R2

)
(28)

and in a state with the definite angular momentum

〈J, MJ , φel|e ∂ jE
i|φel, J, M ′

J〉

= q

2
〈J, MJ |3 Ji J j + 3 J j Ji − 2 δi j �J2

(2 J − 1) (2 J + 3)
|J, M ′

J〉. (29)

Finally, the interaction of the electric quadrupole moment of
the nucleus with the gradient of the molecular electric field is

δH = −1

6

Q

I (2I − 1)

(
3

2
I i I j + 3

2
I j I i − δi j �I2

)

× q

2

3 Ji J j + 3 J j Ji − 2 δi j �J2

(2 J − 1) (2 J + 3)

= −Q q
3 (�I · �J )2 + 3

2 (�I · �J ) − �I2 �J2

2 I (2I − 1) (2 J − 1) (2 J + 3)
. (30)

The Ramsey constant d2 is thus

d2 = −Q q

10
, (31)

which in atomic units reads

d2 = −α2 Q

10λ̄2
〈φel| ∂2V

∂Ri
d ∂R j

d

(
Ri R j

R2
− δi j

3

)
|φel〉, (32)

where λ̄ is the reduced Compton wavelength of an electron.
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V. NUMERICAL CALCULATIONS OF
HYPERFINE CURVES

To evaluate the electronic matrix elements present in cp

and cd [see Eqs. (18) and (19)] we use explicitly correlated
Gaussian (ECG) basis functions of �+,

φ� = e−a1A r2
1A−a1B r2

1B−a2A r2
2A−a2B r2

2B−a12 r2
12 , (33)

and � symmetry:

φi
� = ( �R × �r1)i φ = εi jkR jrk

1 φ�. (34)

We employed 256 basis functions of Eq. (33) to represent the
electronic wave function φel. The same number of functions of
Eq. (34) was used to form the internal basis set of the resolvent
1/(Eel − Hel ). Their nonlinear parameters were determined
variationally in a global optimization process independently at
44 internuclear distances. While the parameters of the φel were
determined by minimizing the electronic energy, the nonlinear
parameters of the internal basis were optimized with respect
to the functional

〈φel|
∑

a

�xa × �pa
1

Eel − Hel

∑
b

�xb × �pb|φel〉. (35)

Thanks to the optimization of the φ� and φ� functions the
relative numerical accuracy (≈10−5) of the spin-rotation pa-
rameters is higher than the estimate of nonadiabatic correc-
tions, and the use of only 256 basis functions was sufficient for
this purpose. Apart from the second-order matrix element, the
spin-rotation parameters cp and cd require evaluation of the
derivative of the BO energy with respect to the intermolecular
distance [see Eqs. (18) and (19)]. This derivative can be found
from the virial theorem

∂Eel

∂R
= 〈V 〉el − 2 Eel

R
, (36)

which enables calculations with high numerical precision.
The direct spin-spin interaction constant d1 does not re-

quire evaluation of any electronic matrix elements and, for
a given R, is fully determined by the well-known nuclear g
factors and the electron-nucleus mass ratios.

Considering the matrix element of the quadrupole constant
d2 in Eq. (32), we integrated it by parts to obtain a less singular
form,〈

∂2V

∂Ri
d ∂R j

d

(
Ri R j

R2
− δi j

3

)〉

= 2

R3
−

(
Ri R j

R2
− δi j

3

)

×
∫

d3r1 d3r2

(
1

r1A

∂2
(
φ2

el

)
∂ri

1 ∂r j
1

+ 1

r2A

∂2
(
φ2

el

)
∂ri

2 ∂r j
2

)
, (37)

which is more convenient in calculations. The above expecta-
tion value was evaluated with φel expanded in an ECG basis
as large as 1024 terms, due to slow numerical convergence.
Table I supplies data which enable an analysis of this conver-
gence at different regions of the internuclear distance. This
analysis reveals that, depending on the region, four to six
significant digits are stable. Our numerical results are in good
agreement with the results published by Pavanello et al. [14]

TABLE I. Convergence of the electric-field gradient q defined in
Eq. (27) with the growing basis set size K at selected internuclear
distances R in comparison with the most accurate literature data (all
data in atomic units).

K R = 0.4 R = 1.4 R = 5.0

128 30.082378 0.338173 −0.001890827
256 30.082224 0.338084 −0.001887565
512 30.082195 0.338078 −0.001888152
1024 30.082184 0.338073 −0.001890408

[14]a 30.405155 0.338070 −0.00189088
[15]b 0.33630

aPavanello et al. [14].
bReid and Vaida [15].

except for the shortest internuclear distances, at which their
values seem to be less accurate. As a final result we take
values from the 1024-term basis and note that the achieved
numerical accuracy of the electric-field gradient within the
BO approximation is higher than the estimated contribution
from the nonadiabatic effects.

In contrast to previously described magnetic interactions,
the electric quadrupole interaction constant d2 depends on the
electric quadrupole moment of the deuteron Q, which is not
well known from independent measurements. In fact, it is the
old Ramsey measurement [2], which allows the most accurate
determination of the deuteron quadrupole moment. For this
purpose we use the measurement for the J = 1 level of the
D2 molecule, for which d2 is found with the highest accuracy
and the nonadiabatic effects are smaller in comparison to
the HD molecule. This determination of Q is described in
detail in the next section; however, we use this value here for
evaluation of the d2 curve. The final numerical results for the
spin-rotation [cp and cd , Eqs. (18) and (19)], spin-spin [d1,
Eq. (23)], electric-field gradient [q, Eq. (27)], and quadrupole
[d2, Eq. (32)] constants for all the internuclear distances are
presented in Table II. The conversion factor from energies in
atomic units to frequencies in Hz is 2 Ry c, where Ry is the
Rydberg constant and c is the speed of light in a vacuum. For
small R, all curves exhibit R−3 dependence as they should,
while for large R they vanish faster than R−3.

VI. HYPERFINE CONSTANTS

The data in Table II were interpolated at internuclear
distances R between 0 and 5 bohrs, and extrapolated for
R > 5 bohrs by fitting a8/R8 + a9/R9 + a10/R10 + a11/R11.
This particular choice of powers of R being in agreement
with numerical data does not affect averaged results within
five significant digits for the low-lying levels. The averaged
values, according to Eq. (2), were evaluated with the nuclear
wave function corresponding to a (v, J ) rovibrational level.
This function is a solution of the radial nuclear equation, with
nuclear masses and with the highly accurate BO potential
obtained in Ref. [16], using the descrete variable represen-
tation method [17,18]. Numerical results for selected low-
lying states of HD are shown in Table III, while for an
arbitrary rovibrational level they can be obtained from the
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TABLE II. The hyperfine splitting parameters (in kHz) and
electric-field gradient q (in a.u.) evaluated with ECG wave functions
at different internuclear distances, R (in a.u.). According to Eq. (23),
d1(R) R3 = 49.7735. The deuteron quadrupole moment used here
is Q = 0.2856(2) fm2 [see Eq. (40)]. The relative numerical uncer-
tainty of cp and cd is about 10−5, while that of q and d2 is below 10−4

with the exception of large distances, i.e., R > 4 a.u.

R cp(R) R3 cd (R) R3 q(R) R3 d2(R) R3

0.00 383.478 53.8392 2 −134.306
0.05 383.343 53.8227 1.99993 −134.206
0.10 382.562 53.7266 1.99910 −134.150
0.20 378.132 53.1835 1.99045 −133.570
0.30 370.082 52.2006 1.96675 −131.979
0.40 359.411 50.9042 1.92526 −129.195
0.50 347.140 49.4211 1.86651 −125.253
0.60 334.055 47.8480 1.79257 −120.291
0.80 307.471 44.6783 1.60929 −107.992
1.00 282.174 41.6944 1.39463 −93.5873
1.10 270.345 40.3096 1.28044 −85.9243
1.20 259.127 39.0020 1.16374 −78.0931
1.30 248.527 37.7708 1.04579 −70.1780
1.40 238.531 36.6121 0.927672 −62.2517
1.50 229.121 35.5221 0.810308 −54.3760
1.60 220.252 34.4935 0.694516 −46.6057
1.70 211.885 33.5194 0.581002 −38.9883
1.80 203.974 32.5925 0.470417 −31.5675
1.90 196.458 31.7028 0.363340 −24.3820
2.00 189.296 30.8435 0.260328 −17.4693
2.10 182.429 30.0052 0.161886 −10.8634
2.20 175.786 29.1768 0.0685114 −4.59747
2.30 169.328 28.3518 −0.0193471 1.29829
2.40 162.990 27.5199 −0.101231 6.79314
2.50 156.723 26.6735 −0.176737 11.8600
2.60 150.493 25.8071 −0.245492 16.4738
2.70 144.243 24.9121 −0.307151 20.6115
2.80 137.942 23.9843 −0.361458 24.2557
2.90 131.585 23.0232 −0.408220 27.3937
3.00 125.125 22.0226 −0.447320 30.0175
3.20 111.965 19.9190 −0.502678 33.7323
3.40 98.5935 17.7071 −0.528954 35.4956
3.60 85.2803 15.4469 −0.529418 35.5267
3.80 72.4156 13.2191 −0.509111 34.1640
4.00 60.3781 11.1023 −0.473173 31.7524
4.20 49.4911 9.16421 −0.428052 28.7245
4.40 39.9395 7.44650 −0.378058 25.3697
4.60 31.7964 5.96901 −0.328370 22.0354
4.80 25.0220 4.72985 −0.279521 18.7573
5.00 19.4962 3.71147 −0.236301 15.8570
5.20 15.0626 2.88852 −0.197415 13.2476
5.40 11.5579 2.23328 −0.163798 10.9917
5.60 8.81557 1.71698 −0.134138 9.00133
5.80 6.68912 1.31383 −0.110457 7.41224
6.00 5.05561 1.00182 −0.0894048 5.99953

updated version of the publicly available H2SPECTRE com-
puter code [7].

Considering the quadrupole moment of the deuteron, it can
be determined from the electric quadrupole coupling constant
d2, obtained from Ramsey measurements performed for HD

in the J=1 level [1], and for D2 in J = 1 and 2 levels [2] in
the ground vibrational state. Among them, the most accurate
is the value

d2 = −22.5037(14) kHz (38)

obtained from the measurement for the J=1 level of D2, which
was later refined in Ref. [15]. Our value for the gradient of the
electric field for this level is

〈q〉 = 0.33535(18) a.u. (39)

The quadrupole moment, obtained using this value and
Eq. (32), is

Q = − d2

2 Ry c

10λ̄2

α2 〈q〉 = 0.2856(2) fm2. (40)

Its uncertainty comes from the neglected nonadiabatic effects,
which are of the order of the ratio of the electron mass to the
reduced nuclear mass mn(D2). This quadrupole moment Q is
used in Table II to obtain the electric quadrupole constant d2

as a function of R and in Table III for various rovibrational
levels.

A similar relative uncertainty of 1/mn(HD) ≈ 0.8 × 10−3

due to the omitted nonadiabatic effects is assumed for all hy-
perfine constants in Tables III and IV. Because this uncertainty
is larger than our numerical uncertainties, the latter were
neglected. Moreover, we expect that theoretical predictions
for d2 shall be in fact more accurate due to partial cancellation
between nonadiabatic effects in D2 and HD. Indeed, in com-
parison to measurements performed by Quinn et al. [1] (see
Table IV), all our values differ by about σ , with the exception
of d2, which differs by only σ/3. In conclusion, all our results
are in agreement with experimental values.

Considering the comparison with previous theoretical cal-
culations, our quadrupole moment of the deuteron Q =
0.2856(2) fm2 differs within uncertainties from values ob-
tained by Pavanello et al. [14], 0.285 783(30) fm2; Bishop and
Cheung [19], 0.2862(15) fm2; and Reid and Vaida [20,21],
0.2860(15) fm2. Surprisingly, the result of Ref. [14] has
tighter error bars than that of our paper, most probably due
to underestimation of nonadiabatic effects.

Results of the hyperfine parameters for the HD molecule,
but without any uncertainties, have been obtained by Dupré
[6], who considered three vibrational levels (v = 0, 1, 2) with
the rotational quantum number J = 1. His results are pre-
sented in Table IV after conversion from a different notation
(d1 = 2 cdip/5, d2 = −cquad/10). As one can notice, his results
for the v = 0, J = 1 level differ from the experimental ones
by several hundreds of Hz. A similar difference appears in
comparison with our values and this difference grows with the
vibrational quantum number. Moreover, very recent work [22]
by the Toruń group presents results for hyperfine parameters
for all molecular levels of HD (in the ground electronic state),
but again without any uncertainties. Differences for d1 and
d2 parameters are very small and, most probably, come from
a different radial equation for the nuclear wave function χ ,
while differences for cp and cd parameters are larger, but at
any rate they are in better agreement with our results.
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TABLE III. Theoretically predicted hyperfine splitting parameters and levels (in kHz) for a selection of the lowest rovibrational levels
(v, J ). The energy shifts δE±

F are labeled with the total angular momentum F and with ±, which distinguishes between hyperfine levels of the
same F but different energy.

(v, J ) 〈cp〉 〈cd 〉 〈d1〉 〈d2〉 δEJ+ 3
2

δE−
J+ 1

2
δE+

J+ 1
2

δE−
J− 1

2
δE+

J− 1
2

δEJ− 3
2

(0,1) 85.675 13.132 17.773 −22.459 −58.3 −1.9 54.1 −117.0 187.5
(0,2) 84.970 13.028 17.650 −22.212 −114.3 −30.1 67.7 −115.2 209.8 155.1
(0,3) 83.930 12.874 17.468 −21.850 −168.2 −67.3 90.8 −135.9 244.4 210.6
(0,4) 82.573 12.674 17.231 −21.377 −219.6 −105.6 115.5 −159.0 279.2 262.4
(1,1) 84.067 12.846 17.225 −22.305 −57.4 −1.6 53.8 −115.8 183.7
(1,2) 83.356 12.742 17.102 −22.057 −112.4 −29.0 66.8 −113.5 206.2 150.9
(1,3) 82.308 12.588 16.922 −21.691 −165.2 −65.4 89.3 −133.6 240.1 205.4
(1,4) 80.942 12.387 16.686 −21.216 −215.6 −102.9 113.4 −156.2 274.2 256.2
(2,1) 82.183 12.524 16.654 −22.043 −56.3 −1.4 53.3 −114.1 179.3
(2,2) 81.470 12.420 16.533 −21.794 −110.1 −27.8 65.5 −111.4 201.8 146.3
(2,3) 80.418 12.265 16.354 −21.427 −161.6 −63.3 87.5 −130.9 235.0 199.8
(2,4) 79.048 12.064 16.120 −20.950 −210.7 −99.9 111.0 −152.9 268.3 249.3

VII. HYPERFINE STRUCTURE AND INDIVIDUAL
TRANSITION RATES

The hyperfine structure for each molecular level (v, J )
is obtained by diagonalization of the Hamiltonian Hhfs(v, J )
in Eq. (1). We perform this diagonalization in the basis of
|J, MJ ; Ip, Mp; Id , Md〉 states because this basis is convenient
for the later calculation of transition rates. Explicit formulas
for eigenvalues δEF (F is the total angular momentum) for
J = 1, . . . , 4 are given in the Appendix, while their numerical
values are presented in Table III. These eigenvalues represent
the shift of the molecular hyperfine level with respect to
the centroid. These hyperfine levels extend in the range of
several hundreds of kHz, e.g., 300 kHz for the (2,1) state and
500 kHz for the (0,4) state, and they are still much smaller
than the discrepancy of the order of 1 MHz between Hefei [5]
and Amsterdam measurement [4] of the overtone R(1) line
in HD, which remains to be explained. Uncertainties in our
hyperfine levels mainly come from the neglected nonadiabatic
effects and this is already included in the hyperfine coefficient.
However, we do not perform detailed analysis of the resulting

TABLE IV. Comparison of our theoretically predicted hyperfine
splitting parameters (in kHz) with the available experimental [1] and
theoretical [6] literature data.

(v, J ) 〈cp〉 〈cd〉 〈d1〉 〈d2〉
(0,1) 85.675(60) 13.132(9) 17.773(12) −22.459(16)
Exper.a 85.600(18) 13.122(11) 17.761(12) −22.454(6)
Theoryb 86.2832 13.2450 17.8317 −22.66493
Theoryc 85.84 13.18 17.758 −22.4540

(1,1) 84.067(60) 12.846(9) 17.225(12) −22.305(16)
Theoryb 85.0775 13.0599 17.2842 −22.50968
Theoryc 84.63 12.99 17.211 −22.3018

(2,1) 82.183(60) 12.524(9) 16.654(12) −22.043(16)
Theoryb 83.5670 12.8280 16.7190 −22.25516
Theoryb 83.09 12.75 16.642 −22.0415

aQuinn et al. [1].
bDupré [6].
cJóźwiak et al. [22].

uncertainty of individual hyperfine levels, but in general it
should be about 0.1 kHz, if not less.

Regarding hyperfine resolved transition rates, the main
factor determining the line intensity is the square of the
transition electric dipole moment. Because we are interested
here in relative intensities, we consider only its angular part,
which is

| �di f |2 =
∑
Mi

∑
M f

|〈Ff , M f |�n|Fi, Mi〉|2, (41)

where the double sum goes over all the possible projections
of the total angular momenta of both the final and initial
state. The above matrix elements were evaluated with the
eigenfunctions of the Hhfs(v, J ) in the previously mentioned
basis of |J, MJ ; Ip, Mp; Id , Md〉 functions.

We now turn to analysis of recent measurements. There
are several very accurate measurements reported in literature
concerning the infrared absorption in HD. All of them have
uncertainties much below 100 kHz assigned to the transition
energy. We have determined the hyperfine splittings for the
initial and final states involved in these transitions and esti-
mated the relative intensities for all the hyperfine components.
The obtained stick spectra were dressed with the Lorentzian
line shapes in order to simulate the overall line shape.

A. R2(1) transition

The first transition line of interest is the R2(1) or (0, 1) →
(2, 2) line. This transition was studied by three different
experimental groups reporting the following transition en-
ergies: Fasci et al. [3], 217 105 181.581(94) MHz; Cozijn
et al. [4], 217 105 181.895(20) MHz; and Tao et al. [5],
217 105 182.79(3)(8) MHz. The disagreement between these
results can, at least partially, be attributed to the unre-
solved hyperfine structure of the line. A thorough analysis
of the pressure-dependent line shapes related to the hyper-
fine splitting of the involved rovibrational levels has been
performed in Ref. [23] and resulted in a refined transition
frequency for this line equal to 217 105 181.901(50) MHz.
The corresponding theoretical prediction for this transition is
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TABLE V. Theoretically predicted line list of the hyperfine split-
ting of the R2(1) line. F is the total angular momentum quantum
number. The label + or − distinguishes levels of the same F but
different energy (see Table III).

|Fi〉 → |Ff 〉 δE (kHz) | �di f |2

| 1
2 +〉 → | 3

2 −〉 −298.9 0.042
| 3

2 +〉 → | 3
2 −〉 −165.5 0.101

| 3
2 −〉 → | 3

2 −〉 −109.5 0.344

| 3
2 +〉 → | 5

2 −〉 −82.0 0.116

| 5
2 〉 → | 3

2 −〉 −53.1 0.024

| 5
2 〉 → | 7

2 〉 −51.8 3.200

| 1
2 +〉 → | 1

2 〉 −41.2 0.435

| 3
2 −〉 → | 5

2 −〉 −25.9 1.987

| 1
2 −〉 → | 3

2 −〉 5.6 1.089

| 3
2 +〉 → | 5

2 +〉 11.4 1.659

| 1
2 +〉 → | 3

2 +〉 14.3 0.857

| 5
2 〉 → | 5

2 −〉 30.5 0.296

| 3
2 −〉 → | 5

2 +〉 67.5 0.317

| 3
2 +〉 → | 1

2 〉 92.2 0.116

| 5
2 〉 → | 5

2 +〉 123.9 0.424

| 3
2 +〉 → | 3

2 +〉 147.7 0.674

| 3
2 −〉 → | 1

2 〉 148.2 0.018

| 3
2 −〉 → | 3

2 +〉 203.7 0.000

| 5
2 〉 → | 3

2 +〉 260.1 0.056

| 1
2 −〉 → | 1

2 〉 263.3 0.232

| 1
2 −〉 → | 3

2 +〉 318.8 0.013

217 105 180.2(0.9) MHz [24]. Table V and Fig. 1 present the
theoretical hyperfine spectrum for this absorption line.

B. P2(1) transition

Diouf et al. [25] measured the P2(1) or (0, 1) →
(2, 0) absorption line and, employing the line-shape anal-
ysis mentioned above, obtained the transition frequency
209 784 242 007(20) kHz. The uncertainty of 20 kHz is more

FIG. 1. Graphical representation of the R2(1) line. The dotted
line represents a Lorentzian line shape with FWHM = 150 kHz,
superimposed on the stick spectrum.

TABLE VI. Theoretically predicted line list of the hyperfine
splitting of the P2(1) line. F is the total angular momentum quantum
number. The label + or − distinguishes levels of the same F but
different energy (see Table III).

|Fi〉 → |Ff 〉 δE (kHz) | �di f |2

| 1
2 +〉 → | 1

2 −〉 −187.5 0.232

| 1
2 +〉 → | 3

2 〉 −187.5 0.435

| 3
2 +〉 → | 1

2 −〉 −54.1 0.177

| 3
2 +〉 → | 3

2 〉 −54.1 1.156

| 3
2 −〉 → | 3

2 〉 1.9 0.177

| 3
2 −〉 → | 1

2 −〉 1.9 1.156

| 5
2 〉 → | 3

2 〉 58.3 2.000

| 1
2 −〉 → | 3

2 〉 117.0 0.232

| 1
2 −〉 → | 1

2 −〉 117.0 0.435

than an order of magnitude smaller than the extent of the
hyperfine splitting (≈300 kHz). The calculated frequency for
this transition line is 209 784 240.1(1.0) MHz [7,26]. The the-
oretical model of the hyperfine spectrum is shown in Table VI
and Fig. 2.

C. R1(0) transition

Fast and Meek [27] recently measured the R1(0), i.e.,
(0, 0) → (1, 1), transition using double resonance spec-
troscopy in a molecular beam. The transition frequency of
111 448 815 477(13) kHz was determined with unprecedented
relative accuracy of 1.2 × 10−10. The absolute uncertainty of
13 kHz is over 20 times smaller than the 300-kHz extent
of hyperfine splitting in the upper rovibrational level. This
experimental result can be compared with the theoretically
predicted frequency of 111 448 814.5(6) MHz [7,26]. A the-
oretical absorption spectrum pertinent to this transition is
shown in Table VII and Fig. 3.

FIG. 2. Graphical representation of the P2(1) line. The dotted
line represents a Lorentzian line shape with FWHM = 150 kHz,
superimposed on the stick spectrum.

012814-7



KOMASA, PUCHALSKI, AND PACHUCKI PHYSICAL REVIEW A 102, 012814 (2020)

TABLE VII. Theoretically predicted line list of the hyperfine
splitting of the R1(0) line. F is the total angular momentum quantum
number. The label + or − distinguishes levels of the same F but
different energy (see Table III).

|Fi〉 → |Ff 〉 δE (kHz) | �di f |2

| 3
2 〉 → | 1

2 −〉 −115.8 0.234

| 1
2 −〉 → | 1

2 −〉 −115.8 0.433

| 3
2 〉 → | 5

2 〉 −57.4 2.000

| 3
2 〉 → | 3

2 −〉 −1.6 0.170

| 1
2 −〉 → | 3

2 −〉 −1.6 1.163

| 1
2 −〉 → | 3

2 +〉 53.8 0.170

| 3
2 〉 → | 3

2 +〉 53.8 1.163

| 1
2 −〉 → | 1

2 +〉 183.7 0.234

| 3
2 〉 → | 1

2 +〉 183.7 0.433

VIII. SUMMARY AND OUTLOOK

We performed the derivation and the numerical calculation
of the leading hyperfine interactions in the HD molecule.
Moreover, we obtained hyperfine constants for all low-lying
levels of HD and compared with experimental and previous
theoretical results. The accuracy of our calculations is limited
by the unknown nonadiabatic effects, which are estimated by
the ratio of the electron mass to the reduced nuclear mass.
Very good agreement is achieved with results of the measure-
ments by Quinn et al. [1] for the first rotational state of HD.
From the measurement of the d2 constant in the D2 molecule
[2,15] we determined the value of the deuteron quadrupole
moment in agreement with the previous determinations, but
with greater accuracy. However, our results for the hyperfine
constants in HD differ from the previous calculations in
Ref. [6] by hundreds of Hz for v = 0 and this difference grows
with the vibrational number.

All the nonadiabatic effects, which presently limit our
accuracy, can be calculated with the use of a very accurate
nonadiabatic wave function expanded in explicitly correlated
exponential [28] basis. This requires, however, the develop-

FIG. 3. Graphical representation of the R1(0) line. The dotted
line represents a Lorentzian line shape with FWHM = 150 kHz,
superimposed on the stick spectrum.

ment of integrals with quadratic inverse powers of interparti-
cle distances, and we are presently pursuing this project.

Although we did not calculate relativistic corrections to the
hyperfine coefficients, we stress their importance in achieving
high-precision theoretical predictions for the molecular hfs.
They are of particular interest for an improved determination
of the deuteron quadrupole moment. These relativistic correc-
tions can be calculated in the BO approximation, as previously
done for the nuclear spin-spin coupling [29]. To perform
such calculations, however, appropriate formulas have to be
derived. Ramsey, in 1953 [30], worked out formulas for the
nuclear spin-spin interactions. In a similar way, one can obtain
relativistic corrections to the electric quadrupole moment and
to the spin-rotation constants. Having a pertinent theoretical
framework, one can calculate all these hyperfine constants
with a relative accuracy of α3/π , limited by the unknown
QED effects. Numerically it is about 10−7, and we claim that
this accuracy can be achieved for all the hyperfine parameters
in HD, H2, and D2 molecules. Such accuracy will give an
opportunity for high-precision tests of molecular hyperfine
interactions, provided that measurements of similar accuracy
are performed. We hope that the present paper will encourage
experimentalists to undertake this challenge.
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APPENDIX: EIGENVALUES OF Hhfs FOR THE LOWEST J

In this section analytic formulas for the eigenvalues of
the hyperfine Hamiltonian are provided. The labeling of the
eigenvalues δE corresponds to that used in Table III. For
simplicity, the symbol of the rovibrational averaging was
dropped here, i.e., cp ≡ 〈cp〉, etc.

1. J = 1

δE5/2 = −cd − cp

2
+ d1

2
+ d2

2
, (A1)

δE±
3/2 = cp

4
− d1 − d2 ± 1

4

√
A1, (A2)

δE±
1/2 = 3cd

2
+ cp

4
+ 5d1

4
+ 5d2

4
± 1

4

√
B1, (A3)

A1 = −16cd cp − 16d1cp + 24d2cp + 16c2
d − 8d1cd

− 48d2cd + 9c2
p + 21d2

1 + 36d2
2 + 12d1d2, (A4)

B1 = −4cd cp + 50d1cp − 30d2cp + 4c2
d − 20d1cd

+ 60d2cd + 9c2
p + 75d2

1 + 225d2
2 − 150d1d2. (A5)

2. J = 2

δE7/2 = −2cd − cp + 5d1

7
+ 5d2

7
, (A6)
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δE±
5/2 = −cd

2
+ cp

4
− 25d1

28
− 25d2

28
± 1

28

√
B2, (A7)

δE±
3/2 = 2cd + cp

4
± 1

4

√
A2, (A8)

δE1/2 = 3cd + 3cp

2
+ 5d1

2
+ 5d2

2
, (A9)

A2 = −32cd cp + 40d1cp − 80d2cp + 16c2
d

− 40d1cd + 80d2cd + 25c2
p + 25d2

1

+ 100d2
2 − 100d1d2, (A10)

B2 = −2548cd cp − 1190d1cp + 2730d2cp

+ 1764c2
d + 140d1cd − 3780d2cd + 1225c2

p

+ 975d2
1 + 2025d2

2 − 150d1d2. (A11)

3. J = 3

δE9/2 = −3cd − 3cp

2
+ 5d1

6
+ 5d2

6
, (A12)

δE±
7/2 = −cd + cp

4
− 5d1

6
− 5d2

6
± 1

12

√
B3, (A13)

δE±
5/2 = 5cd

2
+ cp

4
− d1

4
− d2

4
± 1

4

√
A3, (A14)

δE3/2 = 4cd + 2cp + 2d1 + 2d2, (A15)

A3 = −76cd cp + 46d1cp − 114d2cp + 36c2
d

− 52d1cd + 108d2cd + 49c2
p + 21d2

1

+ 81d2
2 − 78d1d2, (A16)

B3 = −936cd cp − 300d1cp + 780d2cp + 576c2
d

+ 120d1cd − 960d2cd + 441c2
p + 175d2

1

+ 400d2
2 − 100d1d2. (A17)

4. J = 4

δE11/2 = −4cd − 2cp + 10d1

11
+ 10d2

11
, (A18)

δE±
9/2 = −3cd

2
+ cp

4
− 35d1

44
− 35d2

44
± 1

44

√
B4, (A19)

δE±
7/2 = 3cd + cp

4
− 5d1

14
− 5d2

14
± 1

28

√
A4, (A20)

δE5/2 = 5cd + 5cp

2
+ 25d1

14
+ 25d2

14
, (A21)

A4 = −6664cd cp + 2660d1cp − 7140d2cp

+ 3136c2
d − 3080d1cd + 6720d2cd

+ 3969c2
p + 975d2

1 + 3600d2
2 − 3300d1d2, (A22)

B4 = −20812cd cp − 5170d1cp + 14190d2cp

+ 12100c2
d + 2860d1cd − 16500d2cd

+ 9801c2
p + 2325d2

1 + 5625d2
2 − 1950d1d2. (A23)
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