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Atomic shell structure from an orbital-free-related density-functional-theory Pauli potential
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Polymer self-consistent field theory techniques are used to find radial electron densities and total binding
energies for isolated atoms. Quantum particles are modeled as Gaussian threads with ring-polymer architecture
in a four-dimensional thermal space, and a Pauli potential is postulated based on classical excluded volume
implemented in the thermal space using Edwards–Flory-Huggins interactions in a mean-field approximation.
Other approximations include a Fermi-Amaldi correction for electron-electron self-interactions, a spherical
averaging approximation to reduce the dimensionality of the problem, and the neglect of correlations. Polymer
scaling theory is used to show that the excluded volume form of Pauli potential reduces to the known
Thomas-Fermi energy density in the uniform limit. Self-consistent equations are solved using a bilinear Fourier
expansion, with radial basis functions, for the first 18 elements of the periodic table. Radial electron densities
show correct shell structure, and the errors on the total binding energies compared to known binding energies are
less than 9% for the lightest elements and drop to 3% or less for atoms heavier than nitrogen. More generally,
it is suggested that only two postulates are needed within classical statistical mechanics to achieve equivalency
of predictions with static, nonrelativistic quantum mechanics: First, quantum particles are modeled as Gaussian
threads in four-dimensional thermal space and, second, pairs of threads (allowing for spin) are subject to classical
excluded volume in the thermal space. It is shown that these two postulates in thermal space become the same
as the Heisenberg uncertainty principle and the Pauli exclusion principle in three-dimensional space.
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I. INTRODUCTION

Wolfgang Pauli introduced the exclusion principle in 1925
to explain certain observed properties of atoms. According
to Pauli, the principle states that, in an atom, two or more
electrons cannot have the same values for all four quantum
numbers [1]. While well defined mathematically, the exclu-
sion principle is an unintuitive quantum mechanical concept
dependent on wave-particle duality. It causes regions of space,
orbitals in atoms for example, to be “occupied” and prevents
the presence of other quantum particles in those regions. On
one hand, if one views quantum particles as true particles,
there is no reason why a localized entity like a point particle
should prevent other particles from existing in an extended
region. On the other hand, if quantum particles are viewed as
waves, the nonlocal exclusion makes sense, but then one is
confronted by the measurement problem, that is, explaining
the nature of wave function collapse to a particle upon mea-
surement.

Before quantum mechanics, the closest classical analog of
the exclusion principle, excluded volume, was postulated as
an intuitive, common sense principle: two objects cannot fill
the same space at the same time [2]. This has been supplanted
by the exclusion principle, which nowadays gives the origin of
excluded volume. The Pauli principle is therefore a postulate
of nonrelativistic quantum mechanics, and although it is not
always explicitly enumerated as a postulate in textbooks, it
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cannot be proved through ideas of indistinguishability, as is
commonly suggested [3].

The Pauli principle is very important for orbital-free ver-
sions of density functional theory (DFT). The theorems of
DFT allow the use of spatially dependent single-particle num-
ber densities n(r) instead of wave functions to obtain predic-
tions from quantum mechanics through a ground-state energy
expression that is a functional of the density [4–7]. Time
dependent, temperature dependent, and relativistic versions
of DFT also exist [5,8]. In DFT, correlations and exchange
effects are typically grouped together in the “exchange-
correlation” functional Exc[n] which, if known exactly, per-
mits exact quantum mechanical solutions. In reality, Exc[n]
must be approximated, but DFT is nonetheless one of the most
powerful modern techniques for solving problems in quantum
chemistry and physics [4–7]. The most common method of
solving DFT is through the use of “orbitals,” that is, a set of
solutions of an eigenvalue equation which indirectly allows
one to find the density through a sum over the occupied
orbitals [9]. This “Kohn-Sham” DFT (KS-DFT) incorporates
the Pauli exclusion principle “by hand” through the sum
over orbitals, leaving the exchange-correlation functional to
estimate the energy attributable to the Pauli principle. A com-
putationally more efficient alternative to KS-DFT is orbital-
free DFT (OF-DFT) which, as the name implies, avoids the
use of orbitals and computes the structure and energy of
quantum systems directly using only the density [10–13]. The
disadvantage of OF-DFT is that, in addition to approximat-
ing the exchange-correlation functional, the noninteracting
kinetic energy is not known exactly as it is in KS-DFT.
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It has been shown that correctly approximating the kinetic
energy is equivalent to incorporating the Pauli exclusion prin-
ciple [14–16].

Recently, an alternative derivation of OF-DFT was pre-
sented that did not use the theorems of DFT, but instead
used quantum statistical mechanics to derive a temperature
dependent free energy functional of the quantum particle
density [17]. The derivation used techniques from polymer
self-consistent field theory (SCFT) [18–22] and reduced to
KS-DFT, assuming a strict enforcement of the Pauli exclu-
sion principle. Without this assumption, the formalism is
bosonic, like other OF-DFTs, so an exchange-correlation term
including the Pauli exclusion principle was needed to make
predictions for electronic systems. A rigorous but simple
test of exchange-correlation functionals, including different
approximations of the Pauli principle, is the atomic system.
Atoms have very inhomogeneous electron densities, show-
ing shell-structure due to the Pauli exclusion principle. In
Ref. [17], correlations were ignored, and a simple shell-
structure-based (SSB) Pauli potential together with a local
density approximation exchange term (LDAX), as presented
by Finzel [23], was adopted. The results showed correct
qualitative shell-structure, essentially identical to that found
by Finzel [23], but the energies of the structures were far
from literature values [24]. Also, the SSB Pauli potential
is artificially incorporated as an external potential, as it
is a series of step functions that are calibrated indepen-
dently of the electron density n(r). It may be awkward to
modify the spherically symmetric step functions for situ-
ations other than atoms, such as molecules or solid state
materials.

It was found in Ref. [17] that the SCFT equations re-
sulting from the quantum statistical mechanics derivation are
identical in form to the SCFT equations of a system of ring
polymers derived from classical statistical mechanics [25].
Ring polymers, which are macromolecules that formed closed
rings without free ends, are mathematically parametrized in
SCFT along their backbone by a contour variable embedded in
three-dimensional (3D) space, whereas the contour parameter
for quantum particles corresponds to an independent variable,
specifically, an inverse thermal energy, β = 1/kBT , where kB

is Boltzmann’s constant and T is temperature, as shown in
Fig. 1. The temperature dimension behaves mathematically as
an imaginary time variable. This isomorphism between quan-
tum statistical mechanics and imaginary time ring-polymer
classical statistical mechanics is not new [26,27]. It emerges
from Feynman’s path integral methodology [28–31], as dis-
cussed by Ceperley [27] in the context of bosons, and it
forms the basis of path integral Monte Carlo and path integral
molecular dynamics simulations.

In polymer physics, in addition to polymer Monte Carlo
and molecular dynamics, one of the most important theoret-
ical tools is SCFT. For quantum systems, however, classi-
cal SCFT is, at first glance, not applicable. As mentioned,
Ref. [17] showed that SCFT reduces to DFT assuming a
strict enforcement of the Pauli exclusion principle. This
demonstrates that DFT fills the role in quantum systems that
SCFT holds in polymer systems. In other words, DFT is the
quantum isomorph of classical SCFT, where quantum parti-
cles are represented as ring polymers in a four-dimensional

FIG. 1. Schematic of a quantum particle contour. The abscissa
represents 3D space and the ordinate is the thermal variable, s =
1/kBT . Note that the two ends of the contour are at the same spatial
location, r0, giving it a “ring” architecture.

imaginary time thermal space, as suggested by Chandler and
Wolynes [26] and Ceperley [27].

As mentioned, the derivation of DFT in Ref. [17] did not
use the theorems of DFT. The DFT theorems show that the
properties of a many-body wave function can be described
by a single-particle electron density [7], but this one-to-one
mapping can be reversed. This leads to the possibility of an
interpretation of quantum mechanics based on the Feynman
quantum-classical isomorphism, according to the following
reasoning:

(1) Postulate 4D thermal-space polymers within classical
statistical mechanics.

(2) Following Ref. [17], derive ring-polymer SCFT, which
is equivalent to quantum DFT assuming the enforcement of
the Pauli exclusion principle.

(3) Quantum DFT is in turn equivalent to quantum me-
chanics, from the theorems of DFT [4–7].

Ideally, all the predictions of quantum mechanics should
be obtainable from classical statistical mechanics with an
extra temperature (imaginary time) dimension. In reality,
several issues have been ignored. In particular, step 2 as-
sumes the Pauli principle is rigorously enforced, which is
not the case for the orbital-free-related DFT derived in [17].
Nonetheless, in Ref. [17], it was speculated that the Feyn-
man quantum-classical isomorphism could be used to in-
terpret quantum mechanics in an ensemble picture as the
classical statistical mechanics of polymerlike objects in a
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four-dimensional thermal space. From this perspective, the
SCFT equations can be interpreted as a “hidden-variables”
theory of quantum mechanics, with the hidden variables
being conformational degrees of freedom of the nonlocal
polymerlike contours that represent quantum particles. That
is, intraparticle thermal correlations are the hidden degrees of
freedom.

It is the purpose of this paper to explore this possibility
further with a focus on incorporating the Pauli exclusion
principle into the Feynman isomorphism. A simple expression
for the Pauli potential will be given that gives proper shell
structure for atoms and quantitative atomic binding energies,
and that is also versatile enough to apply to other systems
such as molecules or solid state materials, although these
applications will not be explored in this work. The Pauli
potential is derived in Sec. II through the classical 4D thermal-
space picture, replacing the Pauli exclusion principle with the
older classical excluded volume concept. It is postulated that
the thermal contours that mathematically represent quantum
particles cannot occupy the same space as each other, with
the exception of one other contour each to allow for spin. The
basic polymer excluded volume formalism of Edwards [32],
adapted for interpolymer instead of intrapolymer interactions,
is used, which is essentially the same as the Flory-Huggins
interactions often used between polymers of different chem-
ical species [18,19,21,22,33]. In the mean-field approxima-
tion, this Pauli potential, together with a crude Fermi-Amaldi
self-interaction correction to the mean-field electron-electron
Coulomb expression [34], and an ionic Coulomb potential,
are the only interactions used in this paper to study the atoms
hydrogen through argon in Sec. III. Correlations are ignored,
but despite this the electron densities show correct shell struc-
ture, and the total binding energies are quantitatively correct,
although not surprisingly, they are not close to chemical
accuracy. To further check the 4D thermal-space excluded
volume model of the Pauli potential, polymer scaling theory,
following the ideas of de Gennes [33], is used to verify that in
the uniform limit with high numbers of electrons, the Thomas-
Fermi 5/3 power law dependency of the electron density is
found. In Sec. IV, the idea of quantum particles being nonlocal
polymerlike contours in a 4D thermal space, and the idea of
these contours possessing classical excluded volume in the 4D
space, are taken together as two postulates, within classical
statistical mechanics, necessary to reproduce the predictions
of static, nonrelativistic quantum mechanics. Conclusions are
drawn in Sec. V.

II. THEORY

Feynman’s quantum-classical mapping means that the free
energy F of a system of N quantum particles subject to an
external potential Uext can be derived from quantum statistical
mechanics, as in Appendix A of Ref. [17], or from the clas-
sical statistical mechanics of ring polymers, as in Ref. [25].
Either way, the result is

F [n,w] = −N

β
ln Q(β ) −

∫
dr w(r)n(r, β ) + U [n], (1)

where n(r, β ) is the quantum particle density as a function
of position r and inverse temperature β = 1/kBT . Q(β ) is

a single-particle partition function subject to the field w(r).
The SCFT method of derivation for Eq. (1) is a rigorous
first-principles path integral approach that has been exten-
sively reviewed for a variety of polymer systems [18–22]
and so will not be repeated here. Physically, the first two
terms on the right-hand side of Eq. (1) give a combination of
configurational and translational entropy of a polymer subject
to the field w(r). The polymer configurational entropy is itself
isomorphic to the quantum kinetic energy. The expression for
the quantum kinetic energy in (1) is exact to the extent that
the fields w(r) are correct; the fields are generated by the third
term on the right-hand side of (1), which is

U [n] = Uint[n] + Uext[n], (2)

where Uint is the sum of internal potentials between quantum
particles, such as electron-electron interactions. The external
potential Uext is due to, for example, the ionic Coulomb
potential in atomic systems. In Appendix A of Ref. [17],
the functional (1) is extremized to produce a set of equa-
tions that is solved numerically and self-consistently in or-
der to find the quantum particle density n(r, β ). The reader
is referred to Ref. [17] for the full details. As mentioned,
these equations are identical to equations derived through
classical statistical mechanics for ring architecture polymers
using SCFT [25], except that the parameter s for polymers
is a spatial parametrization of the polymer contour embed-
ded in real space, whereas for quantum particles it is an
independent variable describing a “thermal trajectory” run-
ning from zero to β = 1/kBT . The speculation of Ref. [17]
is that nonrelativistic quantum mechanics can be derived
using classical statistical mechanics through SCFT on an
ensemble of polymerlike objects which represent quantum
particles in a four-dimensional thermal space consisting of r
and β.

In order to test and extend this hypothesis, one can attempt
to describe the Pauli exclusion principle within the SCFT
framework using only classical concepts. The appropriate
classical analog to the exclusion principle is excluded volume.
In polymer SCFT, excluded volume is often included using
the Edwards expression, which implements a Dirac delta
function energy penalty for polymer overlaps [32]. Normally,
the Edwards potential is applied to a single polymer chain
interacting with itself, but in the Pauli context, it should be
applied between different polymerlike quantum particles. This
is mathematically the same as the polymer Flory-Huggins
interaction between distinct chemical species, which also
uses a Dirac delta function energy penalty. In this work,
an ensemble of each individual quantum particle will be
treated as a distinct species, or, allowing for spin, each pair
of particles will be its own species and will interact with
other pairs through a Flory-Huggins-type potential. The term
“pairs” will mean each “species” can have up to two particles.
The sum of the electron densities of all of these species will
give the total electron density; other potential terms of (2),
for example the electron-electron Coulomb potential and the
external potential, will continue to be functionals of the total
electron density.

Following the Flory-Huggins formalism, the Pauli energy
between quantum particle pairs should be an internal potential
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FIG. 2. Schematic of two quantum particle contours in 4D with the abscissas representing 3D space and the ordinates the thermal variable,
s = 1/kBT . (a) Two contours very close together showing many points of excluded volume contact, indicated by the arrows. (b) Two contours
somewhat separated with fewer overlapping contact points. (c) Two contours further apart again, free of overlaps. This is approximated in the
model by excluded volume interactions projected out into 3D, shown schematically by the cylindrical regions.

of the form

UP[{n}] = 1

2

∑
i j

i �= j

∫∫
dr dr′ni(r, β )Vxv(|r − r′|)n j (r′, β )

(3)
assuming a mean-field expression, where {n} is the set of
all quantum particle pair densities, the summations are over
all pairs, and Vxv(|r − r′|) is an excluded volume interaction
energy of the form

Vxv(|r − r′|) = g−1
0 δ(r − r′). (4)

The magnitude of the constant prefactor g−1
0 needs to be

specified, but it will have units of an inverse density of states.
Expression (4) is approximate, since rigorously it should be
of the form

Vxv(|r(s) − r′(s)|) = g−1
0 δ(r(s) − r′(s)), (5)

where r(s) is a parametrized curve describing the contour of
the polymerlike quantum particle in the 4D thermal space.
Equation (5) indicates an excluded volume energy penalty
only when two contours are at the same place for the same
value of the contour. This is analogous to particles having
to be at the same place at the same time in order to feel
excluded volume. Ceperley has discussed how interactions
should occur only between different contours and only at the
same imaginary time slice [27]. For regular polymers, the
contours are embedded in space, so any segment can bump
into any other segment, and Eq. (4) is used. For quantum
particles, the parameter s is not embedded in 3D, but is
an independent timelike variable, so one should use (5),
but this is difficult to implement. Using (4) instead, which

“projects out” the 4D contour into 3D space, gives a good
approximation, although it will overestimate excluded volume
somewhat. The situations described by (4) and (5) are shown
in Fig. 2. Using (4) neglects intercontour correlations and so
it is a mean-field approximation. Putting (4) into (3) gives

UP[{n}] = 1

2

∑
i j

g−1
i j

∫
ni(r, β )n j (r, β )dr, (6)

where

g−1
i j ≡ (1 − δi j )g

−1
0 . (7)

Since the excluded volume effect between 4D quantum par-
ticle contours should be universal, the parameter g−1

0 should
not be free. It can be calibrated by comparing predictions to
any experimental result; in this way, no assumption needs to
be made about the internal structure of an electron contour,
since the internal structure of fundamental particles are not
known. For simplicity, g−1

0 will be set here by comparing the
Pauli energy to a theoretical “jellium” state, that is, a uniform
gas of quantum particles with no interactions other than the
exclusion principle. The energy density of this system for
electrons is the Thomas-Fermi energy density [10], derived
by Ashcroft and Mermin in the Sommerfeld model to be [35]

UP

V
= c0n5/3

0 , (8)

where n0 = N/V is the average electron density, V is the
volume, and

c0 =
(

3

10

)
(3π2)2/3. (9)

The Thomas-Fermi expression (8) is valid for uniform densi-
ties with large numbers of electrons, so that the Fermi surface
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can be approximated as a continuous sphere. Under these
conditions, as shown in the Appendix, the Pauli energy ex-
pression (6) can be phrased as an energy density and becomes

UP

V
= g−1

0

2
n2

0. (10)

As expected, (10) overestimates the strength of the Pauli
interaction by a factor of n1/3

0 . Ignoring this weak factor, one
gets an estimate for g−1

0 as

g−1
0 = 2c0 ≈ 5.742 468, (11)

leaving no free parameters in the theory. The missing factor
n1/3

0 could in principle be accounted for by correlation cor-
rection terms to the energy, but the atomic systems that will
be the focus of this study do not necessarily have high N and
are certainly not homogeneous. Thus correlation corrections
based on Thomas-Fermi are not within the scope of this
study. Rather, it is beneficial to scrutinize the correlation-free
estimate based on (11) to see the size of the errors that
are produced. For the uniform, large electron number case
appropriate to the Thomas-Fermi expression (8), one can use
polymer scaling theory to avoid neglecting correlations. In
polymer systems, the mean-field description systematically
also overestimates excluded volume, in contrast to scaling the-
ory [33]. For the present electron-contour case, it is shown in
the Appendix, by adapting the arguments of de Gennes [33],
that the model of polymerlike excluded volume interactions
gives an energy density dependence on the electron density of

UP

V
∼ n5/3

0 , (12)

consistent with Thomas-Fermi.
The canonical ensemble free energy functional (1) can be

generalized to include densities for pairs of quantum particles
as

F [{n}, {w}] = − 1

β

∑
i

Ni ln Qi(β ) −
∑

i

∫
dr wi(r)ni(r, β )

+U [{n}, n], (13)

where Ni are the numbers of quantum particles in each pair
(0, 1, or 2 particles in each “pair”), ni(r, β ), wi(r), and Qi(β )
are the densities, fields, and single-particle partition functions,
respectively, of each pair, and {n} and {w} are the sets of
all pair densities and fields, respectively. The summations are
over all pairs. The total number of quantum particles and the
total density, respectively, are

N =
∑

i

Ni, (14)

n(r, β ) =
∑

i

ni(r, β ). (15)

The total potential U [{n}, n] is

U [{n}, n] = U0[n] +
∑

i

UP[{n}], (16)

where UP[{n}] is given by (6) and U0[n] accounts for all
remaining internal and external potentials that depend only

on the total density. In most cases, the external potential will
be a Coulomb potential due to ions. The remaining internal
potential, for electronic systems, will be the electron-electron
Coulomb interaction. Expressions for both of these are given
in Appendix E of Ref. [17]. Normally, self-interaction correc-
tions to the Hartree electron-electron Coulomb interaction are
included in the exchange-correlation functional of DFT. Here
however, the Hartree term is modified using the Fermi-Amaldi
prefactor of (N − 1)/N [34] so that it will exactly account
for self-interactions for N = 1 and asymptotically large N .
For most values of N , the Fermi-Amaldi self-interaction
correction is considered to be crude [36]; however, it is an
orbital-free expression that is very simple to implement, and,
as shall be shown in the Results section, it gives reasonable
results. Since no correlations are included, the entirety of
exchange-correlation effects in this work are contained in the
Fermi-Amaldi and Pauli terms.

Following Ref. [17], the free energy functional (13) can be
varied with respect to all pair densities and fields to give the
set of self-consistent equations

wi(r) = δU [{n}, n]

δni(r, β )
, (17)

ni(r, β ) = n0i

Qi(β )
qi(r, r, β ), (18)

and

Qi(β ) = 1

V

∫
drqi(r, r, β ) (19)

with

∂qi(r0, r, s)

∂s
= h̄2

2m
∇2qi(r0, r, s) − wi(r)qi(r0, r, s) (20)

subject to the initial conditions

qi(r0, r, 0) = V δ(r − r0), (21)

where n0i ≡ Ni/V . The functional derivatives in Eq. (17) can
be carried out on (16) to give the same total density dependent
fields as in Appendix E of Ref. [17], but with the extra Fermi-
Amaldi prefactor on the electron-electron potentials wee,i(r).
Each total field wi(r) will be distinct due to the functional
derivatives of the Pauli terms (6) which give contributions

wP,i(r, β ) = g−1
0

∑
j �=i

n j (r, β ). (22)

Equations (17)–(22) are solved numerically and self-
consistently, with the computationally limiting factor being
the solution of the diffusion equations (20). Matsen has
suggested a bilinear Fourier series expansion method [37],
used in Ref. [17], that greatly reduces the computational cost
of solving ring polymer systems, and this method is used
again here. Equations (17)–(22) are expanded in terms of
the Fourier basis functions that have the symmetry of the
system of interest, and the spectral equations are solved for
the Fourier coefficients. Atomic systems are studied in this
paper since they are a simple and yet nontrivial application,
due to their severely inhomogeneous electron densities. The
spherical symmetry of the ensemble average electron densities
in atomic systems allows the choice of spectral basis set to be
zeroth-order spherical Bessel functions, which is a complete
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TABLE I. SCFT calculated binding energies for the first 18
elements of the periodic table compared with NIST values [24].
Energies are in Hartree atomic units.

Element SCFT binding energy NIST binding energy % difference

H 0.5000000 0.4997332 0.05
He 2.7616721 2.9033858 4.9
Li 6.85169 7.4779785 8.4
Be 13.4755 14.668442 8.1
B 23.010 24.658095 6.7
C 35.812 37.855785 5.4
N 52.225 54.611615 4.4
O 72.60 75.10984 3.3
F 97.26 99.8071 2.6
Ne 126.57 129.05245 1.9
Na 159.1 162.432 2.1
Mg 195.8 200.323 2.3
Al 237.0 242.7275 2.4
Si 282.6 289.898 2.5
P 332.9 341.98 2.7
S 387.8 399.085 2.8
Cl 447.9 461.44 2.9
Ar 512.8 529.22 3.1

orthonormal set; see Ref. [17] Appendix D.1 Equations (17)–
(22) expanded in spherical Bessel functions give the same
expressions as in Ref. [17] Appendix E, but now with the
inclusion of the Fermi-Amaldi prefactor and the addition of
the Pauli potential. Equation (22) written in spectral form is

wk
P,i = g−1

0

∑
j �=i

nk
j, (23)

where nk
j and wk

P,i are the Fourier coefficients for the densities
and Pauli fields, respectively. The SCFT system of equations
(17)–(23) is solved for the first 18 atoms of the periodic table,
using the same numerical approach as in Ref. [17] (where full
numerical details can be found), until the field coefficients
stop changing by less than one part in 10−9 according to the
square of an L2 norm.

III. RESULTS

The free energies of Eq. (13) were calculated for isolated
atoms of hydrogen through argon using values of β that
approach zero temperature. Specifically, a value of β = 80
was large enough to approach zero temperature, and, for
some cases, β = 20 or less was sufficient. Results are shown
in hartree atomic units in Table I, which also gives NIST
values for the binding energies [24]. Numerical errors on the
SCFT results are estimated to be �0.2% for all elements, and
�0.1% for most.

The percent deviations between the SCFT binding energies
and the NIST values given in Table I show that, although
far from chemical accuracy, the energies are very good. The
percent deviation is highest for lithium, which is not sur-
prising since the Fermi-Amaldi self-interaction correction is

1Equation (D12) of Ref. [17] should not have a summation.

poor there, but improves as N increases, as expected. The
deviation for elements heavier than nitrogen is roughly 3% or
below.

In addition to the Fermi-Amaldi approximation, and the
neglect of correlations, there is also a spherical averaging
approximation which affects atoms heavier than beryllium.
In principle, a maximum of two electrons should be allowed
for each pair in a fully three-dimensional SCFT calculation,
and atomic states such as 2p or 3p would spontaneously
appear, breaking spherical symmetry, just as low symme-
try morphologies arise spontaneously in numerical polymer
SCFT results [21,38,39]. For computational efficiency how-
ever, known atomic shell structure is input to reduce the
numerical burden, so that nonspherical subshells are lumped
together with spherical shells. For example, three diffusion
equations should be solved for boron 1s22s22p1. Instead only
two are solved: one for the pair of 1s2 electrons and another
for the three 2s22p1 electrons. Since the energy level differ-
ence between the 2s and 2p states is small, this approximation
is expected to be reasonable. Indeed, the errors in Table I
show no significant consequence for this approximation. In
principle, one could use an effective g−1

0 parameter for states
containing more than two electrons in the spirit of a pseudopo-
tential, but this has not been done here. Rather, it is desirable
to see the full effect of all approximations. Nonetheless, the
SCFT formalism could possibly be made to go smoothly from
an all-electron description to a pseudopotential one through
appropriate groupings of electrons with effective g−1

0 values,
for example, dividing electrons up into core and valence shells
in order to speed computations. It is also apparent that if one
keeps rigorously only pairs of electrons, and solves the zero
temperature case by expanding the diffusion equations (20)
in basis sets of the eigenfunctions of the spatial operators
of (20), as in Ref. [17] Appendix B, then one will regain
KS-DFT. Thus depending on the grouping of electrons, the
present approach reproduces both KS-DFT and OF-DFT.

Radial electron densities are shown in Fig. 3. All densi-
ties show correct shell structure and proper magnitudes. The
densities and corresponding binding energies from Table I
can be compared with the predictions of the simple shell-
structured-based (SSB) Pauli potential of Finzel [23], which
was used in Ref. [17]. The electron densities are observed
to be qualitatively the same, with some small quantitative
differences. The binding energies here, as mentioned, are
quite good, in contrast to those that can be calculated using
the Finzel SSB Pauli potential, which are very far from NIST
values. The values of Finzel can be improved somewhat by
dropping the LDAX term and incorporating instead the Fermi-
Amaldi correction to the electron-electron self-interaction.
This implies the exclusion effect is double counted when an
explicit Pauli potential is used with the LDAX. An exception
to this is helium, for which the binding energy becomes worse
because there is no Pauli potential and the Fermi-Amaldi
expression becomes poor. Aside from helium, to achieve these
improvements for binding energy using the SSB Pauli poten-
tial, one must inconsistently add an arbitrary term involving
the Pauli potential wP(r) to the free energy since, as shown
in Ref. [17], the SSB Pauli potential behaves mathematically
as an external potential. This is because the step functions
on which it is based are not calculated from the electron
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(a () b)

(c () d)

FIG. 3. Plot of radial electron densities as a function of radius, in atomic units, for (a) lithium, beryllium, boron, and carbon atoms;
(b) nitrogen, oxygen, fluorine, and neon atoms; (c) sodium, magnesium, aluminum, and silicon atoms; (d) phosphorus, sulfur, chlorine, and
argon atoms.

density, but are input “by hand” based on other arguments.
The contour excluded volume method of incorporating the
Pauli potential in this paper does not suffer this fault and
produces better binding energies than the SSB potential (with
the exception of helium) in all situations. It is also flexible,
since it is not based on a spherical step function, but is self-
consistently derived from the electron densities, and so it can
be applied to molecules and solid state materials. Given the
Fourier spectral method of solution, it should be especially
well suited to the latter, although this is beyond the scope of
the present work.

The results shown in Table I can also be compared to
other orbital-free methods based on Thomas-Fermi-Dirac-
Weizsacker (TFDW) approaches; see Ref. [40] for example.
The present ground state binding energies are better than
some TFDW functionals and worse than others, but it must be
emphasized that the TFDW methods do not produce correct
shell-structures as does the current method and the SSB
method of Finzel. Also, as mentioned, the Fermi-Amaldi self-
interaction term used here is very basic and no correlations
have been included. There is thus scope for improvement in
the binding energies.

In principle, the computational efficiency of the present
method should range from about the same as OF-DFT to

about the same as KS-DFT. This would depend on how
many explicit “shells” are used in the computation. A single
shell (no excluded volume between any electron “contours”)
would yield a single diffusion equation to solve, whereas
enforcing the Pauli principle completely would give N/2
diffusion equations. These N/2 equations are independent and
so could be trivially solved in parallel. The ability to smoothly
go from OF-DFT to KS-DFT could allow for some benefi-
cial approximation schemes. A direct benchmarking between
the present code and standard OF-DFT or KS-DFT codes
is beyond the scope of this work because available codes
have been optimized over many years whereas no significant
attempt at numerical efficiency has been incorporated into the
preliminary code used in this work.

IV. DISCUSSION

The above results and theory are achievable using only
classical concepts in a four-dimensional thermal space. Two
postulates are needed for the formalism, by which in principle
all static and nonrelativistic quantum mechanical results can
be obtained.

The first postulate is from Ref. [17] and is that quan-
tum particles are classically modeled as Gaussian threads

012813-7



RUSSELL B. THOMPSON PHYSICAL REVIEW A 102, 012813 (2020)

in a four-dimensional thermal space. From the application
of classical statistical mechanics through the SCFT formal-
ism, ensemble average predictions give the same results as
static quantum DFT, which in turn gives the same results
as static, nonrelativistic quantum mechanics, as proved by
the theorems of DFT [4–7]. Note that in the derivation of
Ref. [17], DFT theorems are not needed. This first postulate
can be shown to be equivalent to the Heisenberg uncertainty
principle.

One way of expressing the uncertainty principle is through
the commutation relation between position and momentum
operators in standard quantum mechanics. Position and mo-
mentum are conjugate quantities in that one is the Fourier
transform of the other. In the position representation, if the
eigenfunctions of the position operator are Dirac delta func-
tions, then the eigenfunctions of the momentum operator must
be ∼ exp( i

h̄ p · r) to be conjugate to the position eigenfunc-
tions. If the uncertainty relation does not hold, then the mo-
mentum eigenfunctions will not be exp( i

h̄ p · r) with respect to
the Dirac delta position eigenfunctions. The textbook explana-
tion of McQuarrie [41] used in the derivation of the diffusion
equation description of quantum particles in Ref. [17] will no
longer hold, and quantum particles will not be described by
contours in a 4D thermal space. In other words, the Fourier
transform of the governing diffusion equation, Eq. (A14)
of Ref. [17], gives the relationship between momentum and
position at all temperatures assuming position and momen-
tum are conjugate quantities [Ref. [17] Eq (A15)2], which
is the uncertainty relation. More directly, for position and
momentum to commute, one must have h̄ → 0, that is, the
classical limit. This limit of the diffusion equation gives just
classical statistical mechanics for pointlike particles as shown
in Appendix C of Ref. [17]. Thus the polymeric description of
quantum particles governed by a diffusion equation is related
to the validity of the uncertainty principle. The postulate of
quantum particles being Gaussian threads in a classical 4D
thermal space is equivalent to postulating the Heisenberg
uncertainty principle in a quantum 3D space.

The second postulate is that the Gaussian threads have
excluded volume in 4D thermal space with respect to oc-
cupancy beyond two threads (in the case of electrons). The
results given in this paper demonstrate that this postulate
gives the correct shell structure for atoms expected from the
Pauli exclusion principle. Thus postulating excluded volume
Gaussian threads in classical 4D thermal space is equivalent to
postulating the Pauli exclusion principle in quantum 3D space.

These two 4D postulates, with classical statistical me-
chanics, are equivalent to static and nonrelativistic quantum
mechanics. At least one more postulate would be required to
describe the dynamics of systems, but that is beyond the scope
of this work.

V. CONCLUSIONS

The Pauli exclusion principle is a fundamental feature
of nature, underpinning classical excluded volume. In this

2Equation (A15) of Ref. [17] is missing a factor of complex i in the
argument of the exponential.

work, a return to an excluded volume postulate, but in a
4D thermal space, has been shown to quantitatively repro-
duce atomic shell structure. This postulate, together with
a postulate stating that quantum particles are polymerlike
Gaussian threads in the thermal space, is sufficient to de-
scribe static, nonrelativistic quantum mechanics. By taking
this classical statistical mechanics thermal-space perspective,
the measurement problem is avoided, since there are no wave
functions to collapse. Instead, wave-particle duality arises
from the nonlocality of polymerlike quantum particles, as
discussed in Ref. [17]. Since this polymerlike nonlocality
is also related to the Heisenberg uncertainty principle, as
discussed in the previous section, it is seen that the uncertainty
principle and wave-particle duality are connected. This is
consistent with the ideas of Coles et al. [42], who showed that
wave-particle duality is equivalent to entropic uncertainty. In
the SCFT formalism, the solution of the diffusion equation
describing quantum particle contours gives the conforma-
tional entropy in polymer molecules. That is, as mentioned
in Ref. [17], the quantum kinetic entropy term is equivalent
to polymer conformational entropy, connecting entropy to
the uncertainty principle as suggested by Coles et al. [42].
This idea may be worth exploring more deeply in the
future.

The representation of the Pauli exclusion principle through
classical excluded volume is related to the ideas of Hayakawa
and Hong, who showed that Fermi statistics arise clas-
sically in theoretical two dimensional granular systems
due to excluded volume [43]. The broader approach of
obtaining aspects of quantum mechanics through classi-
cal statistical mechanics connects to the ideas of other
groups [44,45]. The use of statistical mechanics to describe
quantum mechanics requires a thermal interpretation of quan-
tum physics, which connects the SCFT approach to ideas
of Neumaier [46]. It could be useful in the future to ex-
plore possible relationships between SCFT and these other
methods.

Despite the relationships with other work, there are un-
addressed issues for a 4D thermal Gaussian thread interpre-
tation of quantum mechanics. In Ref. [17], nonlocality of
Gaussian threads was used to speculate on the double-slit
experiment, that is, to explain wave-particle duality. In fact,
that speculative connection was only partially accomplished
due to the equilibrium nature of the SCFT formalism. The
arguments of Ref. [17] justified Huygen’s principle, showing
that SCFT results will differ from classical predictions for the
double-slit experiment, but a dynamic description including
the de Broglie wavelength will be needed to predict a full
interference pattern. Nonetheless, the static formulation with
the versatile Pauli potential given in this work could be applied
to any number of molecular and solid state systems. The
periodic feature of solid state materials means the spectral
solution method could be very practical. For molecular sys-
tems, one might consider using basis functions based on
Gaussians, which is standard in computational chemistry. For
both system types, the use of effective inverse density of
states parameters g−1

0 in the context of pseudopotentials could
reduce the computational burden significantly, in keeping with
the spirit of OF-DFT, and allow practical DFT calculations for
many applications.
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APPENDIX: UNIFORM LIMITS

Two uniform, high electron number expressions for the
Pauli energy density are given in this Appendix. First, the
mean-field expression (3) for the Pauli energy can be written
in the uniform limit easily as

UP = V

2

∑
i j

g−1
i j ni0n j0, (A1)

where ni0 is the uniform density for the pair of particles
with density ni(r, β ) and sums are over all pairs. Density β

dependence will be suppressed for clarity. Dividing through
by V and writing the uniform densities as ni0 = Ni/V , where
Ni is the number of electrons of each pair, 0, 1, or 2,
gives

UP

V
= 1

2V 2

∑
i j

g−1
i j NiNj . (A2)

Assuming a large number of total electrons, it is safe to choose
all Ni = 2 without loss of generality. This gives

UP

V
= 4

2V 2

∑
i j

g−1
i j = 2g−1

0

V 2

(
N2

4
− N

2

)
, (A3)

where N is the total number of electrons. Equation (7) is used
to get (A3), as is the fact that the sums run over the number
of electron pairs, that is, up to N/2. For large numbers of

electrons, the second term in (A3) can be dropped, giving

UP

V
= g−1

0

2
n2

0, (A4)

which is Eq. (10).
Obviously, Eq. (A4) is not the correct Thomas-Fermi limit

given by (8), which might cause concern as to whether the
model of polymeric-type excluded volume is consistent with
the Pauli exclusion principle. To test this, one can avoid the
mean-field approximation and use polymer scaling theory to
see if the uniform, high electron number situation for polymer
excluded volume scales correctly. The following argument is
an adaptation of the ideas of de Gennes [33].

For high electron number density, and ignoring spin, which
will only add an overall factor of 2, each 4D electron polymer
contour will be confined to a four-dimensional hypercylin-
der due to the presence of other electron polymer contours
surrounding it. This is similar to the reptation concept in
entangled polymer dynamics [33]. The energy of a single
electron polymer confined to a tube scales as [33]

UP

N
∼ D−2, (A5)

where N is the number of electrons in the volume V and D is
the cross section of the hypercylinder. In the 4D thermal space,
the cross section is the volume per single electron, thus D ∼
n−1/3

0 where n0 is the uniform density of electrons. Thus (A5)
becomes

UP

N
∼ n2/3

0 . (A6)

This is for a single electron. To get the total energy per
volume, one multiplies through by n0 = N/V , giving

UP

V
∼ n5/3

0 , (A7)

which is Eq. (12).
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